
MATHEMATICS OF COMPUTATION 
VOLUME 50, NUMBER 181 
JANUARY 1988, PAGES 251-260 

Tables of Fibonacci and Lucas Factorizations 

By John Brillhart, Peter L. Montgomery, and Robert D. Silverman 
Dedicated to Dov Jarden 

Abstract. We list the known prime factors of the Fibonacci numbers Fn for n < 999 
and Lucas numbers Ln for n < 500. We discuss the various methods used to obtain 
these factorizations, and primality tests, and give some history of the subject. 

1. Introduction. In the Supplements section at the end of this issue we give in 
two tables the known prime factors of the Fibonacci numbers Fn, 3 < n < 999, n 
odd, and the Lucas numbers Ln, 2 < n < 500. The sequences Fn and Ln are 
defined recursively by the formulas 

Fn+2=Fn+1+Fn, FO=0, F1=l, 

Ln+2 = Ln+1 + Ln, Lo =2, Ll 1. 

The use of a different subscripting destroys the divisibility properties of these 
numbers. 

We also have the formulas 

(1.2) Fn = _ X Ln =a n +,3n 

where a = (1 + V'F)/2 and 3 = (1 - x/F)/2. This paper is concerned with the 
multiplicative structure of Fn and Ln. It includes both theoretical and numerical 
results. 

2. Multiplicative Structure of Fn and Ln. The identity 

(2.1) F2n = FnLn 

follows directly from (1.2). Although the Fibonacci and Lucas numbers are defined 
additively, this is one of many multiplicative identities relating these sequences. 
The identities in this paper are derived from the familiar polynomial factorization 

(2.2) xn _yn = I d(X,Y), n >1 

dln 

where "d(X, y) is the dth cyclotomic polynomial in homogeneous form. 
Define the primitive part Fd* of Fd to be 

(2.3) F* =.{.f d > 1, 
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Then we have the factorization 

(2.4) Fn =fJF*, n > 1. 
dln 

Here the Fd* are rational integers, computable by the inverse formula 

(2.5) Fd* = rI FE (d/6), d > 1, 
61d 

where , is the Mobius function. The ratio Fn = Fn/Fn* is called the algebraic part 
of Fn. 

Formula (2.4) reduces factoring Fn to factoring the Fd*'s. Formula (2.5) shows 
that the primitive part can be obtained without factoring. 

A prime factor of Fn (resp. Ln) is called primitive if it does not divide Fk (resp. 
Lk) for 1 < k < n; otherwise it is called algebraic. A composite factor of Fn is 
also called algebraic if it is a product of prime algebraic factors. Any prime divisor 
of Fn (resp. L') is necessarily algebraic, but under certain circumstances a prime 
divisor of Fn* (resp. L*) is not primitive. Such an algebraic prime factor p of Fn* 
(resp. L*) is called intrinsic and is listed as p* in these tables. This occurs exactly 
when n = prm, r > 1, where p is a primitive factor of Fm (resp. Lm). In this case 
p always divides Fn* (resp. L*) to just the first power. 

Example. The factorization of F105, given by (2.4), is 

F105 = 17 Fd = F,F;F*FsF 
5 

F;1,F;5Fr05. 
dl 105 

This factorization is abbreviated in Table 2 as 

105 (3,5,7,15,21,35) 8288823481. 

Here the numbers within the parentheses are the subscripts of the algebraic 
factors Fd*, 1 < d < 105. (The factor F1j = 1 is omitted.) The primitive part F105 = 

8288823481 is given after the parentheses. The lines in Table 2 corresponding to 
the numbers inside the parentheses are: 

3 2 
5 5 
7 13 

15 (3,5) 6 
21 (3,7) 421 
35 (5,7) 141961 

The factorization of F105 is then obtained by collecting the primitive prime 
factors from their respective lines. These follow the parentheses (if any) on the 
seven lines and are underlined above for emphasis. Thus, 

F105 = 2 . 5 13 61 421 141961 8288823481. 

Because of (2.1), the algebraic multiplicative structure for Ln can be derived 
directly from that of F2n. Let n = 28m, where m is odd. Then 

(2.6) Ln=J L*d, n > 1 
dlm 
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where 

(2.7) L8 d=LF+1d=FL(d6) d > 1. 
SId 

The primitive part of Ln is Ln = F2*n. The algebraic part of Ln is 

(2.8) Ln = Ln/L. 

