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The Probability That A Numerical Analysis Problem 
Is Difficult 

By James W. Demmel 

Abstract. Numerous problems in numerical analysis, including matrix inversion, eigen- 
value calculations and polynomial zerofinding, share the following property: The diffi- 
culty of solving a given problem is large when the distance from that problem to the 
nearest "ill-posed" one is small. For example, the closer a matrix is to the set of non- 
invertible matrices, the larger its condition number with respect to inversion. We show 
that the sets of ill-posed problems for matrix inversion, eigenproblems, and polynomial 
zerofinding all have a common algebraic and geometric structure which lets us com- 
pute the probability distribution of the distance from a "random" problem to the set. 
From this probability distribution we derive, for example, the distribution of the con- 
dition number of a random matrix. We examine the relevance of this theory to the 
analysis and construction of numerical algorithms destined to be run in finite precision 
arithmetic. 

1. Introduction. To investigate the probability that a numerical analysis prob- 
lem is difficult, we need to do three things: 

(1) Choose a measure of difficulty, 
(2) Choose a probability distribution on the set of problems, 
(3) Compute the distribution of the measure of difficulty induced by the distri- 

bution on the set of problems. 
The measure of difficulty we shall use in this paper is the condition number, which 

measures the sensitivity of the solution to small changes in the problem. For the 
problems we consider in this paper (matrix inversion, polynomial zerofinding and 
eigenvalue calculation), there are well-known condition numbers in the literature of 
which we shall use slightly modified versions to be discussed more fully later. The 
condition number is an appropriate measure of difficulty because it can be used 
to measure the expected loss of accuracy in the computed solution, or even the 
number of iterations required for an iterative algorithm to converge to a solution. 

The probability distribution on the set of problems for which we will attain 
most of our results will be the "uniform distribution" which we define as follows. 
We will identify each problem as a point in either RN (if it is real) or CN (if 
it is complex). For example, a real n by n matrix A will be considered to be a 
point in R2, where each entry of A forms a coordinate in Rn in the natural way. 
Similarly, a complex nth degree polynomial can be identified with a point in Cn+1 
by using its coefficients as coordinates. On the space RN (or CN) we will take any 
spherically symmetric distribution, i.e., the induced distribution of the normalized 
problem x/ljxjj (11 11 is the Euclidean norm) must be uniform on the unit sphere in 
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RN. For example, we could take a uniform distribution on the interior of the unit 
ball in RN, or let each component be an independent Gaussian random variable 
with mean 0 and standard deviation 1. Our answers will hold for this entire class 
of distributions because our condition numbers are homogeneous (multiplying a 
problem by a nonzero scalar does not change its condition number). 

The main justification for using a uniform distribution is that it appears to be 
fair: Each problem is as likely as any other. However, it does not appear to apply 
in many practical cases for a variety of reasons, most fundamentally because real- 
world problems are not uniformly distributed. A lesser reason is that any set of 
problems which can be represented in a computer is necessarily discrete rather than 
continuous. We will discuss the limitations of our choice of uniform distribution as 
well as alternatives at length in Section 6 below. 

Finally, given this distribution, we must compute the induced probability dis- 
tribution of the condition number. It turns out that all the problems we consider 
here have a common geometric structure which lets us compute the distributions 
of their condition numbers with a single analysis, which goes as follows: 

(i) Certain problems of each kind are ill-posed, i.e., their condition number is 
infinite. These ill-posed problems form an algebraic variety within the space of 
all problems. For example, the singular matrices are ill-posed with respect to 
the problem of inversion, and they lie on the variety where the determinant, a 
polynomial in the matrix entries, is zero. Geometrically, varieties are possibly self- 
intersecting surfaces in the space of problems. 

(ii) The condition number of a problem has a simple geometric interpretation: 
It is proportional to (or bounded by a multiple of) the reciprocal of the distance to 
the set of ill-posed problems. Thus, as a problem gets closer to the set of ill-posed 
ones, its condition number approaches infinity. In the case of matrix inversion, for 
example, the traditional condition number is exactly inversely proportional to the 
distance to the nearest singular matrix. 

(iii) The last observation implies that the set of problems of condition number 
at least x is (approximately) the set of problems within distance clx (c a constant) 
of the variety of ill-posed sets. Sets of this sort, sometimes called tubular neighbor- 
hoods, have been studied extensively by geometers. We will present upper bounds, 
lower bounds, and asymptotic values for the volumes of such sets. The asymptotic 
results, lower bounds, and some of the upper bounds are new. The formulae are 
very simple, depending only on x, the degree N of the ambient space, the dimen- 
sion of the variety, and the degree of the variety. These volume bounds in turn 
bound the volume of the set of problems with condition number at least x. Since 
we are assuming the problems are uniformly distributed, volume is proportional to 
probability. 

Thus, for example, we will prove that a scaled version rc(A) -IIAIIF 11A-'II of 
the usual condition number of a complex matrix with respect to inversion satisfies 

(1 - x1)2n22 < Prob(rc(A) > x) < e2n5(1 + n2/x)2n2-2 
2n4X2 X 

and that asymptotically 

Prob(K(A) > x) = ( ) + - 2 
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In other words, the probability that the condition number exceeds x decreases as 
the square of the reciprocal of x. Even for moderate x the upper bound exceeds 
the asymptotic limit by a ratio of only about e2n2. If A is real we will show 

0(1 - 1/x)n21< Prob(,' (A)>x)?<2 (n x) (-)k 

where C is a constant proportional to the (n2 - 1)-dimensional volume of the set of 
singular matrices inside the unit ball. Thus, for real matrices the probability that 
the condition number exceeds x decreases as x-1. 

There are a number of open questions and conjectures concerning these volume 
bounds, in particular for how general a class of real varieties they apply (the case 
of complex varieties is simpler). We will discuss the history of this work and open 
problems in detail in Section 4 below. 

It turns out that the reciprocal relationship between condition number and dis- 
tance to the nearest ill-posed problem holds for a much wider class of problem 
than just matrix inversion, polynomial zerofinding and eigenvalue calculations: It 
is shared, at least asymptotically, by any problem whose solution is an algebraic 
function. For simplicity, we shall restrict ourselves to the three aforementioned 
problems, but our results do apply more widely, as discussed in Section 3 below 
and in [4]. 

The work was inspired by earlier work in a number of fields. Demmel [4], Gastinel 
[14], Hough [13], Kahan [15], Ruhe [25], Stewart [29], Wilkinson [36], [37], [38] 
and others have analyzed the relationship between the condition number and the 
distance to the nearest ill-posed problem mentioned above in (ii). Gray [8], [9], 
Griffiths [10], Hotelling [12], Lelong [20], Ocneanu [21], Renegar [23], Santalo [26], 
Smale [27], and Weyl [33] have worked on bounds of volumes of tubular neighbor- 
hoods. These volume bounds have been used by Smale [27], [28], Renegar [23] and 
others to analyze the efficiency of Newton's method for finding zeros of polynomi- 
als. This latter work inspired the author [3] to apply these bounds to conditioning. 
Ocneanu [22] and Kostlan [19] have also analyzed the statistical properties of the 
condition number for matrix inversion. 

The rest of this paper is organized as follows. Section 2 defines notation. Section 
3 discusses the relationship between conditioning and the distance to the nearest 
ill-posed problem. Section 4 presents the bounds on the volumes of tubular neigh- 
borhoods we shall use and states some related open problems. Section 5 computes 
the distributions of the condition numbers of our three problems. Section 6 dis- 
cusses the limitations of assuming a uniform distribution and suggests alternatives 
and open problems. Section 7 contains the proofs of the theorems in Section 4. 

2. Notation. We introduce several ideas we will need from numerical analysis, 
algebra, and geometry. Jlxii will denote the Euclidean norm of the vector x as well 
as the induced matrix norm 

Ail o sup IIAxII 
x:O lxii 
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IAlIF will denote the Frobenius norm 

/ \ ~~1/2 

11 Iji~j 
12 

If P is a set and x is a point, we will let dist(x, P) denote the Euclidean distance 
from x to the nearest point in P. 

A subset M of RN is called an n-dimensional manifold if it is locally homeomor- 
phic to Rn. We also write n = dim(M). The codimension of M, written codim(M), 
is N - n. In this paper dimension will always refer to the real dimension rather 
than the complex dimension, which is half the real dimension. 

A variety P is the set of solutions of a system of polynomial equations. A variety 
is homogeneous if it is cone-shaped, i.e., if x is in the variety so is every scalar 
multiple ax. A variety is not generally a manifold since it can have singularities in 
the neighborhood of which it is not homeomorphic to Euclidean space. However, 
points q with relatively open neighborhoods Uq C P that are manifolds are dense in 
P [17, Theorem 4.2.4] so that the following definition makes sense: The dimension 
of P at p, written dimp(P), is 

dimp (P)- lim sup dim (Uq). 
q--p 

qEUq CP 
Uq a manifold 

We in turn define the dimension of the variety P as the maximum over all p E P 
of dimp(P). If dimp(P) is constant for all p, we call P pure dimensional. A 
complex variety defined by a single nonconstant polynomial is called a complex 
hypersurface. Complex hypersurfaces are pure dimensional with codimension 2. A 
real hypersurface has codimension 1 everywhere. The real variety defined by the 
polynomials fi, . .. , fp is called a complete intersection if it is pure dimensional of 
codimension p. 

Now we define the degree of a purely n-dimensional variety P in RN. Let LN-n 

be an (N - n)-dimensional linear manifold (plane) in RN. Since dim(LN-n) + 
dim(P) = dim(RN) = N, we say that LN-n and RN are of complementary dimen- 
sion. Generically, LN-n and P will intersect in a surface of codimension equal to 
the sum of their codimensions, that is N. In other words, their intersection will be 
of dimension 0 (a finite collection of points). If P is a complex homogeneous variety, 
then for almost all planes LN-n this collection will contain the same number of 
points, and this common number is called the degree of P, and is written deg(P) 
(see [17, Theorem 4.6.2]). Intuitively, deg(P) gives the number of "leaves" of the 
variety P that a typical plane LN-n will intersect. In the case of a nonhomogeneous 
or real variety P, deg(P) is defined analogously as the maximum (finite) intersec- 
tion number of a plane LN-n and the n-dimensional variety P in RN, although 
the intersection number will not generally be constant for almost all LNn. 

This concept of degree is a generalization of the degree of a polynomial. Indeed, 
if P is complex and defined as the solution set of a single irreducible polynomial, 
then the degree of the polynomial equals the degree of P as defined above [17]. 

