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Weak Uniform Distribution for Divisor Functions. I 

By Francis J. Rayner 

Abstract. Narkiewicz (reference [3, pp. 204-205]) has proposed an algorithm for deter- 
mining the moduli with respect to which a given arithmetic function (of suitable type) 
has weak uniform distribution. The class of functions to which this algorithm applies 
includes the divisor functions oi. The present paper gives an improvement to the algo- 
rithm for odd values of i, which makes computation feasible for values of i up to 200. 
The results of calculations for odd values of i in the range 1 < i < 199 are reported. 

1. Introduction. Let ai(x) be defined for positive integers i, x by 

oi(x) = Zdt. 

dlx 

For odd values of i, the functions ai occur as Fourier coefficients of Eisenstein series. 
An arithmetic function f is defined to be weakly uniformly distributed modulo 

n (WUD (mod n), for short) if the set 

{x E Z: x > 0, (f (x), n) = 1} 

is infinite and for every pair of integers a,, a2 with (al, n) = (a2, n) = 1, 

#{x: 0 < x < t, f(t) _ a, mod n} - 

#{x: 0 < x < t, f(x) _ al modn} 
as t -- oo. 

The integers n for which ai(x) is WUD (mod n) have been determined by Sliwa 
[6] for i = 1, by Narkiewicz and Rayner [5] for i = 2, and by Narkiewicz [2] for 
i = 3. In the present paper the methods of [2] are further improved. For each odd 
integer i > 0, there exist two finite sets of integers K1 and K2 such that ai has 
WUD (mod n) if and only if either n is odd and not divisible by an element of K1 
or n is even and not divisible by an element of K2. 

Calculations of the sets K1 and K2 for ai for all odd values of i from 5 to 199 
have been carried out in the University of Liverpool Computer Laboratory. The 
results are tabulated at the end of this paper, and the earlier results of Sliwa (i = 1) 
and Narkiewicz (i = 3) have been incorporated. 

Observation 1. Within the range of the table, it can be seen that if i is prime 
and 2i + 1 is composite, then K1 is empty, and that if i and 2i + 1 are both prime, 
then K1 = {2i + 1} for i _ 3 mod 4, and K1 = {6i + 3} for i- 1 mod 4. 

Observation 2. Within the range of the table, if i is prime and 2i+ 1 is composite, 
then K2 = {6}, with the sole exception of i = 43, where K2 = (6, 2066}. Further, 
if i is prime and 2i + 1 is prime, then K2 = {6, 4i + 2}. 
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Observation 3. The upper bound of Lemma 4 below, (2i + 1)2, for the set 
of primes involved in the calculations is much higher than necessary. A value of 
(2i + 1)1 6 would be consistent with the values actually found. It would be possible 
to make calculations for higher values of i if this observed upper bound could be 
proved to hold in general. 

Since this paper was originally submitted, Narkiewicz's book [4] has appeared. 
It describes the background and motivation for these calculations and refers to the 
original version of this paper in which the calculations were carried out for values 
of i < 107. 

Narkiewicz records that Observation 1 concerning K1 has been shown to be true 
generally by E. Dobrowolski (see [4, p. 110, Theorem 6.12]). (See also Narkiewicz 
[2] for part of this result.) 

In [4, p. 112, Problem V] Narkiewicz asks for a characterization of those odd 
integers i such that ai fails to have WUD (mod n) if and only if 6 divides n. Since 
for composite i the set of moduli for which WUD fails is at least the union of the 
corresponding sets for the factors of i, one might first consider prime values for i. 
However, even for prime i, there seems to be no easily observed pattern of behavior 
of K2. As in Observation 2 above, in the case in which i is prime and 2i + 1 is 
composite, while K1 is always empty it is not always true that K2 = {6}, since o43 
is not WUD (mod 2066), although this seems to be a rare exception. Calculations 
for prime values of i are easier than for composite ones, and a search beyond the 
limits of the present tables, assuming a reduced upper bound as in Observation 3, 
shows that the next primes i for which K2 behaves in this way are 

i = 467, where K2 = (6,24286}, 

i = 503, where K2 = (6,24146}, and 

i = 883, where K2 = (6,38854}. 

