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On a New Definition of the Fractional Difference 

By Henry L. Gray and Nien fan Zhang 

Abstract. A new definition of the fractional difference is introduced. Many properties 
based on this definition axe established including an extensive exponential law and the 
important Leibniz rule. The results axe then applied to solving second-order linear 
difference equations. 

1. Introduction. Although the notions of fractional calculus date back to 
Euler, the idea of a fractional difference is more current. In one of the more exten- 
sive papers on the subject Diaz and Osler [1] defined the fractional difference by 
the rather natural approach of allowing the index of differencing, in the standard 
expression for the nth difference, to be any real or complex number, i.e., 

00 

(1.1) /\' f (X) = Z(-1)k ( ) f(x +a-k), 
k=O 

where a is any real or complex number. 
The definition furnished by (1.1) can be shown to result in an operator with many 

appealing properties. Unfortunately, however, it has no general exponential law, 
i.e., no law of the form A1r+8f(x) = ArA9sf(x) without rather severe restrictions 
on r and s. See Isaacs [4]. In addition, it has the shortcoming of requiring values 
of f at nonintegral values of its argument. In many applied problems where one 
wishes to make use of the fractional difference, only values of f at integral values 
of its argument are known. For example, in a discrete time series f(x) = yx, 
x = 0, +1, +2,..., /\i in (1.1) is not applicable. For this reason, the definition of 
Eq. (1.1) is not used in that field, but instead, Granger and Joyeux [2] and Hosking 
[3] have employed the following definition, 

Va f (x) = (1 - B)f(x) = Z(-1)k( Bkf (x) 

(1.2) ~ ~ ~~~~~k= ra- k + 1)r(k + 1) 

- Z(-1)k (e)f (x -k), 
k~~~ k=O ( ) 

where a is any real number and Bf(x) = f(x - 1) is the standard backward shift 
operator. The notation Va is used since this definition is a natural extension of 
the backward difference operator. Making use of this latter definition, Granger and 
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Joyeux and also Hosking have shown that the fractional difference can be used to 
study long memory time series. 

In this paper we give a new definition of the fractional difference which also 
includes the notion of a fractional sum over a specified index set. One of the more 
important features of this new definition is that the sum corresponding to the one 
in (1.2) is finite. As a result, a general exponential law is obtained along with 
many other important properties. In addition, it is noted that the definition (1.2) 
is simply a limiting case of the definition given here. Finally, it is shown how these 
results can be employed to solve difference equations. 

2. The Fractional Difference/Sum. For any complex number a and f1 let 
(a), be defined as follows: 

F (a + 13) when a and a + 3 are neither zero nor negative 

jo F~a) integers, 
(a): = 1 when a = 3=0, 

| 0 when a = 0, 3 is not zero or a negative integer, 
undefined otherwise. 

In order to motivate our definition, consider the n-fold summation of f from a 
to t, i.e., let 

t ki kn-1 

Snf(t) = E Z .f. E f(kn) 

k1=a k2=a kn=a 

where t, ki and a are finite integers such that a < ki < kei- < t. Then by repeated 
interchanging of summation it is easily shown that 

t t 
(2.1) S nf (t) = Z(t - k + 1)n-1f (k). 

a 17(n)ka 

The formula in (2.1) is in fact the analogue of Cauchy's formula for repeated inte- 
gration. Moreover, the summation in (2.1) is well defined for n = a, a any complex 
number not zero or a negative integer. The definition can be extended to zero and 
negative integers by noting that for n a positive integer and a not zero or a negative 
integer, Vf (t) = f (t) -f (t - 1), and 

,vn t 

r(n + a) Z(t -k + 1)n+a1lf (k) 
(2.2) 1 a 

r (a) E(t -k + 1)a_1f (k). 

This leads us to the following definition of the fractional sum and difference. 

Definition 1. For a any complex number, and f defined over the integer set 
{a - n, a - n + 1, ... , t}, the ath-order summation over {a, a + 1, .. ., t} is defined 
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by 

t Vn ~~~~~~~~t 
(2.3) S f (t) = + (t-k + 1)n+c-l f (k)V a 1'(n+ ce)k=a 

where n = max{0, no}, no an integer such that 0 < Re(a + no) < 1. 