By 1-volume of an n-dimensional manifold M (I > n) we mean the 1-dimensional 
Lebesgue measure of M, if it exists. Note that if I > n this volume is zero. The 
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notations vol(M) and vol, (M) denote the n-volume of the n-dimensional manifold 
M. 

3. Condition Numbers and the Distance to the Nearest Ill-Posed 
Problem. We claim that many classes of numerical analysis problems permit the 
following geometric characterization of their condition numbers: 

(i) Certain problems of each class are ill-posed, i.e., their condition numbers are 
infinite. These problems form a variety within the space of all problems. 

(ii) The condition number of a problem has a simple geometric interpretation: 
It is proportional to (or bounded by a multiple of) the reciprocal of the distance to 
the set of ill-posed problems. Thus, as a problem gets closer to the set of ill-posed 
ones, its condition number approaches infinity. 

In this section we will cite results from the literature to prove these claims for 
the following three classes of problems: matrix inversion, polynomial zerofinding, 
and eigenvalue calculation. Afterwards we will outline why this characterization 
applies to many other problems as well [4]. 

First we need to define condition number more precisely. If X is our space of 
problems equipped with norm 11 lIx, Y our space of solution equipped with norm 

11 jjy, and f: X -* Y is the solution map for our problem, the usual definition of 
the relative condition number [24] is 

tKrei (f, x) lim sup 11 f (X + $x)-f - || Y /11 f W 11 Y 
(3-1 6x--* 0 I6xllxlllxllx (3.1) jJDf(x)Jjxy . JJXJJx 

- If(x) Ily 
if the Jacobian Df exists (11 llxy is the induced norm). In many cases the es- 
sential information about the conditioning is contained in the JjDfjjxy factor. We 
may therefore use a multiple of IIDfIJxy instead of /crei without losing essential 
information. 

All three of our problems are homogeneous: Multiplying the problem by a scalar 
does not change the condition number. Therefore, the set of ill-posed problems 
will also be homogeneous, or cone-shaped. This permits us to normalize all our 
problems to have unit norm (lie on the unit sphere in either RN or CN) and 
implies that any results on the distribution of the condition number will hold for 
any distribution of problems inducing the same distribution of x/jj xjj on the unit 
sphere. 

Matrix Inversion. The usual relative condition number as defined in (3.1) with 
the norm on both the problem and solution spaces is [7]: 

icrel(A) A_ J1AIII JA-'11. 

We shall use the nearly equivalent condition number 

r,(A) _= 11AJIF - IA-111l. 

These condition numbers are both homogeneous and infinite when A is singular, so 
the set of ill-posed problems is a variety defined by the single nth degree homoge- 
neous irreducible polynomial det(A) = 0, where n = dim(A) [32]. Denote the set 
of ill-posed problems by IP. From the last section, we see that if A is complex, IP 
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is a complex hypersurface. If A is real, it is easy to verify that IP is still a real hy- 
persurface by using the explicit parametrization provided by Gaussian elimination 

[3]. 
A theorem of Eckart and Young [5] gives the distance from a nonsingular matrix 

to IP: 

THEOREM 3.1. dist(A,IP) = IIA-1A-1. 

(Gastinel [14] proved this result for an arbitrary operator norm.) 
Therefore, we see that in terms of ,c we may write 

(3.2) if IIAIIF = 1, then dist(A,IP) = 1 (A), 

i.e., that the distance from a normalized problem A to the nearest ill-posed problem 
is the reciprocal of its condition number. 

Polynomial Zerofinding. In this case we are interested in the sensitivity of the 
zeros of a polynomial to small perturbations in the coefficients. If p(x) is an nth 
degree polynomial, let IIpI denote the Euclidean norm of the vector of its coeffi- 
cients. If p(z) = 0 and &p is a small perturbation of p, it is easy to verify that to 
first order the perturbed polynomial p + &p has a zero at z + &z where 

z -5p(z) 

implying that the relative condition number is 

KIrel(P, Z) = n(z) 11p1 

where 

nO)= Iz-1 (E WI1 

Note that the condition number depends both on the polynomial p and the choice 
of zero z. For simplicity we will use the similar condition number 

r.(PZ)- I1IIl 

Both condition numbers are infinite when p'(z) = 0, i.e., when z is a multiple zero. 
Thus we will take the set IP of ill-posed problems to be those polynomials with 
multiple zeros. A necessary and sufficient condition for a polynomial to have a 
multiple zero is that its discriminant, an irreducible homogeneous polynomial of 
degree 2n - 2 in the coefficients of p be zero [32]. If p is complex, this implies the 
set of polynomials with zero discriminant is a hypersurface. If p is real, this set 
of polynomials is still a hypersurface, as may be verified using the parametrization 
provided by the leading coefficient Pn and the zeros. The discriminant may also be 
zero if the two leading coefficients of p equal zero (corresponding to a double zero 
at x), but this set is a subvariety of double the codimension of the hypersurface 
in which it lies, and so forms a set of measure zero we may neglect. 
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Now we need to estimate the distance from a given polynomial to one with a 
multiple zero. The estimate we shall use is due to Hough [13] (see also [4]) and says 

THEOREM 3.2. The distance dist(p, IP) from the polynomial p of degree at 
least 2 to one with a multiple zero is bounded by 

dist (p, IP) < Xl-2 p' (z)IX 
where p(z) = 0. 

In fact, this is quite a weak result gotten by estimating the smallest change in 
p needed to make a double zero at z, which turns out to be a linear least-squares 
problem. Thus we may write 

(3.3) if IIpI = 1, then dist(p, IP) < (X) 

i.e., that the distance from a normalized problem p to the nearest ill-posed problem 
is bounded by a multiple of the reciprocal of its condition number. 

To see how much (3.3) may overestimate dist(p, IP), we present a lower bound. 
Note that by changing the argument of p from x to ax (a scalar) we may make the 
leading coefficient Pn larger than the other coefficients. 

THEOREM 3.3 ([4]). Assume that p is an nth degree polynomial satisfying 
II~pJ = 1 and Ipil < IPnI/n for i < n. Then 

(3.4) dist(p, IP) > min 1 .0235 
z,: p(z,)- fl2' l2. K2 (p, Zj 

Thus we see that the distance to the nearest ill-posed problem is bounded below 
essentially by a multiple of the square of the reciprocal of the condition number. 
This is a general phenomenon among algebraic problems to which we return below. 

Eigenvalue Calculations. We will be interested both in the sensitivity of eigen- 
values and eigenvectors. More precisely, we will consider the sensitivity of the 
projection associated with an eigenvalue [16]. If T is a matrix with simple eigen- 
value A, right eigenvector x and left eigenvector y, the projection P associated with 
A is the matrix P = xyT/yTx. The reduced resolvent associated with A is the matrix 

S =-lim (I -P) (T - z)-1. 
z--+A 

If T has n distinct eigenvalues Ai with projections Pi one can write 

S = (Ai - A)-'Pi. S= S 

If ST is a small perturbation of T, one can show [16] that to first order, A changes 
to A + 6A and P changes to P + 6P, where 

6A = trPbT and 6P = -SbTP - PbTS. 

It is easy to verify that 16Al can be as large as JIPiI - 116TI, and II1PII can be at least 
as large as JIS1 IIPiI 116TIl (and no more than twice as large as this). Therefore, 
we may take as condition numbers 

ic(T,A) _ IIPII and ic(T,P)_ IIPiI IlSilJ IITIIF, 
both of which are homogeneous. 
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Both condition numbers are infinite when A is a multiple eigenvalue. Thus we will 
take the set IP of ill-posed problems to be those matrices with multiple eigenvalues. 
We may see that IP is a variety as follows. Let p(T, A) be the characteristic 
polynomial of T. T will have multiple eigenvalues if and only if p has multiple zeros, 
which happens if and only if the discriminant of p, a homogeneous polynomial of 
degree n2 n in the entries of T. is zero (note that p is monic) [17], [32]. It is 
not hard to show that this polynomial is irreducible [3]. Thus we see that if T is 
complex, IP is a hypersurface. If T is real, IP is still a hypersurface [1]. 

We now need to relate the above condition numbers of T to the distance from T 
to IP. A slight restatement of a theorem due to Wilkinson [36] states: 

THEOREM 3.4. dist(T,IP) < vX IITIIF/IIPII. 

Therefore, in terms of rc we may write 

(3.5) if IITIIF = 1, then dist(T, IP) < 
Vf2 

Wilkinson's theorem provides a somewhat weak upper bound on dist(T, IP). The 
condition for P, on the other hand, provides [4] a lower bound on dist(T, IP): 

THEOREM 3.5. dist(T, IP) > IITIIF/(7 (T, P)). 

This result lets us write 

(3.6) if JITIIF = 1, then dist(TIP) > 1 

For somewhat stronger results and discussion, see [4]. 
The phenomenon described above for matrix inversion, polynomial zerofinding 

and eigenvalue calculation is actually quite common in numerical analysis. It turns 
out all the above results can be derived from the same underlying principle, that the 
condition number rc satisfies one or both of the following differential inequalities: 

m.e2 < jl~<ME2, mK -2 IIDrcII < M * 

where Drc is the gradient of rc. The lower bound on IIDrcII yields the upper bound 
on dist(T, IP), 

dist(T, IP) < 

and the upper bound on IIDrcII yields the lower bound 

dist(T, IP) >M 

This phenomenon also appears in pole placement in linear control theory, Newton's 
method, and elsewhere [4]. In the case of algebraic functions, one can show that 
at least for asymptotically large condition numbers, differential inequalities of the 
form 

m C2 < IIDrcII ?M c3 

hold, the new upper bound on IIDrII yielding the lower bound on dist(T, IP), 

dist(T, IP) > 1 

which is the source of inequality (3.4) above. 
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Note also that the sets of ill-posed problems are hypersurfaces in our three exam- 
ples above. Other kinds of varieties are possible as well. For example, polynomials 
with at most m distinct zeros form a subvariety of the variety of polynomials with 
at least one multiple zero, and have codimension 2(n - m) (if complex) or n - m (if 
real) [3]. Since j-tuple zeros are more sensitive than (j - 1)-tuple zeros [35], there 
is a natural hierarchy of sets of ever more ill-posed problems, each one forming 
a subvariety of the previous set. Similar comments apply to eigenvalue calcula- 
tions (j-tuple eigenvalues are more sensitive than (j - 1)-tuple eigenvalues) and 
rank-deficient linear least-squares problems (problems with higher rank deficiency 
are more sensitive than ones with lower rank deficiency). The results of the next 
section apply to these situations as well. 