It is worth noticing in connection with Observation 2 and Dobrowolski's result 
cited above from [4] that for i = 809 we have K2 = (6,3338,38834}. Thus, although 
here i and 2i + 1 are both prime, it is not always true that under these conditions 
K2 = (6,4i + 2}, 809 being the first exception. 

Because of the reduced upper bound assumed here, these results for i > 200 
may possibly be incomplete in the sense that the sets K2 might be larger than 
stated (and therefore similar results might hold for smaller values of i), but this is 
extremely unlikely. 

Observation 4. Ramanujan's r function has WUD (mod n) if and only if either 
n is odd and not divisible by 7 (Serre) or even and divisible neither by 6 nor 46 
(Narkiewicz). (See [4, p. 89, Theorem 5.18].) Thus r behaves with respect to weak 
uniform distribution in the same way as o3 for odd n and in the same way as a,1 
for even n. 

2. Narkiewicz's Algorithm. For a fixed value of i > 2, let 

Vj(x = + i + 2i + ji ,Vj(x)=l+x +X2 +--+ 

Thus, for a prime p, ai(p1) = Vj1(p). Let 

Rj(n) = {Vj(a) mod n:a E Z, (aVj(a),n) = 1 
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regarded as a subset of the multiplicative group G(n) of residue classes prime to n. 
Let Aj(n) be the subgroup of G(n) generated by Rj(n). Let d(n) be the smallest 
j> 1 forwhichRj(n) $A0. 

The following Lemmas 1-4 are special cases of results proved by Narkiewicz [2], 

[3]. 

LEMMA 1. ai has WUD (mod n) for i > 2 if and only if Ad(n)(n) = G(n). 

Note that for odd i > 2, d(n) = 1 if n is odd, and d(n) = 2 if n is even. Lemma 1 
gives a means of calculating whether ai is WUD (mod n) for any particular values 
of i and n. 

LEMMA 2. Let n = q, qr, where q1,... , qr are powers of distinct primes. 
Suppose for each q8, Aj(q,) = G(q,). Then Aj(n) $A G(n) if and only if 

(i) there exist characters X9 of G(q9) (s = 1, . . . , r) such that X9 takes a constant 
value c9 (say) on Rj(q,); 

(ii) H=1 c9 = 1; and 
(iii) not all the characters X9 are trivial. 

LEMMA 3. Let q = pt, where p is an odd prime. Then there is a nontrivial 
character of G(q) taking a constant value on Rj(q) if and only if there is such a 
character of G(pu) taking a constant value on Rj(pu), where u = min{t, 2}. For 
p = 2 a similar result holds with u = min{t, 3}. 

LEMMA 4. For any prime p, if there is a nontrivial character of G(pt) taking 
a constant value on Rj(q), then p < (ej + 1)2 where ej is the degree of Vj(x). 

Remark. A slightly stronger result is due to Fomenko [1]. 
Let i now denote an odd integer greater than 1. It is easily seen that if Aj (n) $ 

G(n), then Aj(mn) $A G(mn) for any integer m > 1. It follows that there are finite 
sets of integers K1 and K2 such that ai is WUD (mod n) if and only if n is odd 
and not divisible by an element of K1 or n is even and not divisible by an element 
of K2. The sets K1 and K2 can be found in the following way, as follows from 
Lemmas 1-4. 

For j = 1, 2, let Hj be the set of primes p satisfying the inequality of Lemma 4 
(in which e1 = i and e2 = 2i). 