Furthermore, as a result of a generalization by Lucas of a special identity discovered 
by Aurifeuille, we also have for odd n 

L5n an + = 4n_3n3n+& 2nf32n _n-33n + 34n 

= (a 2n - 3rn ofn + 92n)2 + S&anf3n (an - f3n)2 

= (5F 2 + 1)2-25Fn2 

= (5F 2+ 5F + 1)(5Fn2-5Fn + 1) (using aj3 =-1 and a -0 =V'). 

Consequently, we have the special Aurifeuillian factorization 

(2.9) L5n = LnA5nB5n, n odd, 

where 

A5n = 5Fn2 - 5Fn + 1, B5n = 5Fn2 + 5Fn + 1. 

This decomposition means that these L5n's have two different algebraic factoriza- 
tions. For example, from (2.6) and (2.9) 

L105 = JJ 
L7 

= LLLLL5L 
2L35L105 

dl105 

and 

L105 = L21A105B105. 

Primitive parts A* and Bn can also be defined for An and Bn. Let n > 1 be odd 
and set n = 58m, 9 > 0,5 { m. Let Ed = (+ (d)), where (d) is the Legendre 
symbol. Let 

5n= 
J 

[(A5n/d)6 (B5n/d) 1-gd]J(d) 

dlm 

(2.10) B5n= JI[(A5n/d) 1d(B5n/d)6d]/I(d) 
dlm 

(Here A5n and Bs are rational integers such that (Asn, B*n) = 1 and Lsn = 
A5nB5 .) Then 

A5n = 5(An/d) d(B5n/d)1d 

(2.11) dlm 

B5n = FJ(An/d) d (Bn/d)d. 
dlm 

Thus, in the above example we have 

A105 = AB5 B*5 A05, B105 = BA5AA5B*05 



254 JOHN BRILLHART, PETER L. MONTGOMERY, AND ROBERT D. SILVERMAN 

Since A* = A*5 = 1, these are omitted in Table 3, while B* is written as L* and 
B5 as L*5 

Those Lucas numbers which do not have an Aurifeuillian factorization appear 
in the tables in the same format as the Fibonacci factorizations. However, the 
Aurifeuillian factorizations appear in an expanded format. For example, the above 
factorization appears as: 

105 (3,7,21) A B 

A (15,35B) 21211 

B (5,35A) 767131. 

The list of numbers immediately after the index 105 indicate that L105 has the 
algebraic factors L*, L*, and L*1. Furthermore, A*05 has algebraic factors Lt5 and 
B5, while B05 has algebraic factors L* and A*5. In computing A* and B*, the 
following result is sometimes useful [9, p. 16]: 

THEOREM 1 (CROSSOVER THEOREM). For odd k,n > 1 where (5, k) = 1 and 
(k) is the Jacobi symbol, 

if (5) = 1, then A5n | A5kn and Bsn I Bskn; 

if (k) = -1, then A5n I B5kn and B5n I A5kn; 

The tables are organized using formulas (2.4) and (2.6). As a result, no prime 
factor appears explicitly more than once in the tables (except intrinsic factors and 
the repeated factor 2 of L3). Where space permits, we list the known factors in their 
entirety on a single line. We list all prime factors of 25 digits or less, carrying over 
to a second line, without breaking the factor, when necessary. All other factors are 
listed as either Pxx or Cxx, indicating respectively a prime or a composite cofactor 
of xx digits. When a factorization is incomplete, we leave space on the line for new 
factors to be inserted by hand. 

3. Factorization Methods. A variety of methods have been used to effect the 
factorizations given herein. These include the Pollard p - 1 and Brent-Pollard Rho 
methods [13], the analogous p + 1 method [19], the Continued Fraction (CFRAC) 
method of Morrison and Brillhart [14], Pomerance's Quadratic Sieve (QS) method 
[8], along with its extensions and improvements (MP-QS) [17], [18], and Lenstra's 
Elliptic Curve Method (ECM) [11], [13]. Of course, many of the smaller prime 
factors are quite old, and were originally found by trial division or the difference of 
squares method. 

Some of the methods utilize the form of the prime divisors given by the following 
theorems [9, p. 11]. 

THEOREM 2. Let n be odd and let p be an odd, primitive prime divisor of Fn. 
Then 

(i) p -1 mod 4. 
(ii) if p +1 mod 10, then p 1 mod 4n. 
(iii) if p --3 mod 10, then p 2n - 1 mod 4n. 
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THEOREM 3. Let n be positive and let p be an odd, primitive prime divisor of 
Ln. Then 

(i) if p-+1 mod 10, then p 1 mod 2n. 
(ii) if p +3 mod 10, then p -1 mod 2n. 