4. On Volumes of Tubes. In this section we state our main volume estimates. 
Proofs appear in Section 7 below. 

First we consider complex varieties. The upper bounds in the following theorem 
are obtained by generalizing an argument of Renegar [23], who obtained the upper 
bound for hypersurfaces. 

THEOREM 4. 1. Suppose M is a complex, purely 2d-dimensional variety in CN. 

Let f (E) be the fraction of the volume of the unit ball in CN which is within distance 
E < 1 of M. Then 

f () < 'I~F(N + 1/2) eN 2 (N - W)N-2d-2 

(4.1) F(N- d + 1/2)(d + 1/2) 

* deg(M) . E2(N-d) . (1 + NE)2d. 

If M is a hypersurface (d = N - 1), then this upper bound may be improved to 

(4.2) f (E) < e2N3 .deg(M) . E2 . (1 + NE)2(N-1). 

If M passes through the origin, it is also true that 

(4.3) (1 -e)2de2(N-d) F(N - d + 1/2)F (d + 1/2) <f(e) 
(4-3)(1 E)dE2(Nd) .deg(M)~/J'(N + 1/2) <f() 

If M is a hypersurface passing through the origin, this lower bound may be improved 
to 

(4.4) N d(1eg(M) < f (E). 

Now we specialize to the case of M homogeneous. In this case the upper bound 
(4.1) may be improved to 

(4.5) f (E) < e2 N (N - 1)2N-2d-2 . deg(M) . E2(N-d) . (1 + NE)2d. 

The lower bound (4.3) may be improved to 

(4.6) ~(1 _ E)2dE2(N-d) .F(N -1 d + 1/2)F'(d + 1/2) <~) 
#J'6r (N + 1/2) 

If M is also a hypersurface, the lower bound (4.4) may be further improved to 

(4.7) (1 - N-2 E (e) 
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Finally, we have the following asymptotic expression for small E: 

(4.8) ffE) = ('v) deg(M) E2(N-d) + o(E2(N-d)) 

Thus, we have upper bounds, lower bounds and asymptotic formulae, all of 
which only depend on E, N, d and deg(M). All our expressions are proportional 
to E2(N-d), and for asymptotically small E differ only by factors depending on the 
parameters N, deg(M) and d. All these results are new, except for the upper bound 
(4.2) for d = N-1 [23]. 

These results can be used to give bounds for Prob(dist(p, M) < E) when M is 
homogeneous and p is uniformly distributed on the unit sphere in CN: 

THEOREM 4.2. Suppose M is a complex, homogeneous, purely 2d-dimensional 
variety in CN. Let p be distributed uniformly on the unit sphere centered at the 
origin in CN. Then for d < N - 1 

(4.9) 
Prob(dist(p, M) < E) 

< e2 N (N - 1)2N-2d-2 * deg(M) . E2(N-d) (1 + NE)2dl 

(4.10) (1 - E)2dE2(N-d) (N - d + l/2)F (d + 1/2) < Prob(dist(p, M) < E), 

and for asymptotically small E 

(4.11) Prob(dist(p, M) < E) = ( d 1 ) deg(M) . 
E2(Nd) + o(e2(Nd)) 

For hypersurfaces (d = N - 1) 

(1 _E2N -2 _C 
(4.12) ( 1 _ s) 2N- 2 2N2 < Prob(dist (p, M) < E) 

< e2N2 deg(M) E2 . (1 +NE)2(N-1) 

and for asymptotically small E 

(4.13) Prob(dist(p, M) < E) = (N - 1) deg(M)E2 + o(E2). 

It is estimates (4.12) and (4.13) we shall apply to condition numbers in the next 
section. 

Now we turn to real varieties. The bounds are necessarily looser, since a d- 
dimensional real variety can have an arbitrarily small volume; this is in strict con- 
trast to complex varieties, where we can bound the volume above and below just 
in terms of the degree. The next theorem is due to Ocneanu [21]. 

THEOREM 4.3. Suppose M is a real, purely d-dimensional variety in RN. Sup- 
pose further that M is the complete intersection of the polynomials 91, . . , 9N-d- 

Let D _ maxi deg(gi), and f (E) be the fraction of the volume of the unit ball in RN 
which lies within distance E of M. Then 

(4.14) f (E) < 2(N - d) E ('p) (2DE)k. 
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It appears that Ocneanu's proof can be extended to give an asymptotic formula 
for f(e), which we state as a 

CONJECTURE. Suppose M is as in Theorem 4.3. Then for asymptotically 
small e 

(4.15) f (E) = vol(M) . . NF (Nd/2) + N-d) 
(N - d)ird/2r((N - d)/2) 

where vol(M) is the d-dimensional volume of M. 

Without any assumptions about complete intersection, we can compute a lower 
bound for f(e): 

THEOREM 4.4. Suppose M is a real, purely d-dimensional variety in RN. Let 
vol(Mfr]) be the d-dimensional volume of the subset of M within distance r of the 
origin. Then 

vol(M(1 -]) EN-d dP(d/2)r((d + 1)/2)r((N - d + 1)/2) 
(4.16 < f W deg(M) 27r(d+l)/2r((N + 1)/2) - 

If M is homogeneous, vol(M[1 - e]) may be replaced by (1 - E)dvol(M[1]). 

Note that the ratio between the conjectured asymptotic value in (4.15) and the 
lower bound in (4.16) depends on N, d and deg(M). 

As before, we can translate the estimates in the last two theorems into estimates 
on Prob(dist(p, M) < E), where p is uniformly distributed on the unit sphere: 

THEOREM 4.5. Let M be a real, purely d-dimensional homogeneous variety in 
RN. Suppose p is uniformly distributed on the unit sphere in RN. Then 

vol(M[1]) - N dI(d/2)r((d + 1)/2)P((N - d + 1)/2) . (1 _ ErdN d 

(4.17) deg(M) 4Nir(d+l)/2r((N + 1)/2) 
< Prob(dist(p, M) < E). 

If, in addition, M is the complete intersection of N - d polynomials each of degree 
at most D, then 

(4.18) Prob(dist(p, M) < e) < 2(N - d) > (') (2De)k. 
k=N-d 

If the conjecture (4.15) is true, then this would yield the following estimate for 
asymptotically small E when M is a complete intersection: 

Prob(dist(p, M) < E) 

(4.19) Nvol(M . EN-d dr(N/2) N-d) 
= vol(M). (N - d)7rd/2P((N - d)/2) +oed 

Summarizing these results for the case of a real, homogeneous hypersurface de- 
fined by a single polynomial, we have 

vol(M[1]) *(1-)N (N/2) 
deg(M) 2NxNI2 

(4.20) N 

< Prob(dist(p, M) < E) < 2 E (N) (2 deg(M)e)k 
k=1 
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and, for asymptotically small 5 (if the conjecture (4.15) is true), 

(4.21) Prob(dist(p, M) < E) = vol(M) . E (N- 1)F(N/2) + o(E). 

It is estimate (4.20) we will use to estimate the distribution of condition numbers 
of real problems. 

We may explain these theorems intuitively as follows. If M is a d-dimensional 
surface in RN, the dominating term in the expression for the volume of the set of 
points within distance E of M turns out to be [33]: 

(4.22) (d-dimensional volume of M) 
( ((N - d)-dimensional volume of a unit ball in RN-d) * EN-d 

Suppose, for example, M is a straight line of length I in R2. Then d = 1, N = 2 
and the estimate of (4.22) is 1 2 E, the area of a rectangle of length I and width 
2e centered on M. It turns out, even if M is curved, that as long as its radius of 
curvature everywhere exceeds E, the area of the stripe of radius 2e centered on M is 
exactly 21E. If M is a straight line of length I in R3, (4.22) gives the volume 1 w E 
of the right circular cylinder of length 1 and radius E centered on M. If M is curved, 
this formula is still asymptotically correct for small E. If M is a square of side 1 
in R3, (4.22) correctly gives the volume 12 2 E of the rectangular parallelepiped 
of thickness 2e centered on M. Again, bending M does not change the asymptotic 
correctness of (4.22). In fact, if M is a smooth compact manifold, for sufficiently 
small E the volume of the set points within distance E of M is a polynomial in E 
with leading term given in (4.22) [33]. 

It remains to estimate the d-dimensional volume of M needed in (4.22). Here 
we make use of the fact that M is a variety, for there are formulae from integral 
geometry for estimating the volume of a set M in RN in terms of the number 
of points in M n L, where L is a plane of dimension N - d. For varieties, this 
number is bounded by deg(M). In fact, if M is a complex homogeneous purely 
2d-dimension variety in CN, the 2d-volume of the part of M inside the unit ball is 
exactly deg(M)7 N/N! [30]. No such statement can be made about real varieties, 
so formulae like (4.3) and (4.8) cannot hold for real varieties. 

Open Problems. Ocneanu's proof of Theorem 4.3 depends on the ability to 
express the real variety M as a complete intersection. Not all varieties permit 
such a representation. For example, the 3 by 3 real matrices of rank at most 1 
form a variety of codimension 4, but 9 polynomials (the determinants of all 2 by 2 
submatrices) are needed for its definition. Is there a bound for real varieties that 
does not depend on the property of complete intersection? Also, Ocneanu's bound 
contains the factor DN-d, which by Bezout's theorem [32] is a possibly pessimistic 
upper bound for deg(M). Is there a bound which depends only linearly on deg(M)? 
More generally, is there an upper bound which depends linearly on vol(M[1])? 

All the asymptotic expressions above depend on the contribution to f(E) from 
small neighborhoods of the singular set of M going to zero. For complex varieties, 
the proof of the upper bounds yields this fact. Ocneanu's proof appears to yield it 
as well, leading us to make conjecture (4.15). 

The lower bounds for f(E) for homogeneous varieties in Theorem 4.1 are inde- 
pendent of deg(M), whereas the upper bounds are proportional to deg(M). By 
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considering nearly overlapping hyperplanes through the origin, one can see that 
the lower bound cannot contain a factor of deg(M) and so this gap between upper 
and lower bounds must be present. Restricting to irreducible M does not eliminate 
this gap (see Section 7 for discussion). However, the factor 1/ deg(M) in the lower 
bounds for nonhomogeneous varieties seems unnecessary; can it be removed? 