Let Ij = HjU{p2:p E Hj} U {8}, and let 

Jj = {m E Ij: there exists a nontrivial character on G(m) constant on Rj(m)}, 

including cases in which Aj (m) is a proper subgroup of G(m). 
Then Kj is the set of all products r of elements of Jj (no element being taken 

more than once in each product) for which Aj(r) $ G(r). 
Narkiewicz [2] has determined K1 and K2 for i = 3. Because it may be necessary 

to examine primes p up to (2i + 1)2 and to calculate values of R2 (p2) in G(p2), 
the calculations become difficult with increasing i. The Propositions in Section 3 
below make it unnecessary to consider squares of most odd primes and reduce the 
number of primes which need to be included in the sets Hj, although the upper 
bounds are not altered. 
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3. Some Improvements. Throughout this paragraph, let W(x) be a polyno- 
mial with integer coefficients, and let 

R(n) = {W(a) mod n: a E Z, (aW(a), n) = 1 

regarded as a subset of G(n). 
For any prime q, let 4: G(q2) -- G(q) be defined, for x E Z, by +(x mod q2) = 

x mod q, and let 4': G(q) -- G(q2) be defined, for x E Z, by +'(x mod q) = 

Xq mod q2. It is easy to see that X and 4' are homomorphisms of abelian groups, that 
+'(X(z)) = z for all z E G(q) (so that X is an epimorphism and 4' is a monomorphism) 
and that q(R(q2)) = R(q). 

LEMMA 5. Let X be any nontrivial character on G(q) which is constant on R(q). 
Then X o X is a nontrivial character on G(q2) which is constant on R(q2). 

Proof. Immediate. 

LEMMA 6. Let X be any nontrivial character on G(q2) taking the constant value 

1 on R(q2), and suppose that X o 4' is the trivial character on G(q). Then R(q2) 

and R(q) have the same cardinal number. 

Proof. First, R(q2) C kerX. Again, imV' C kerX. Now imV' is a subgroup 
of G(q2) of prime index q, so, since X is not the trivial character, im4 = ker x. 
Thus R(q2) C imV'. The restriction of X to imV' is bijective, and O(R(q2)) = R(q). 
Hence the result. 

LEMMA 7. Suppose that the prime number q and polynomial W(x) are such that 

V'(R(q)) C R(q2). Let X be any nontrivial character on G(q2) which is constant on 

R(q2). Then X o 4' is a nontrivial character on G(q) which is constant on R(q). 

Proof. Since V'(R(q)) C R(q2), X o 4' is a character constant on R(q), and it will 
be enough to show that it is nontrivial. If it is trivial, then x(V'(R(q))) = 1, and so 
the constant value of X on R(q2) is 1. The result now follows from Lemma 6. 

PROPOSITION 1. Let W(x) = 1 +xi, where i is odd and not divisible by the odd 

prime q. Then there is a nontrivial character on G(q2) constant on R(q2) if and 

only if there is a nontrivial character on G(q) constant on R(q). 

Proof. It is enough to show that Lemma 7 applies. Let x E Z be such that 
x mod q 0, and let y\ = x + Aq for A = 0,1,..., q - 1. Then 

0((1 + y') mod q2) = (1 +xi) mod q 

and 1 + y =1 + y' mod q2 if and only if A = , mod q. Thus R(q2) contains every 
element of G(q2) which is mapped into R(q) by q. Hence #R(q2) = q#R(q) and 
V'R(q) c R(q2). Since'V' is a monomorphism and q > 2, Lemmas 5 and 7 now give 
the result. 

PROPOSITION 2. Let W(x) = 1 + xi + X2i, where i is odd and not divisible by 

the odd prime q. Then there is a nontrivial character on G(q2) constant on R(q2) 

if and only if there is a nontrivial character on G(q) constant on R(q). 

Proof. For q = 3, it is easily seen that such characters exist both on R(q) and on 
R(q2). Now suppose q > 5. It is enough to show that if X is a nontrivial character 
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on G(q2) taking a constant value a on R(q2), then X o 4' is a nontrivial character 
on G(q) taking a constant value on R(q). Putting x = q - 1, we see that 1 E R(q2), 
so that a = x(1) = 1. Now let x be such that x mod q $0 O, and put yA = x + Aq 
for A = 0, 1, . . . , q - 1. Clearly, W(yA) W(y,) mod q2 if and only if 

(A - ,)ixi-l(1 + 2xi) _ 0 mod q. 