4. Primality Testing. In [9, p. 36], Brillhart gave the following results of pri- 
mality tests on the Fibonacci and Lucas numbers: Fn, 3 < n < 1000, is prime if and 
only if n = 3,4,5, 7,11,13,17,23,29,43,47,83,131,137,359,431,433,449,509,569, 
571; Ln, O < n < 500, is prime if and only if n = 0,2,4,5,7,8,11,13,16,17,19,31, 
37,41, 47,53,61,71,79,113,313,353. More recently, H. C. Williams has discovered 
that F2971, L503, L613, L617 and L863 are also prime. Williams also states that F4723 
and F5387 are probable primes [21]. 

For Fn to be prime, n > 5, it is necessary, but not sufficient, that n be prime. 
Similarly, Ln can be prime only when n is prime or a power of 2. There are several 
identities that can be used for primality proofs if one should find either Fn or Ln or 
their primitive parts to be probable primes. These identities are useful because in 
proving N prime, the methods of [5] depend upon auxiliary factorizations of N ?1. 
For the Fibonacci numbers we have [9, p. 95]: 

(4.1) F4k+1 - 1 = FkLkL2k+1, F4k+3 - 1 = Fk+1Lk+lL2k+1 

and 

(4.2) F4k+l + 1 = F2k+1L2k, F4k+3 + 1 = F2k+lL2k+2. 

For the Lucas numbers we have 

(4.3) L4k - 1 = L6k/L2k, L4k + 1 = (L2k - 1)(L2k + 1) 

and 

L4k+1 - 1 = 5FkLkF2k+1, L4k+3 - 1 = L2k+1L2k+2, 

L4k+l + 1 = L2kL2k+1, L4k+3 + 1 = 5Lk+lFk+lF2k+1l 

For the Lucas Aurifeuillians we have 

(4.5) A5k - 1 = 5Fk(Fk - 1), B5k - 1 = 5Fk(Fk + 1), 

A5k + 1 = (Lk-1 - 1)(Lk+l - 1), B5k + 1 = (Lk-1 + 1)(Lk+l + 1). 

The use of these formulas is apparent. They break the factorizations of Fn + 1 and 

Ln + 1 into factorizations of smaller Fn's and Ln's and thus facilitate the primality 
test. There are a number of additional formulas of a similar kind for Fn* + 1 and 

Ln + 1. 

All factors and cofactors in Tables 2 and 3 with fewer than 85 digits, and not 
labelled as Cxx, have been proved prime by Silverman using the methods presented 
in [5, Section 3] and [20]. These methods depend upon auxiliary factorizations of 

p - 1, p + 1, p2 + 1, p2 + p + 1, and p2 _ p + 1. If these cyclotomic polynomials 
have enough small prime factors, then the methods produce very fast proofs of 

primality along with a compact certificate which can later be used to verify the 

proof. Andrew Odlyzko has proved all of the remaining probable prime cofactors 
to be prime using an implementation of the Cohen-Lenstra algorithm [6]. 
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5. History of Tables. Brillhart found many small factors (up to 10 digits) 
by a direct search program, using Theorems 2 and 3 to restrict the search range 
for trial division [1], [2]. He later programmed a difference of squares method with 
modular exclusion to factor F169,L131,L133,L134,L158,L173, and L237. 

In 1968 Brillhart used D. H. Lehmer's delay line sieve DLS 127 at U. C. Berkeley 
[10] to factor F255, L166, L214, L252, and L258, again using a difference of squares 
with modular exclusion. The most remarkable of these factorizations, 

F* = 20778644396941 20862774425341, 

was found in just 40 seconds. Although these two factors are very close, there is no 
known formula which can account for this factorization. 

Between 1970 and 1973, Brillhart and Morrison found a large number of complete 
factorizations using the continued fraction method, CFRAC, on an IBM 360/91 at 
UCLA [9], [14]. 

Starting in 1974, J. L. Selfridge and Marvin C. Wunderlich used an improved 
version of the UCLA program on an IBM 360/65 at NIU in Dekalb, Illinois to factor 
many 37-41 digit cofactors. They also implemented the first stage of Pollard's just- 
discovered p - 1 method, and found many new factors. Earl Ecklund and Brillhart 
programmed and used the first stage of the p + 1 method as well [5, p. xlii]. 

H. C. Williams [19] applied the p + 1 methods to 174 composite Fibonacci and 
Lucas cofactors which had at most 80 digits. 

Thorkil Naur ran the p - 1 and Pollard Rho methods on Fn for odd n, 1 < n < 
399, and on Ln for 0 < n < 500. When a factor was at most 53 digits, he completed 
it via CFRAC. His book [15] and paper [16] list several new factorizations which 
are included herein. 