5. Computing the Distributions of Condition Numbers. In this section 
we apply our geometrical estimates of the last section to compute the distributions 
of the condition numbers discussed in Section 3. 

Matrix Inversion. Applying estimates (4.12) and (4.13) to Eq. (3.2) yields the 
following theorem. 

THEOREM 5.1. Let A be a random complex n by n matrix distributed in such 
a way that A/IIAIIF is uniformly distributed on the unit sphere. Let rc(A) = I|A IF 
IIA-111. Then 

(5.1) (1 - 1/X)2n -2 < Prob (A) > ) < e2n5(1 + n2/x)2n2-2 (5.1) ~ 2n4x2--<Por(A x)<2 

and 

(5.2) Prob(rc(A) > x) = (2 1) ) 2 

Remark. The upper bound in (5.1) exceeds the asymptotic value in (5.2) by a 
factor of only about e2n4/(n2 -1) for sufficiently large x. However, even for n = 10, 
x must exceed about 5300 for the upper bound to drop below 1. For n = 100, x 
must exceed 2.2 107 for the upper bound to drop below 1. Applying estimate (4.20) 
to Eq. (3.2) yields 

THEOREM 5.2. Let A be a random real n by n matrix distributed in such a way 
that A/IIAIIF is uniformly distributed on the unit sphere. Let rc(A) = 11AIIIA-1 11 
Then 

(5.3) 0(1 /)n <Prob((A)> x) < 2(i) (2) 

where C > 0 is a constant proportional to the volume of the variety of singular 
matrices inside the unit ball. 

Remark. When n = 10, x must exceed 4900 for the upper bound in (5.3) to be 

less than 1. More generally, or large n, x must exceed about 4.93n3 for the upper 
bound to be less than 1. One can prove this by noting that the upper bound may 
also be written as 2[(1 + 2n/x)n2 - 1]. 

Other sets of interest are matrices of rank at most r < n-1. The volumes of these 
sets can also be estimated from above and below using Theorem 4.2, provided we 
can bound the degree of these varieties. Bezout's theorem [32] provides a possibly 
pessimistic upper bound on the degree. 

Polynomial Zerofinding. Applying estimate (4.12) to inequality (3.3) yields the 
following theorem. 

THEOREM 5.3. Let p be a random complex nth degree polynomial distributed in 
such a way that P/IIPIIF is uniformly distributed on the unit sphere. Let 
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K(P) = maxz IIpII/Ip'(z)I, where the maximum is over all zeros of p. Then 

(5.4) Prob(i (p) > x) < 4e(n + 1)2(n - 1)(1 + x/2(n + 1)/X)2n 
x2 

Applying estimate (4.20) to inequality (3.3) yields 

THEOREM 5.4. Let p be a random real nth degree polynomial distributed in 
such a way that P/IIPIIF is uniformly distributed on the unit sphere. Let /C(p) be as 
in Theorem 5.3. Then 

(5 5) Prob(r.(p) > x) < 2 I; ki + )( n1 

Eigenvalue Calculations. Applying estimate (4.12) to inequality (3.5) yields 

THEOREM 5.5. Let A be a random complex n by n matrix distributed in such 
a way that A/IIAIIF is uniformly distributed on the unit sphere. Let IcA(A) _ 
maxA(A) IIPA(A) II where the maximum is over all eigenvalues A(A) of A and PA(A) 
is the projection associated with A(A). Then 

2e2n5(n - 1)(1 + x/'-n2/X)2n2-2 
(5.6) Prob(ICA\(A) ? x) ? 

Applying estimate (4.20) to inequality (3.5) yields 

THEOREM 5.6. Let A be a random real n by n matrix distributed in such a 
way that A//IA IF is uniformly distributed on the unit sphere. Let KA(A) be as in 
Theorem 5.5. Then 

(5.7) Prob(/CA(A) > x) < 2E (n) (23/2(n -n))k 

Applying estimate (4.12) to inequality (3.6) yields 

THEOREM 5.7. Let A be a random complex n by n matrix distributed in such 
a way that A/IIAIIF is uniformly distributed on the unit sphere. Let icp(A) -- 

maXA(A) IIPA(A) 11 * IISj(A) 11 I!AIjF, where the maximum is over all eigenvalues A(A) 
of A, PA(A) is the projection associated with A(A), and SA(A) is the reduced resolvent 
associated with A(A). Then 

(5.8) (1-1/(7))2n2 < Prob(sp(A) > x). 

One can also prove a lower bound on Prob(Kp(A) > x), for real matrices, which 
is of the form Clx, but C is proportional to the volume of the variety of real 
matrices with multiple eigenvalues and lying inside the unit ball, and seems difficult 
to estimate. 

6. Practical Applications and Limitations. In this section we show how 
to estimate the distribution of the error in results computed by finite precision 
algorithms for the problems we analyzed above. The new tool required is backward 
error analysis [341; using it, we show that, except in the improbable situation that 
the problem to be solved is close to the set IP of ill-posed problems, a backward 
stable algorithm will supply an accurate answer. We analyze Gaussian elimination 
this way in Subsection 6.1. 
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Such an analysis assumes problems are distributed uniformly as discussed in 
Section 1 of this paper. This is an extremely strong assumption, which is not met 
in many practical situations. First, real problems often have a structure which 
produces problems which tend to lie very close to the set IP of ill-posed prob- 
lems, or which in fact converge to IP. For example, inverse iteration to compute 
eigenvalues and eigenvectors involves solving a sequence of linear equations with 
increasingly ill-conditioned coefficient matrices. Another example is the numerical 
solution of differential equations; the resulting matrices are approximations of un- 
bounded operators and become more nearly singular the finer the approximation 
becomes. 

Second, the set of problems representable in a computer (in finite-precision arith- 
metic) is necessarily finite and so any distribution we put on this set will neces- 
sarily be discrete, not continuous as assumed in our previous analysis. As long as 
the discrete points are dense enough to model the continuum (this depends on the 
individual problem), the continuous model is relevant. It will turn out, however, 
that this discreteness ultimately leads to qualitatively different behavior of algo- 
rithms than is predicted by the continuous model. We discuss this situation further 
in Subsection 6.2. (This limitation does not invalidate our analysis of Gaussian 
elimination in finite-precision arithmetic in Subsection 6.1.) 

Finally, in Subsection 6.3 we discuss how this theory might be extended to the 
finite-precision case and what such an extension would tell us about the design both 
of numerical algorithms and computer arithmetic. In particular, we show how it 
would tell us how many finite-precision problems we could solve as a function of 
the extra precision used in intermediate calculations. This information would be of 
use in algorithm design. Accomplishing this extension is an open problem. 

6.1. A Paradigm for Analyzing the Accuracy of Finite-Precision Algorithms. The 
paradigm for applying the probabilistic model to the analysis of algorithms is as 
follows: 

(1) Within the space of problems, identify the set IP of ill-posed ones and show 
that the closer a problem is to IP the more sensitive the solution is to small changes 
in the problem. 

(2) Show that the algorithm in question computes an accurate solution for a 
problem close to the one it received as input (this is known as "backward stability" 
[34]). Combined with the result of (1), this will show that the algorithm will 
compute an accurate solution to a problem as long as the problem is far enough 
from IP. 

(3) Compute the probability that a random problem is close to IP. Using this 
probability distribution in conjunction with the result of (2) we can compute the 
probability of the algorithm computing an accurate result. 

The first two steps of this paradigm are quite standard [24], [35]; only the third 
is new. This paradigm is best explained by applying it to matrix inversion: 

(1) The set of matrices IP which are ill-posed with respect to inversion are the 
singular matrices. As discussed in Section 3, the condition number 

(6.1) ic(M) = "AMIIF - JIM 
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measures how difficult the matrix M is to invert, and when JIMIIF = 1 it is the 
reciprocal of the distance to the nearest singular matrix. 

(2) Gaussian elimination with pivoting is a standard algorithm for matrix inver- 
sion and is well known to be a backward stable algorithm [34]. Backward stability 
means that when applying Gaussian elimination to compute the solution of the sys- 
tem of linear equations Mx = c, one gets an answer x which satisfies (M+6M)x =c 
where 6M is small in norm compared to M. More precisely, let Xi be the ith col- 
umn of the approximation to M-1 computed using Gaussian elimination, where 
the arithmetic operations performed (addition, subtraction, multiplication, and di- 
vision) are all rounded off to b bits of precision. Then Xi is the value of the ith 
column of the inverse of a matrix M + Mi where 6Mi is small: 

(6.2) 116MillF < f(n) .2b. |IMIIF, 
where f(n) is a function only of n, the dimension of M [34]. The magnitude of f(n) 
depends on the pivoting strategy, and can be as large as 2' if partial pivoting is used, 
although this is very rare in practice [34]. f(n) is much smaller if either complete 
pivoting is used or if we substitute the QR algorithm for Gaussian elimination 
[7]. For our analysis, however, we are not interested in how big f(n) is, only that 
inequality (6.2) holds. Inequality (6.2) can be used to bound the relative error in 
the computed solution [34]: 

(6.3) lix - M111F </ni,.(M) . 
f(n) 2-b 

j|M' lIF 1 - r.(M) . f(n) .2-b 

In other words, as long as the bound (6.2) on II6M6IAF is not so large that M +6Mi 
could be singular, i.e., as long as 

dist (M, IP) > f(n) 2 2b* |IMIIF 

or, substituting from (6.1), 

(6.4) r.(M) < 2b/f (n), 

then the relative error in the computed inverse X is bounded, and the smaller i.(M) 
is, the more accurate is the solution. 

(3) Assuming M is complex, we can apply Theorem 5.1 (which gives the prob- 
ability distribution of the condition number) to estimate the probability that a 
random matrix can be inverted accurately: 

(6.5) Prob (II?- 
M 

< E > Prob (?n ((M) ff(() 2- < E, 

which, after some rearrangement (and assuming e < 1) equals 

Prob (Ei(M) f(n) . (#/ + 6)2b) 

> 1- (e2n5(1 + n2f(n)(f/ii+E) (2b/e))2n 22(n)(V/i+E))* (2E) 

1 - g(n, E, b) * (2-b/E)2. 