If x is such that 1 + 2xi mod q $A 0, it follows that q distinct elements of R(q2) are 
mapped onto W(x) mod q by q. On the other hand, if x is such that 1+2xi mod q = 
0, then exactly one element of R(q2) is mapped onto W(x) mod q by Q. Note that 
in this case W(x) mod q is uniquely determined. Thus, provided R(q) has at least 
two elements, we can conclude that #R(q2) > #R(q). But q is a prime greater 
than 3, and 1 E R(q), 3 E R(q). Lemma 6 now shows that X o X is nontrivial. Now 
let z mod q be any element of R(q), so that z = W(x) mod q for suitable x E Z. 
Then z mod q2 E R(q2), and 

X(q(z mod q)) = X(Zq mod q2) (X(z mod q2))q = lq = 1. 
Thus X o X is constant on R(q), and the proposition is proved. 

PROPOSITION 3. Let i be odd, and let q be a prime greater than 3, and let W(x) 
be either 1 + xi or 1 + Xi + X2i. Suppose that there is a nontrivial character on G(q) 
which is constant on R(q). Then (i, q - 1) $A 1. 

Proof. Suppose that (i, q - 1) = 1. Then x -- xi is an automorphism of G(q). 
For W(x) = 1 + xi we have R(q) = (2, 3,. . ., q - 1} and the only character 

constant on this set is trivial, so that the proposition holds in this case. 
For W(x) = 1 + Xi + x2i = (Xi + a)2 + , where a and 3 are calculated in the 

finite field Zq, we have 1 = W(-1) E R(q), so that there will only be a nontrivial 
character constant on R(q) if R(q) generates a proper subgroup of G(q). As xi 
runs through all the nonzero elements of Zq, Xi + a runs through all except a (but 
including 0 and -a), so that (xi + a)2 runs through all the quadratic residues, and 
also takes the value 0. Thus (xi + ca)2 + p takes (q - 1)/2 values in G(q) if -3 
is a quadratic residue, and (q + 1)/2 values otherwise. If R(q) generates a proper 
subgroup of G(q), this can only be the subgroup of order (q - 1)/2, that is, the 
group of quadratic residues. Thus, for every quadratic residue r2, r2 + 3 is also 
a quadratic residue. It follows that every element of G(q) is a quadratic residue. 
This contradiction completes the proof of the proposition. 

4. Results. With the help of Propositions 1, 2 and 3, the algorithm of Section 
2 can be simplified as follows. 

For an odd integer i > 1, let H1 (respectively, H2) be the set consisting of the 
primes p of the form 1 + Ar (where r is a nontrivial divisor of i and A is an integer) 
for which p < (i + 1)2 (respectively, p < (2i + 1)2), together with the prime divisors 
of i and their squares. 

Let 

I = H1 U {p2: p E H1 is prime and there exists q E H1 with q 1 (modp)} 

and let 
I2 = H2 U {p2:p E H2 is prime and there exists q E H2 with q 1 (mod p)} 

U (2, 4, 8}. 



340 FRANCIS J. RAYNER 

As before, let J1 be the subset of I, consisting of those elements m for which 
there is a nontrivial character modulo m constant on the set R(m) of values of the 
polynomial 1 + xi, and let J2 be calculated similarly from I2 using 1 + x + . The 
sets K1 and K2 consist of the products r (say) of elements of Ji and J2, respectively, 
with no repeated factor, for which Al (r) 0 G(r) (respectively, A2(r) $ G(r)), but 
omitting from K1 and K2 any r which is strictly divisible by another element already 
known to lie in K1 or K2, respectively. It follows from the results of Section 3 that, 
with K1 and K2 found from these smaller sets I, and I2, ai fails to have WUD 
(mod n) if and only if n is odd and divisible by an element of K1 or n is even and 
divisible by an element of K2. 

The results tabulated below include the cases i = 1, due to Sliwa [6] and i = 3 
due to Narkiewicz [2]. 