Montgomery, between 1983 and 1986, applied the methods of [13] to all composite 
table entries, using idle time on a VAX/780, two VAX/750's and a CDC 7600. He 
found about 200 previously unknown factors of 11 to 36 digits. Over half of these 
were found by ECM. He used 10 elliptic curves with limits of 104 and 6 105, another 
ten curves with limits of 1.6. 104 and 106, and a third set of ten curves with limits 
of 3.2 .104 and 2 . 106. Often he used four, five or more sets, but the work is 
uneven (many more curves were used on the Lucas numbers than on the Fibonacci 
numbers). Montgomery [13, Section 6] also ran p + 1 with an initial value (seed) of 
15/8 mod N using limits of 3. 105 and 107, and again with a seed of 23/11 mod N 
using limits of 2 106 and 108. If P =_ 15/8 mod N, then p2 - 4 _-31/64 mod N 
will be a quadratic residue precisely when -31 is a quadratic residue, so this will 

find a factor of p if p - (3) is highly composite; this includes cases where 31 

divides whichever of p ? 1 is highly composite. The seed of 23/11 mod N catches 

cases where p - (5) is highly composite. By Theorems 2 and 3, if p I Fn (n odd) 

or p I L*, then p - (5) is divisible by 2n, so the latter case occurs frequently. 
However, these runs did miss some primes p for which p + 1 is highly composite, 
such as the factor 

2170208701449020077201 = 2 * 7. 12583 55807 424267 * 520309 - 1 

of F795 (found by MP-QS; -31 is a nonresidue, but the limits were not high enough 
on that run). 
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Davis and Holdridge [7], in 1984, completed the factorizations of four cofactors 
(F277, L362, L370, and L471) of 57 to 58 digits, using QS on a CRAY 1S. 

Silverman, between 1983 and 1986, ran p - 1 with limits of 3 106 and 5 107 on 
the entire Lucas table and on the Fibonacci table to F499. He also ran p - 1 with 
limits of 2* 105 and 3. 106 on the Fibonacci table from F501 to Fg9g. This work 
was accomplished on a Micro-VAX/1 and found about 80 new factors. Some runs 
with ECM on the Lucas table using the same machine revealed no new factors. 
Silverman also completed the factorizations of all cofactors below 73 digits, and 
several larger ones, using either CFRAC or MP-QS [17], [18] on a combination of 
VAX/780's and SUN-3/75's. The larger factorizations were accomplished using a 
parallel implementation of MP-QS on a network of SUN's. 

6. Accuracy and Completeness of Tables. Montgomery and Silverman 
independently verified each entry in the main tables. They checked that 

* Each listed factor divides the number and is a prime or probable prime. 
* The proper list of algebraic (including intrinsic) factors appears 
* The primitive prime factors appear in ascending order. 
* If no cofactor is given, the list of factors is complete. 
* If a cofactor is labelled as Cxx, then it is indeed composite and has xx digits. 
* If a cofactor is labelled as Pxx, then it is a prime or probable prime and has 

xx digits. 
* No odd primitive prime factor of Fn or Ln was found to divide twice, further 

strengthening the conjecture that no such prime exists. 
Earlier versions of these tables were checked on computers by Michael Morrison 
and Tim Korb. 

As of August 1987 there remain 140 composite Fibonacci cofactors and 10 com- 
posite Lucas cofactors in the tables. During 1986 Silverman and Montgomery found 
numerous factors greater than 20 digits, but none smaller. Based upon numerous 
runs with ECM, the authors are confident that there are at most 3 undetected 
factors less than 20 digits. 

7. Discussion of Methods. It is still an open question what the best method 
is to attack a large arbitrary composite number. The authors' experience suggests 
that the following procedure is perhaps the most reasonable. 

As long as the remaining cofactor N is not a probable prime, do the following 
in order: 

(1) Trial division up to some small limit, perhaps (ln N)2. 
(2) ECM is generally more effective than p + 1, but p + 1 is so much faster 

that trying it first is worthwhile. A good first set of starting limits is about 
104 and 105. This should perhaps take a couple of minutes on a typical 
mainframe for (say) an 80-digit number. 

(3) ECM should now be tried, using about 5 curves and limits of 104 and 5- 105. 