The g(n, e, b) factor depends only weakly on E and b; the interesting factor is 
(2-b/E)2. This inequality implies that as we compute with higher and higher pre- 
cision (b increases), the probability of getting a computed answer with accuracy 
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E goes to 1 at least as fast as 1 - 0(4-b). Note that the inequality only makes 
sense for 2-b/E small, that is, if the error 2-b in the arithmetic is smaller than the 
error E demanded of the answer. This restriction makes sense numerically, since we 
cannot expect more precision than we compute with. The restriction also implies 
that the finite-precision numbers are sufficiently dense to approximate the contin- 
uum, since the radius r of the neighborhood around IP, r = f(n)(V/ + e)2-b/E, 
is much larger than the distance between adjacent finite-precision points 2-b. This 
situation is depicted in Figure 1 and discussed in the next section. 

We may use the same kind of paradigm as discussed so far to analyze the speed 
of convergence of an algorithm rather than its accuracy. In this case the paradigm 
is 

(1') Identify the ill-posed problems IP. 
(2') Show that the closer a problem is to IP, the more slowly the algorithm 

converges. 
(3') Compute the probability that a random problem is close to IP. Combined 

with (2') this yields the probability distribution of the speed of convergence. 
This approach has been used by Smale [27] and Renegar [23] in their average 

speed analyses of Newton's method for finding zeros of polynomials. 
6.2. Limitations of the Probabilistic Model. In this section we discuss limitations 

to the applicability of our model. As mentioned before, the model does not apply 
in situations where the problems tend to be clustered about the ill-posed problems. 
One might even assert that most problems have this character, or at least consti- 
tute the majority of interesting problems numerical analysts encounter. One such 
example is iteration for computing the eigenvalues and eigenvectors of a matrix: 

xi+1 = (A - Ai)-'xi, 

Ai+, = (Axi+y)j/x +1 where Ixi1+i = max Ix+l . 

If Ai is a good approximation to the simple eigenvalue A, and xi approximates the 
corresponding eigenvector x, then Ai+1 and xi+1 will be even better approximations 
to A and x. As Ai approaches A, the matrices A - Ai become increasingly ill- 
conditioned. Thus, the set of matrices {A - Ai} being (conceptually) inverted 
(actually, one solves (A - Ai)xi+1 = xi directly) converges to the set IP of ill- 
posed problems, and so is far from uniformly distributed. This invalidates the 
assumption of the model, even in exact arithmetic. In finite-precision arithmetic, 
inverse iteration works very well, even though naive backward error analysis as in 
Subsection 6.1 might lead us to expect total loss of precision. This is because the 
rounding errors committed while solving (A - Ai)xi+1 = xi provably conspire to 
produce an error lying almost certainly in the direction of the desired eigenvector 

[7]. 
Another area where matrices tend to cluster around the singular ones is the 

solution of differential equations. In this case the matrices encountered are generally 
approximations to unbounded operators, and so become more nearly singular the 
finer the approximation. For example, the usual centered difference approximation 
to the second derivative on the interval [0,1] with mesh spacing h yields a matrix 
with condition number on the order of h2. 
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FIGURE 1 

An r > 2-b neighborhood of IP 
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FIGURE 2 

An r < 2-b neighborhood of IP 

The second way in which the model breaks down depends on the ultimate dis- 
creteness of the finite-precision numbers which can be represented in a computer. 
The natural version of a "uniform distribution" in this case is simply counting mea- 
sure. The continuous model is a good approximation to counting measure only as 
long as the finite-precision numbers are dense enough to resemble the continuum. 
In Figure 1, for example, the area of the set of points within distance r of the curve 
IP is a good approximation to the number of dots (finite-precision points) within 
distance r of IP (scaled appropriately). This is true because the radius r of the 
neighborhood of IP is large compared to the spacing 2b1 between dots. When 
r < 2bon the other hand, as in Figure 2, the area of the set of points within dis- 
tance r of IP is not necessarily a good approximation of the number of dots within 
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r of IP. For example, if IP were a straight line passing exactly half way between 
two rows of dots, there would be no dots within distance 2-b-1 of IP. If, on the 
other hand, IP were a straight line running along a row of dots, there would be a 
constant nonzero number of dots within distance q of IP for all q < 2-b. Thus, 
when the radius of the neighborhood of IP gets smaller than the interdot distance 
2-b, the model breaks down. 

Specifically, let us consider matrix inversion. In the continuous model, the ex- 
actly singular matrices form a set of measure zero, so the chance of a random 
problem being singular is zero. Also, there are nonsingular matrices arbitrarily 
close to the set of singular ones, and so of unbounded condition number. Consider 
now the finite (but large) set of matrices which can be represented in a computer us- 
ing finite-precision arithmetic. Some fraction of this finite set are exactly singular, 
so in choosing one member of this finite set at random (using counting measure), 
there is a nonzero probability of getting an exactly singular matrix. Furthermore, 
the remaining nonsingular matrices have condition numbers bounded by some fi- 
nite value K. Thus, instead of Prob(i.(A) > x) decreasing monotonically to 0 
as x increases, as in the continuous case, Prob(i.(A) > x) becomes constant and 
nonzero for x > K. This is clearly significantly different behavior. It does not, 
however, invalidate the analysis of Gaussian elimination in the last section, because 
we assumed 2-b < r, i.e., the situation in Figure 1. 

In the next section we discuss what we could do if we could compute Prob(,.(A) > 
x) in the discrete case for all x, in particular for x too large for the continuous 
approximation to apply. 

6.3. How to Use the Discrete Distribution of Points Within Distance E of a Va- 
riety. Before proceeding, we need to say what probability measure we are going to 
put on the discrete set of finite-precision points. The last section showed that no 
single distribution is good for all applications, but a uniform distribution remains 
a neutral and interesting choice. So far, we have been implicitly using fixed-point 
numbers, in which case assigning equal probability to each point (counting mea- 
sure) gives a uniform distribution. For floating-point numbers, however, this is no 
longer appropriate since the floating-point numbers are not evenly distributed on 
the number line. Since floating-point numbers are much closer together near the 
origin than far away from it (the distance between adjacent numbers is approxi- 
mately a constant times the number), counting measure would assign much more 
probability to equal length intervals near the origin than far away from it. A simple 
way to adjust for this nonuniform spacing is to assign to each point M a probability 
proportional to the volume of the small parallelepiped of points which round to M 
(i.e., the parallelepiped centered at M with sides equal in length to the distance 
between adjacent finite-precision points). In the case of fixed-point arithmetic, this 
just reproduces counting measure, whereas with floating-point arithmetic, points 
near 0 have smaller probability than larger points, and intervals of equal length 
have approximately equal probabilities. Actually, the question of the distribution 
of the digits of a floating-point number has a large literature [2], [11], [18], but the 
discussion in this section does not depend strongly on the actual distribution of 
digits chosen. 
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This discussion does assume that the finite-precision input is known exactly, i.e., 
that there is no error inherited from previous computations or from measurement 
errors. In general there will be such errors, and they will almost always be at 
least a few units in the last place of the input problem. In other words, there 
already is a ball of uncertainty around the input problem with a radius equal to a 
small multiple of the interpoint distance 2-b0 (bo is the number of bits to which 
the input is stored). Therefore, it may make no sense to use higher precision to 
accurately solve problems lying very close to IP when the inherited input error 
is so large that the true answer is inherently very uncertain. In such situations, 
programmers sometimes shrug and settle for the backward stability provided by 
the algorithm, even if the delivered solution is entirely wrong, because the act of 
solution has scarcely worsened the uncertainty inherited from the data, and the 
programmer declines to be held responsible for the uncertainty inherent in the 
data. Nevertheless, getting an accurate answer for as many inputs as possible is 
a worthwhile goal, so we will not concern ourselves with possible errors made in 

creating the input matrices. 
We claim that knowing the probability distribution of the distance of a random 

finite-precision problem to the set IP of ill-posed problems would tell us how many 
finite-precision problems we could solve as a function of the extra precision used in 
intermediate calculations. As mentioned before, programmers often resort to extra 
precision arithmetic to get more accurate solutions to problems which are given only 
to single precision. This extra precision has a cost (in speed and memory) dependent 
on the number of digits carried, so programmers usually avoid extra precision unless 
persuaded otherwise by bad experiences, an error analysis, or paranoia. Therefore, 
an accurate estimate of how many problems can be solved as a function of the extra 
precision would help programmers decide how much to use. 

How does knowledge of this probability distribution tell us how much extra 
precision to use? The paradigm in Subsection 6.1 tells us how. Consider matrix 
inversion. Formula (6.3) tells us that using fixed-point arithmetic of accuracy 2-b 

permits us to compute inverses of matrices to within accuracy E as long as their con- 
dition numbers are less than E/(f (n)(V/i+E)2-b). Suppose we choose our problems 
at random from the set of matrices with bo-bit entries, and let Probbo(i.(M) > x) 

be the discrete distribution function of the condition number. Then 

Nb (b) _ 1 -Probbo (K (M) > f(n) (A/+6)2b) 

bounds from below the fraction of bo-bit matrices we can invert with accuracy E as 
a function of the number of bits b > bo carried in the calculation. By examining 

Nbo (b) as a function of b, one can decide exactly how much improvement one gets. for 
each additional bit of precision b. For example, we know from previous discussion 
that there is a b such that, when b > b, Nbo (b) is constant and nonzero. Therefore, 
it clearly does not pay to increase b beyond b. 

We close with an example of the discrete distribution Probbo (,.(M) > x). Con- 
sider the rather simple problem of inverting real 2 by 2 matrices. This problem is 

small enough that we can exhaustively compute Probbo (K(M) > x) for low-precision 
arithmetic. We have done this for bo = 3, 4, 5, 6 and 7 (all numbers lay between 0 



THE PROBABILITY THAT A NUMERICAL ANALYSIS PROBLEM IS DIFFICULT 469 

and 1 in absolute value, and each fixed-point matrix was assigned the same prob- 
ability). Let P(r) = Probb0 (K(M) > 1/r). We recall that in the continuous case 
(Theorem 5.2) P(r) would be approximately a linear function of r. For all values 
of bo tested, we observed approximately the behavior of P(r) shown in Figure 3. 
Surprisingly, we observed linear dependence of P(r) on r not only for r larger than 
2-bo (corresponding to Figure 1), but for r quite a bit smaller than 2-bo (Figure 
2). The fraction of problems within 2-bo of a singular matrix was about 21-bo? 

This linear behavior of P(r) continued until r reached approximately 2-2b0, and 
there the graph of the distribution became horizontal and remained so all the way 
to the origin, intersecting the vertical axis at about 22-2bo. This means that all 
matrices closer to IP than approximately 2-2bo were exactly singular. The fraction 
of matrices which were exactly singular was 22-2bo. 