TABLE OF RESULTS 

The notation is as in Section 2. ai has WUD (mod n) if and only if n is odd and 
not divisible by an element of K1 or n is even and not divisible by any element of 
K2. 

i K1 K2 

1 - 6 
3 7 6 
5 33 622 
7 - 6 
9 757 6 146 

11 23 646 
13 - 6 
15 7 3133 6 22 122 302 
17 - 6 
19 - 6 

21 743 6 
23 47 694 
25 33 6 22 
27 7 57 109 6 146 
29 177 6 118 

31 - 6 
33 7 23 201 646 134 
35 33 71 6 22 142 
37 - 6 

39 7 79 157 6 1874 

41 249 6 166 
43 - 6 2066 
45 7 3133 57 209 6 22 122 146 302 
47 - 6 
49 - 6 

51 7 103 307 6 206 614 
53 321 6 214 
55 2333 62246 
57 7 229 6 
59 - 6 
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61 - 6 
63 7 43 57 127 6 146 
65 33 393 1441 6 22 262 
67 - 6 
69 7 47 277 417 6 94 

71 - 6 
73 - 6 
75 7 31 33 151 6 22 122 302 1202 2402 
77 23 6 46 
79 - 6 

81 7 57 109 489 3097 6 146 
83 167 6 334 
85 33 6 22 3742 
87 7 177 6 118 
89 537 6 358 

91 - 6 
93 7 6 
95 33 191 6 22 382 
97 - 6 
99 7 23 57 199 201 397 1273 6 46 134 146 

101 - 6 
103 - 6 
105 7 31 33 43 71 633 2321 6 22 122 142 302 
107 - 6 
109 - 6 

111 7 223 6 
113 681 6 454 
115 33 47 6 22 94 
117 7 57 79 157 6 146 1874 
119 239 6 478 

121 23 6 46 
123 7 249 6 166 
125 33 251 6 22 502 
127 - 6 
129 7 6 2066 

131 263 6 526 

133 - 6 
135 7 31 33 57 109 209 271 6 22 122 146 302 542 
137 - 6 
139 - 6 

141 7 283 6 

143 23 6 46 
145 33 177 649 6 22 118 
147 7 43 6 
149 - 6 

151 - 6 
153 7 57 103 307 919 6 146 206 614 1226 1838 7346 
155 33 311 6 22 622 
157 - 6 
159 7 321 6 214 

(continues) 
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(continued) 

161 47 694 
163 - 6 
165 7 23 31 33 201 331 737 6 22 46 122 134 302 1322 
167 - 6 
169 - 6 

171 7 57 229 6 146 
173 1041 6 694 
175 33 71 6 22 142 
177 7 6 
179 359 6 718 

181 - 6 
183 7 367 733 6 734 
185 33 6 22 
187 23 6 46 
189 7 43 57 109 127 1137 7201 6 146 1514 

191 383 6 766 
193 - 6 
195 7 31 33 79 157 393 1441 6 22 122 262 302 1874 
197 - 6 
199 - 6 

Department of Pure Mathematics 
The University of Liverpool 
P.O. Box 147 
Liverpool, Great Britain GB-L69 3BX 

1. 0. M. FOMENKO, "The distribution of values of multiplicative functions with respect to a 
prime modulus," Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), v. 93, 1980, pp. 
218-224. (Russian) 

2. W. NARKIEWICZ, "Distribution of coefficients of Eisenstein series in residue classes," Acta 
Arith., v. 43, 1983, pp. 83-92. 

3. W. NARKIEWICZ, "Euler's function and the sum of divisors," J. Reine Angew. Math., v. 323, 
1981, pp. 200-212. 

4. W. NARKIEWICZ, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture 
Notes in Math., vol. 1087, Springer-Verlag, Berlin and New York, 1984. 

5. W. NARKIEWICZ & F. RAYNER, "Distribution of values of a2 (n) in residue classes," 
Monatsh. Math., v. 94, 1982, pp. 133-141. 

6. J. SLIWA, "On distribution of values of a(n) in residue classes," Colloq. Math., v. 28, 1973, 
pp. 283-291. 