(4) If the remaining cofactor is sufficiently small (say up to 60 digits), it should 
be finished with MP-QS. If the number is larger than this, it is worthwhile 
devoting more ECM trials with higher limits to it. 
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(5) If ECM fails and the number is less than about 70 digits, then MP-QS 
should now be applied. Seventy digits will take about a day on a typical 
modern mainframe. One can of course attempt larger numbers with a 
supercomputer or special hardware. The largest number ever factored with 
MP-QS, as of December 1986, was an 87-digit cofactor of 5128 + 1 using a 
parallel implementation on a SUN network. That factorization took 3950 
total CPU hours, divided among 10 SUN-3's over a period of about 5 weeks. 

(6) Finally, if the cofactor is still too large, one can keep trying ECM with 
higher limits or set the number aside. 

TABLE 1 

Prime Factors With More Than 25 Digits 

N Factor Discoverer Method Machine 

L386 10245029712795120034405043 Montgomery ECM CDC 7600 
F563 12158771296959377863294133 Montgomery ECM CDC 7600 
L431 13780495531127210356018421 Silverman p - 1 UVAX/i 
F425 14187954345303564388390001 Silverman MP-QS VAX/780 
F507 17340889195212892399797173 Silverman MP-QS VAX/8600 
L406 23670698911880865758980387 Silverman MP-QS VAX/780 
L371 35668796989484800666122809 Silverman MP-QS VAX/780 
L422 36302689192832119042589867 Silverman MP-QS SUN-3/75 
L467 47381053174782191395897031 Montgomery ECM CDC 7600 
L320 62379555831803099867272961 Naur CFRAC Mathilda 
F837 136299772702544437679660333 Silverman MP-QS SUN-3/75 
F445 156525289282548414081799081 Silverman MP-QS VAX/780 
L471 478330258123360554199869169 Davis QS CRAY iS 
F277 505471005740691524853293621 Davis QS CRAY iS 
F517 641466124349607697016238097 Silverman MP-QS SUN-3/75 
F741 669652072271051271698436113 Silverman MP-QS SUN-3/75 
F597 1226244816494972899766403949 Silverman MP-QS SUN-3/75 
F503 2430014747700999423017017501 Silverman MP-QS SUN-3/75 
F869 5890430821204665088535469913 Montgomery ECM CDC 7600 
L479 16372649304949588683920725489 Silverman MP-QS VAX/780 
F559 26093837057017247269531221521 Silverman MP-QS SUN-3/75 
F317 50354633016533380504238521909 Silverman MP-QS VAX/780 
F461 57907365333787128886141126177 Silverman MP-QS SUN-3/75 
F633 192347474285460831200493920089 Silverman MP-QS SUN-3/75 
L326 573005680996120855900783871963 Silverman MP-QS SUN-3/75 
F971 619802607259514583330235693729 Montgomery p - (5/p) CDC 7600 
L412 1090414335383168463561145167623 Montgomery ECM CDC 7600 
L344 1403981099723321029379913948641 Silverman MP-QS VAX/780 
L482 5373430329122468821883671012169 Montgomery ECM CDC 7600 
L377 9220407243723719942154317888399 Silverman MP-QS SUN-3/75 
F489 55010483350408487052485570744297 Silverman MP-QS SUN-3/75 
F663 542202788462733966380018208818089 Silverman MP-QS SUN-3/75 
F681 1316534463290847218590097513564513 Silverman MP-QS SUN-3/75 
L430 1517416544639719175645264380247161 Silverman MP-QS SUN-3/75 
F383 15318508443810774614619603643486769 Silverman MP-QS SUN-3/75 
F427 24949586896499848287125235667356281 Silverman MP-QS SUN-3/75 
L464 227693725298545340302283668318476481 Montgomery ECM CDC 7600 
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The present practical limit of technology seems to be about 16 digits for prime 
factors found by Pollard Rho, 18 digits for Brent's variation of Pollard Rho, and 25 
digits for ECM. The p ? 1 methods occasionally have huge successes where a factor 
over 25 digits is found; for example, these methods could have found the 29-digit 
factor of L479 with a little more effort. However, factors of 18 to 20 digits are more 
typical. The CFRAC method has been demonstrated for products up to 1064, QS 
for products up to 1071, and MP-QS for products up to 1087. This comparison is 
not quite fair, however, because the CFRAC and QS results were achieved either 
on a supercomputer or on special purpose hardware, while the MP-QS results were 
achieved on a network of SUN's [17], [18]. 

Table 1 lists all of the known nonlargest primitive prime factors of Fn or Ln 
having more than 25 digits. The cofactor of each of these, when it is composite, is 
assumed to have at least one prime factor exceeding the factor listed. Each entry 
includes the discoverer, the method of discovery, and the machine used. In the 
"machine" column the notation "UVAX/1" is an abbreviation for Micro-VAX/i. 
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