What does this tell us about the use of extra precision? Basically, as long as 
the distribution function P(r) remains linear, it says that for every extra bit of 
intermediate precision, we can solve half the problems we could not solve before. 
This regime continues until we reach double precision, at which point the only 
problems we cannot solve are exactly singular. Indeed, since 

[b d] =(l-c _b a] 

we can clearly compute the inverse accurately if we can compute the determinant 
ad - bc accurately. Since a, b, c and d are given to single precision, double precision 
clearly suffices to compute ad - bc exactly. 

P (r) 

21-bo| 

22-2bo 

* I I 

? 2-22b0 2- b 

FIGURE 3 

Observed probability distribution of the distance r to the nearest singular matrix. 

What if the discrete distribution function were similar for matrices of higher 
dimensions, that is, linear for a while and then suddenly horizontal when all worse- 
conditioned matrices were exactly singular? It would again tell us that for a while, 
every extra bit of intermediate precision would let us solve half the problems we 
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could not solve before. Eventually, after enough extra bits (and for inverting fixed- 
precision n by n matrices, this clearly occurs no later than reaching n-tuple preci- 
sion), all finite-precision matrices which are not exactly singular could be inverted, 
and more precision would contribute nothing. Thus a programmer (or system de- 
signer) could choose the number of bits b with which to compute in order to guar- 
antee that the fraction of unsolvable problems is sufficiently close to its minimum. 
Of course, exhaustive evaluation of the distribution function is not reasonable for 
large problems, and estimating the distribution function becomes an interesting 
open question of number theory. 

7. Proofs of Volume Estimates. In this section we present the proofs of the 
volume estimates of Section 4. In addition to the notation of Section 2, we will use 

2_r_(n+l)_ 

2 
On-1 2rnl/2 

?n = r((n+ 1)/2) and Sn n nr(n/2) 

On is the surface area of the n-dimensional unit sphere and On is the volume of 
the n-dimensional unit ball [26]. B(p, r) is the open ball of radius r centered at p, 
and B(r) is centered at the origin. If M is any set, M[r] = M nB (r). If M is a 
variety, NS(M) will denote the nonsingular part of M (a manifold) and S(M) the 
remaining singular part (a lower-dimensional subvariety). vol(M) or Voldim(M) (M) 
will denote the dim(M)-dimensional measure of NS(M). T(M, e) is the set of 
points inside B(1) within distance E of M: 

T(M, e) = {z: jjzj < 1, dist(z, M) ? 6}. 

If M C RN, f(M, e) = volN(T(M, e))/ON, the fraction of the unit ball within e of 
M. #(S) will denote the cardinality of the discrete set S. 

We will need the following estimates on the volumes of varieties inside balls. 

LEMMA 7.1 ([31]). Let M be a purely 2d-dimensional homogeneous complex 
variety in CN Then vol2d(M[r]) = deg(M) 02d * r2d. 

LEMMA 7.2 ([30, Theorem B]). Let M be a purely 2d-dimensional complex 
variety containing the origin. Then vol2d(M[r]) > 02d * r2d. 

LEMMA 7.3 ([23, Proposition 5.3]). Let M be a complex hypersurface in CN. 
Then vol2N-2(M[r]) < deg(M) N 02N-2 r2N2- 

LEMMA 7.4. Let M be a purely d-dimensional real variety in RN. Then 

vold(M[r]) < deg(M) O 0 Od * rd. 
2 -ON 

Proof. That vold(M[r]) is finite follows from [6, Section 3.4.10]. Let LN-d 

denote an (N - d)-dimensional plane in RN. dLN-d will denote the kinematic 
density on this set of planes [26, Chapter 12]. From [26, Eq. 12.38] we may write 
dLN-d = dad AdLd[o], where dLd[o] is the kinematic density on d-planes through the 
origin and dad is the volume element on Ld[o]. This corresponds to parametrizing a 
plane LN-d by the perpendicular plane through the origin Ld[o] which it intersects, 
and where it intersects it. From [26, Eq. 14.70] we may write 

JM~r~flL #(M[r] nLN-d) dLN-d N O O vold(M[r]) 
M[rLnLN-d 0 ON-d + -1 
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or 

VOld(M[r]) = ON ... d ] #(M[r] n LN-d) dLN-d 

< 
ON-d 

?1 deg(M) 
f 

dad A dLd[o], 
- N ON . 0d+1 I|xII<r 

where x is the intersection point of LN-d and Ld[o]. In other words, M[r] and 
LN-d can intersect only if LN-d passes within distance r of the origin. The last 
displayed expression in turn equals 

ON-d l ... f ON- '.. '01 .deg(M) 
| 

dad | 
dLd[oj 

ON .. d+1 1x11l<r 

_ON-d ... 01 d ON-1 ... ON-d 
- . d 1 

deg(M) rd .O.d - 

_ON-d -Odd =deg(M) O.d r, 

where we have used [26, Eq. 12.35]. 5 

By considering a purely 2d-dimensional complex variety in CN as a real variety 
in R2N, the last lemma implies 

COROLLARY 7.5. Let M be a purely 2d-dimensional complex variety in CN. 
Then 

vol2d(M[r]) < deg(M) O2N-2d O2d r 2d 

2 02N 02 

Remark. In the case of hypersurfaces (d = N-1), Corollary 7.5 yields the bound 

deg(M) * (2N - 1) . 02N-2 r2N-2, which is about a factor of 2 weaker than Lemma 
7.3. This is because the proof of Lemma 7.4 takes no advantage of the complex 

analytic structure of M. One might be able to improve Corollary 7.5 by taking 

advantage of this structure. 

LEMMA 7.6. Let M be a purely 2d-dimensional complex variety in CN. Let 
s = N if M is a hypersurface (d = N - 1) and s = 02N-2dO2d/(202N) otherwise. 
Then 

(7.1) V0l2N(T(M, E)) > vl2d (M[ - ED ] 02N E2(N-d) 
-deg(M) 02 

Proof. Following [26, Chapter 15], we will let dK be the kinematic density for 

the group of Euclidean motions in CN = R2N. dK may be written dA A db, where 

dA is a density on the special orthogonal group SO(2N), db is Lebesgue measure 

on R2N, and K(s) = As + b. From [26, Eq. 15.20] we have 

IM[;-e~l( B~e))$ vol2d(M[l - E] n K(B(E))) dK 
M[1-ElnK(B(E))+60 

= O2N-1 ... 01 . vol2d(M[1 - ED) .V02N(B(E)), 

where K(B(E)) is the Euclidean motion K applied to B(E). (Actually, Santal6 only 
proved this theorem, as well as others of his we shall use, for closed manifolds. 

The same results for rectifiable surfaces (including varieties} are due to Federer [6, 

Theorem 3.2.48 and Section 3.4.10]. We will continue to use Santal6's formulation 

of the result because it is more convenient.) Since vol2N(B(E)) = 02NE2N and 
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Vol2d(M[l - E] n K(B(E))) < deg(M) *s 02d . E2d by Lemma 7.3 and Corollary 7.5, 
we have 

deg(M) .s . 02d J dK 
(7.2) M[1-E~nK(B(E))#0 

> 02N-1 O1 Vol2d(M[l -l]) * 02N E2N. 

Since B(E) is a ball, K(B(E)) = B(b, E), so 

t ~~~~dK = dA A db 
(7.3) JM[1-EjnK(B(E))$0 JM[1-E]nB(b,E)0d 

JM[ / e] flB~b~e)$0 db/ dA=02N1 ...Ol . db, 
M[1-E~nB(b,E)00 M[1-E~nB(b,E)#0 

where we have used [26, Eq. 12.11]. Now fM[1-E]nB(bE)$0 db is the volume of the 

set of points within distance E of M[1 - EJ, which is included in T(M, E). Therefore, 

(7.4) J db < vo12N(T(M, E)). 
M[1-E~nB(b,E)#0 

Combining (7.2), (7.3) and (7.4) yields the result. 5 

THEOREM 7.7. Let M be a purely 2d-dimensional complex variety in CN con- 
taining the origin. If d < N - 1, then 

(1 - E)2dE2(N-d) 202N (7.5) 
~~~deg(M) O2N-2d02d 

?fM ~ 

If d = N - 1 (M a hypersurface), then 

(7.6) (1- E) 2N-2E2 (7-6) ~~~N.- deg(M) f(M ) 

If M is homogeneous, the lower bounds in both (7.5) and (7.6) may be increased by 
the factor deg(M). 

Proof. Both (7.5) and (7.6) follow from dividing (7.1) by 02N and using the 
estimate vol2d(M[1 -E]) > 02d(l - E)2d from Lemma 7.2. For homogeneous M, use 
Lemma 7.1 instead. O 

The proof of Lemma 7.6 depended on the complex analyticity of M only in the 
estimate 

V0l2d(M[l - E] n K(B(E))) < deg(M) s 02d . E2d) 

based on Lemma 7.3 and Corollary 7.5. If M is a d-dimensional real variety in RN, 
we can use Lemma 7.4 to instead estimate 

ON-d dO d vold(M[l - E] n K(B(E))) < deg(M) 2 d E 

Using this bound in the proof of Lemma 7.6 yields 

LEMMA 7.8. Let M be a purely d-dimensional real variety in RN. Then 

(7.7) VolN(T(M, E)) > Nd(M ) 2QN O NE 
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This immediately yields 

THEOREM 7.9. Let M be a purely d-dimensional real variety in RN. Then 

(7 8) V?Old(M[l -E]) 20N 
N-d < 

(7.8) ~~deg(M) Od ON-dOd 
< f 

f(Ml E). 

If M is homogeneous, then 

deg(M) Od ON-dOd . f 

Proof. (7.9) follows by dividing (7.7) by 0N. When M is homogeneous, vold(M[r]) 
= rd vold(M[1]). 5 

Remark. This theorem has the unhappy property that when M is concentrated 
near the boundary of B(1), the lower bound degenerates to 0 since 

vold(M[l - El) = 0. 

Consideration of several examples of this kind leads us to conjecture that 
vOld(M[1 - ]) may be replaced by 

VOld(M[l]) (1 + - (1 - >vol (M[l]) 

where E < 1. 
This completes all our lower bounds. The lower bounds in Theorems 4.1 and 4.4 

follow from substituting for 0 and Oj in Theorems 7.7 and 7.9. 
We now turn to upper bounds. The following theorem generalizes a technique 

used in [23, Proposition 5.4]. 

LEMMA 7. 10. Let M be a purely 2d-dimensional complex variety in CN. Let 

J 1 if M is homogeneous, 
(7.10) s = N if M is a nonhomogeneous hypersurface (d = N - 1), 

1 02N-2dO2d/(202N) otherwise. 
Then 

(7.11) V012N(T(M, E)) < e2N2(N_1)2(N-d-1) .s deg(M) 02N.(1+NE)2d. 2(Nd). 

Proof. Let dK be the kinematic density for the group of Euclidean motions as 
in the proof of Lemma 7.6. Then from [26, Eq. 15.20] we have 

(7.12) f vo012d(M[1 + NE] n K(B(NE))) dK 

= 02N-1 ... 0*1 V012N(B(NE)) . vol2d(M[1 + NE]), 

where the integral is over all motions K such that M[1 + NE] n K(B(NE)) 0 0. 
Since 

V012N (B(NE)) = 02N (Ne)2N and vol2d (M[1 + NE]) < deg(M) 02d (1 +NE)2d *8 

by Lemmas 7.1, 7.3 and 7.4, we have 

(7.13) J vol2d(M[1 + NE] n K(B(NE))) dK 

<O 2N-1 .1 0 -2NN2AE2 deg(M) 02d * (1 + NI)2d S- 
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Recall that K(s) = As + b, where A E SO(2N), and dK = dA A db. Thus 
K(B(NE)) = B(b,NE). Then, if dist(b,M[l]) < E, not only do M[l + NE] and 
K(B(NE)) intersect, but their intersection contains M[1 + NE] n B(p, (N - 1)E) for 
some p E M[1] and 11b - < E. If in addition 11b11 < 1, B(p, (N - 1)E) C B(l + NE) 
and so by Lemma 7.2 

vol2d(M[1 + NE] n K(B(NE))) > 02d ((N - 1)E)2dl 

and so 

J V012d(M[l + NE] n K(B(NE))) dK 

> foist(b,M[D)<E 02d((N - 1)E)2d dK 
(7.14) 11b11<1 

= 02d((N - 1)E) fdist(b,M[1]<e) dK 
11 b11 <1 

= 02N-1 ... 01 02d((N - 1)E)2d vol2N(T(M, E))I 

where we have used [26, Eq. 12.11]. 
Combining (7.13) and (7.14) yields 

N 2N 
vol2N(T(M, E)) < (N - )2d s* deg(M) * 02N (1 + NE)2d E2(N-d) 

= (N 1) . N2 . (N - 
1)2(N-d-1) s . deg(M) 

02N (1 + NE)2dE2(N-d) 

< e2 . N2 . (N - 1)2(N-d-1) s deg(M) 02N (1 + NE)2dE2(Nd) 

as desired. 5 
Dividing by 02N immediately yields 

THEOREM 7. 11. Let M be a purely 2d-dimensional complex variety in CN. 
Let s be defined as in Lemma 7.10. Then 

f (M E) < e2N2 (N - 1)2(N-d-1) . s deg(M) . (1 + NE) E 2(N-d). 

The upper bounds in Theorem 4.1 follow immediately from Theorem 7.11. This 
completes our proofs of upper bounds. 

Note that for complex homogeneous varieties the upper bound in Theorem 7.11 
is proportional to deg(M) whereas the lower bound in Theorem 7.7 is independent 
of deg(M). This gap is unavoidable as the following example shows. Suppose M 
consists of deg(M) hyperplanes Hi through the origin and tilted just slightly away 
from one another. For any EO > 0 the hyperplanes may be chosen so close together 
that the set of points within EO of any one overlaps almost completely with the set 
of points within EO of any other. Therefore, for all E > EO the volume of T(M, E) 
will be insignificantly larger than the volume of T(HZ, E). Thus, no lower bound 
can be proportional to deg(M). In this example, M is reducible; since irreducible 
homogeneous polynomials in at least three variables are dense in the set of all 
homogeneous polynomials in at least three variables and of the same degree, we 
see that restricting to irreducible varieties would not improve the lower bound. For 
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nonhomogeneous complex varieties the lower bound in Theorem 7.7 is proportional 
to 1/ deg(M); we conjecture that this factor may be removed. 

We now turn to an asymptotic expression for vol2N(T(M, E)) when M is homoge- 
neous. The expression, not surprisingly, will simply be Vol2d (M[1]) 02N-2dE2(N-d), 

just as if M[1] were a "rectangle" and T(M, E) a "rectangular parallelepiped" of 
radius E. 

To prove this, we will need some notation. If M is a smooth d-manifold in RN, 
let 

T'(M, ) = U N(p, I) 
pEM 

where N(p, E) is a closed (N - d)-ball of radius E centered at p E M and orthogonal 
to M. We will call T'(M, E) a tubular neighborhood if each v E T'(M, E) lies in 
exactly one N(p, E). If, for example, M is a hypersurface, T'(M, E) will be a tubular 
neighborhood if E is smaller than the radius of curvature at all points of M. 

Our main tool is due to Weyl [33]: 

THEOREM 7.12. If M is a closed d-dimensional manifold in RN and T'(M, E) 
is a tubular neighborhood of M, then 

N 

(7.15) volN(T'(M, E)) = E Ck,N(M)Ek, 
k=N-d 

where 
CN-d,N(M) = vold(M) ON-d- 

The reason we cannot apply Weyl's theorem directly to varieties (which would 
have saved a great deal of effort!) is that varieties may have singularities, so that 
T'(M, E) may never be a tubular neighborhood for any E. If we eliminate a small 
neighborhood of the singular part of a variety, we may apply Weyl's theorem to the 
remainder. If we can show that the contribution to volN(T(M, E)) of this neighbor- 
hood of the singular part goes to 0 as the radius of the neighborhood shrinks to 0, 
then the first term of Weyl's theorem will provide the correct asymptotic behavior 
of volN(T(M, E)) for small E. 

The proof goes as follows. Let M be a homogeneous purely 2d-dimensional 
complex variety in CN. Let S(M,r) = {x E M: dist(x,S(M)) < r} be an r- 
neighborhood in M of the singular part of M. As usual, S (M, r) [s] will denote 
S(M, r) nB(s). Note that limr o vol2d(S(M, r) [s]) = 0. Let MiJ(r) = S(M, r) [1] 
and M0ut(r) = {x E M[1]: x ? Mi,(r)}. Note that limrovol2d(Mout(r)) = 

vol2d(M[1])- 

Now for all r we may apply Weyl's theorem to Mut (r): There is some E(r) > 0 
such that when E < E(r), T'(Mout(r), E) is a tubular neighborhood. We estimate 
Vo12N(T(M, E)) as follows: 

(7.16) vol2N(T'(Mout (r) [1 - ], )) < vo12N (T(M, E)) 
< vol2N (T'(Mout (r), E)) + vOl2N (T(Mi, (r), E)) 

The bounds on vol2N(T(M,E)) hold because T'(Mout[l - E],) C T(M, ) and 

T(M, E) C T'(Mout(r), E) U T(Mij(r), E). For fixed r we have by Weyl's theorem 

vol2N(T'(Mout (r), E)) vol2d (Mout (r)) + 0(E)-1 
hlm - = lim 
e~ volV2N(T'(Mout(r)[1 - ], E)) e- O vol2d(M0ut(r)) + 0(E)- 
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It remains to prove that for small enough r, vol2N(T(Mif(r), E)) is negligible com- 
pared to vol2N(T'(M0ut(r), E)). More precisely, we need to show that for all r > 0 
there is an f > 0 such that for all r < f and e < E(r) 

(7.17) vol2N (T(Mif (r), E)) 
vol2N(T'(Mout (r), 6)) 

We will prove (7.17) by showing that for Ne < r < 1, 

Vol 2N (T (Min, (r), E)) 

(7.18) < e2 N2(N - 1)2(N-d-1) 02N vOl2d(S(M, 2r)[2]) * 62(Nd) 
02d Y 

Since for small r and E < E(r), V012N (T'(Mout(r), E)) behaves like C 62(N-d), where 
c is a constant near 02(N-d) .vol2N(M[1]), the expression in (7.17) is bounded above 
by a constant times vo12d(S(M, 2r)[2]), which goes to 0 as r goes to 0. 

We will prove (7.18) using the same technique as in Lemma 7.10. Let dK = 
dA A db be the kinematic density for the group of Euclidean motions. Then [26, 
Eq. 15.20] implies 

(7.19) fvol2d(S(M, 2r)[1 + Ne] n K(B(Ne))) dK 

= 02N-1 ... 01 . V012N (B (Ne)) - V012d (S (M, 2r) [1 + Ne]). 

Note that V0l2N(B(Ne)) = 02N(NE)2N and, since NE < 1, 

Vol2d (S (M, 2r) [1 + NE]) < vol2d (S (M, 2r) [2]). 

Now if dist(b, Mi,(r)) < E and jjbjj < 1, then 3p E Mi,(r) C S(M, 2r)[1 + Ne] such 
that lb e pil < E. Furthermore, since K(B(Ne)) = B(b, NE), 

S(M, 2r)[1 + Ne] n B(p, (N - 1)E) C S(M, 2r)[1 + Ne] n B(b, NE) 

and so by Lemma 7.2 and the fact that NE < r, 

vo12d(S(M, 2r)[1 + NE] n K(B(Ne))) > 02d ((N - 1)E)2d 

From (7.19) we have therefore that 

02d * ((N- 1)6)2d fdist(bMn(r))<? dA A db 

< 02N-1 * '1 ( 02N (NE)2 V012d(S(M, 2r)[2]) 
or 

02d ' ((N - 1))2dvol2N(T(Min(r),e)) < 02NO(NE) . vol12d(S(M,2r)[2]), 

yielding (7.18) as desired. 
In summary, we have 

THEOREM 7.13. If M is a purely 2d-dimensional complex variety in CN, then 
for asymptotically small E Weyl's theorem correctly estimates V012N (T(M, E)). In 
particular, when M is homogeneous, 

V012N (T(M, E)) = deg(M) . 02d02(N-d) 6 2(N-d) + o(E2(N-d)). 

Proof. From Lemma 7.1 we have Vol2d(M[1]) = deg(M) 02d ? 
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COROLLARY 7.14. If M is a homogeneous, purely 2d-dimensional complex va- 
riety in CN, then asymptotically 

f (M,)= (N) *deg(M) E2(N-d) +o(E2(N-d)). 

This completes the proof of Theorem 4.1. 
It appears that Ocneanu's proof of Theorem 4.3 may be modified so as to prove 

Conjecture 4.15 in an analogous way as Theorem 7.13: The contribution to the 
volume of T(M, E) from points near the singular part of M is asymptotically neg- 
ligible compared to the points away from the singular part, to which we can apply 
Weyl's theorem. 

Now we turn to using these bounds to estimate the probability distribution 
Prob(dist(p, M) < E) when M is homogeneous and p is uniformly distributed on the 
unit sphere. We will use the following geometric interpretation of this probability: 
Let Ts(M, E) = {p: p = 1, dist(p, M) < E}; then, if the ambient space is RN, we 
have by definition 

Prob(dist(pM) < E) = V 0IN1-(TS(M, )) 
ON-1 

Now define TC(M,E) = {p: 0 < p < 1, dist(p/pIIpI,M) < E V p = 0}. Then 
Tc(M, E) is the intersection of a homogeneous set with B(1), and its intersection 
with the unit circle is Ts (M, E). Clearly, 

1 

VOIN (TC (M, E)) = J volNl (Ts (M, E))rN-l dr 

vol_ N-l (Ts (M, E)) 
N 

so 

Prob (dist (p, M) < ) = volN (Tc (M, E)) 

i.e., the fraction of the volume of the unit ball occupied by TC(M, E). Since 
Tc (M, E) C T(M, E), 

Prob(dist(p, M) < ) < volN(T(M, E)) - 

ON 

and any upper bound for f (M, E) is an upper bound for Prob(dist(p, M) < E). This 
proves the upper bounds in Theorems 4.2 and 4.5. 

Now we turn to asymptotic expressions. Suppose M is homogeneous, d-dimen- 
sional and embedded in RN. From our previous discussion, it suffices to consider 
tubular neighborhoods and ignore singularities. In fact, we can do a purely local 
analysis by writing both T(M, E) and Tc (M, E) as the union of disjoint sections 
orthogonal to M, and comparing the volumes of the sections. In particular, for each 
p E M, IIPII = 1, let N(p, E) be the section of T(M, E) whose "bases" are (N-d)-balls 
B(+p, E) orthogonal to M and which consists of all line segments connecting a point 
p, E B(p, E) to a point P2 E B(-p, E). Let Nc(Ml E) be the section of TC(M, E) 
with the same bases and consisting of all line segments connecting Pi E B(p, E) and 
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-Pl* Thus 

T(M, E)= U N(p,E) and Tc(ME)= U Nc(p,E). 
pEM pEM 

Let dp be a volume element of Ms = {p E M, p = 1}, and N(dp, E) and Nc(dp, E) 
be the union of the corresponding sections. Then, if S(r) is the sphere of radius r, 

1 

VolN (N(dp, E)) = 21 VOlN- 1 (N(dp, E) n S (r)) dr 

1 

= 2 j VON -N1 (N(dp, E) n S (1) )rdl dr 

= 2VolN-l(N(dp,E) n S(1))/d 

and 
1 

VolN (NC (dp, E)) = 21 VOIN- 1 (NC (dp, E) n S (r)) dr 

= 2j volN-1 (Nc(dp, E) n S(1))rN1 dr 

= 2 VOlN-l (N(dp, E) n S(1))/N, 

i.e., the volume of the section of T(M, E) is N/d times the volume of the section of 

Tc (M, E). Therefore, 

lim f(Ml ) = lim volN(T(M, E)) = N 
E-O Prob(dist(p, M) < E) e- O VOIN(TC(M, E)) d' 

which proves the asymptotic results in Theorem 4.2 and (4.19) (the latter result 
depends on the truth of conjecture (4.15)). 

Finally, we consider lower bounds on Prob(dist(p, M) < E). We will show 

(7.20) VOl N (T (M, E) ) < VOl N- 1 (Ts (M, E) ), 

which will immediately imply 

(7.21) ) = 0vol2N(T(M, E)) < V12N-l(Ts(ME)) 
(7.21) ON ON 

= N Prob(dist(p, M) < E). 

To prove (7.20), consider the volume element dx of Ts (M, E). Let p E M be a point 
closest to x, and construct the cylinder with base dx, axis parallel to the segment 
Op and of length 1. Since the length of the cylinder is 1 and its cross section is at 
most dx, its volume is at most dx. The union of all these cylinders fills up T(M, E) 
(perhaps multiply), so integrating their volumes over Ts (MrE) yields (7.20). (7.21) 
shows that f (M, E)/N is a lower bound on Prob(dist(p, M) < E) and completes the 
proofs of Theorems 4.2 and 4.5. 



THE PROBABILITY THAT A NUMERICAL ANALYSIS PROBLEM IS DIFFICULT 479 

Computer Science Department 
Courant Institute of Mathematical Sciences 
New York University 
251 Mercer Street 
New York, New York 10012 

1. V. I. ARNOL'D, "On matrices depending on parameters", Russian Math. Surveys, v. 26, 1971, 
pp. 29-43. 

2. E. H. BAREISS & J. L. BARLOW, Probabilistic Error Analysis of Floating Point and CRD Arith- 
metics, Dept. of Electrical Engineering and Computer Science, Northwestern University, Report 
81-02-NAM-01, 1981. 

3. J. W. DEMMEL, A Numerical Analyst's Jordan Canonical Form, Dissertation, Computer Sci- 
ence Division, University of California, Berkeley, 1983. 

4. J. W. DEMMEL, "On condition numbers and the distance to the nearest ill-posed problem," 
Numer. Math., v. 51, 1987, pp. 251-289. 

5. C. ECKART & G. YOUNG, "The approximation of one matrix by another of lower rank", 
Psychometrika, v. 1, 1936, pp. 211-218. 

6. H. FEDERER, Geometric Measure Theory, Springer-Verlag, Berlin and New York, 1969. 
7. G. H. GOLUB & C. F. VAN LOAN, Matrix Computations, Johns Hopkins Univ. Press, Balti- 

more, MD, 1983. 
8. A. GRAY, "An estimate for the volume of a tube about a complex hypersurface," Tensor 

(N. S.), v. 39, 1982, pp. 303-305. 
9. A. GRAY, "Comparison theorems for the volumes of tubes as generalizations of the Weyl 

tube formula," Topology, v. 21, 1982, pp. 201-228. 
10. P. A. GRIFFITHS, "Complex differential and integral geometry and curvature integrals 

associated to singularities of complex analytic varieties," Duke Math. J., v. 45, 1978, pp. 427-512. 
11. R. W. HAMMING, "On the distribution of numbers," Bell System Tech. J., v. 49, 1970, pp. 

1609-1625. 
12. H. HOTELLING, "Tubes and spheres in n-spaces, and a class of statistical problems," Amer. 

J. Math., v. 61, 1939, pp. 440-460. 
13. D. HOUGH, Explaining and Ameliorating the Ill Condition of Zeros of Polynomials, Thesis, 

Mathematics Department, University of California, Berkeley, CA, 1977. 
14. W. KAHAN, "Numerical linear algebra," Canad. Math. Bull., v. 9, 1966, pp. 757-801. (Gasti- 

nel's theorem appears here.) 
15. W. KAHAN, Conserving Confluence Curbs Ill-Condition, Technical Report 6, Computer Sci- 

ence Dept., University of California, Berkeley, August 4, 1972. 
16. T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New York, 

1966. 
17. K. KENDIG, Elementary Algebraic Geometry, Springer-Verlag, Berlin and New York, 1977. 
18. D. E. KNUTH, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 

1969. 
19. E. KOSTLAN, Statistical Complexity of Numerical Linear Algebra, Dissertation, Math. Dept., 

University of California, Berkeley, 1985. 
20. P. LELONG, Fonctions plurisousharmoniques et formes differentielles positives, Gordon and 

Breach, Paris, 1968. 
21. A. OCNEANU, On the Volume of Tubes About a Real Variety, unpublished report, Mathematical 

Sciences Research Institute, Berkeley, 1985. 
22. A. OCNEANU, On the Loss of Precision in Solving Large Linear Systems, Technical Report, 

Mathematical Sciences Research Institute, Berkeley, 1985. 
23. J. RENEGAR, "On the efficiency of Newton's method in approximating all zeros of systems 

of complex polynomials," Math. Oper. Res., v. 12, 1987, pp. 121-148. 
24. J. R. RICE, "A theory of condition," SIAM J. Numer. Anal., v. 3, 1966, pp. 287-310. 
25. A. RUHE, "Properties of a matrix with a very ill-conditioned eigenproblem," Numer. Math., 

v. 15, 1970, pp. 57-60. 
26. L. A. SANTALO, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics 

and Its Applications, Vol. 1, Addison-Wesley, Reading, Mass., 1976. 
27. S. SMALE, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. 

Soc. (N. S.), v. 4, 1981, pp. 1-35. 



480 JAMES W. DEMMEL 

28. S. SMALE, "Algorithms for solving equations," presented at the International Congress of 
Mathematicians, Berkeley, 1986. 

29. G. W. STEWART, "Error and perturbation bounds for subspaces associated with certain 
eigenvalue problems," SIAM Rev., v. 15, 1973, p. 752. 

30. G. STOLZENBERG, Volumes, Limits, and Extensions of Analytic Varieties, Lecture Notes in 
Math., vol. 19, Springer-Verlag, Berlin and New York, 1966. 

31. P. R. THIE, "The Lelong number of a point of a complex analytic set," Math. Ann., v. 172, 
1967, pp. 269-312. 

32. B. L. VAN DER WAERDEN, Modern Algebra, Vol. 1, Ungar, New York, 1953. 
33. H. WEYL, "On the volume of tubes," Amer. J. Math., v. 61, 1939, pp. 461-472. 
34. J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, 

N.J., 1963. 
35. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965. 
36. J. H. WILKINSON, "Note on matrices with a very ill-conditioned eigenproblem," Numer. 

Math, v. 19, 1972, pp. 176-178. 
37. J. H. WILKINSON, "On neighboring matrices with quadratic elementary divisors," Numer. 

Math., v. 44, 1984, pp. 1-21. 
38. J. H. WILKINSON, "Sensitivity of eigenvalues," Utilitas Math., v. 25, 1984, pp. 5-76. 


	Cit r101_c103: 
	Cit r88_c90: 
	Cit r99_c101: 
	Cit r81_c83: 
	Cit r112_c114: 
	Cit r109_c111: 