Definition 2. For a any complex number, the ath-order difference of f(t) over 
{a, a+ 1,.. ., t} is defined by 

(2.4) V a f (t) = S -a f (t). 
a a 

An immediate consequence of (2.4) is that if a = p, a nonnegative integer, in (2.4) 
then a = -p in (2.3), hence by definition, n = p + 1 and we have 

t 
~~~~~~~t 

(2.5) V Pf(t) = Vp+1 A f (k) = VPf t). 
a 

k=a 

Our definitions are therefore consistent with differencing in the usual sense and 
are well defined for any real or complex number a. 

Since our emphasis will be primarily on the fractional difference analogy, we shall 
primarily utilize the notation of (2.4). An alternative form of (2.3) that we will 
often find convenient to use is obtained by noting 

t t-a 

Z(t - k + 1)n+ci-lf(k) = E(k + 1)n+o-1f(t - k), 
k=a k=O 

so that 

(2.6) Vaf~t)= Vn t-a 
(2.6) 17a 

C 

f ( a)) Z (k + 1)n-ce_1 f (t - k). 
a r~n - a)k=O 

3. Properties of Fractional Difference. 

PROPERTY 1. For any complex number a and nonnegative integer p such that 
p - a is not zero or a negative integer, 

(3.1) 1~a f (t) (p-a) E (t-k + 1)p-cxa f (k). 
a r(P - 

a)k=a 

Proof By definition (2.3) and (2.4), 

7n t 

a t (na) Z (t-k + 1)n-c-1 f (k), 

where n = max{O,no}, no an integer such that 0 < Re(no - a) < 1. 



516 HENRY L. GRAY AND NIEN FAN ZHANG 

Therefore, the result holds for p = n trivially. Consider thus two cases: 
(i) p > n. First let p = n + 1. Then 

Vfl+l t 

r(n + 1 - a) k=a 

r(n + 1 - ) Z V E- (t-k + ))n-fkf (k) 
a~ 

vn 

~n + _ Fr(n-a + 1)f (t) 
r (n?+1 -ac) 

t-1 

+ Z[(t - k + )n - (t -k)n-c]f(k)} 
(3.2) k=a 

-F n+ 1-) F(n -a +1)f (t) r(n + 1 -a){ 
t-1 

+(n- a) k(t - k + 1)n-c- f(k)} 
k=a 

r(n -) E(t -k + 1)n--1f (k) 

= va~f(t). 
a 

Now suppose for some p > n 

t VP ~~~~~~~~t 
V F((p -a) E(t - k + 1)p-a-if (k). 

a 
]F~p 

- 
a)k=a 

Then, by using the same argument as before, 

VP+ 1 t VP 

F(p + 1 - ae) E(t - k + 1)p+1-a-lf(k) 
= 

r(p - a) E(t - k + 1)p-a-if(k). 
k=aka 

Hence by induction, case (i) is proved. 
(ii) p < n, i.e., p = n - 1, n - 2, ... 0. By reversing the process of (3.2), case (ii) 

is easily shown. Then the proof is completed. O 

Property 1 and our observation in (2.5) can now be used to show that the 
definition in (1.2) is simply a limiting case of (2.4). That is, when a is not zero or 
a positive integer, by taking p = 0 in Property 1 and noting that 

( )kF(k 
- a) r(a + 1) 

- (-a) r(a - k + 1)' 

we have 
00 oo , 

aim -oo af (t) (- a) (k + 1) f (t - k) = Z( l)k K (t - k) 

= (1 - B)a f (t) = Va f (t), 
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as defined in (1.2). From (2.5) the result also clearly holds when a = 0 or a positive 
integer. Henceforth, we will denote the above limit by replacing a by -oo, i.e., we 
define 

t t 
Vaf(t)= lim V af(t). 

-00 a--oo a 

However, except where specifically indicated, "a" will be assumed to be a finite 
integer. 

PROPERTY 2. For a and ,3 any complex numbers 
(i) if ae and 3 both are zero or positive integers, then 

V V 'If(t) -= V +f(t); 
a a a 

(ii) if a is any complex number and 3 is not a positive integer, then 

V a V 'If(t) = V C+11f(t); 
a a a 

(iii) if a is not zero or a positive integer but 3 is a positive integer, then 

V V'f(t) = V+"ff(t) + 4 E (- (t-I-j + 1)_a_if(j). 
a a a r (- CO 1=~~1 j=a-1 

Proof. (i) is obvious. 
(ii) Let ni, n2 be integers such that 

0 < Re(ni - a) < 1, 0 < Re[n2 - (a +?)] <1, 

and let n = max{0, nj, n2}. By Property 1, 

t t Vn ~ ~~t k 

V V 'If (t V = - k + l)n-a_1 E(k - j + 1),-3-1f (j) 
a a IF (n - ce 5(t IF (/3) 

,Vn 1 ~t t 

= (nV 1) I( ) E EZ(t -k + 1)n-72 _(k -j + 1)-,3i1 f (j). F~n -a) 
Ffl)j=a k=j 

By shifting the index and algebraic manipulations, the above equals 

(3.3) VE F(t +1) ( k ) - a)t-j-k(-/3)k. 

For a and 3 complex numbers, when a, 3 and a + /3 are not zero or negative 
integers, 

(3.4) (a + 3)n = S (])(a)n-k3k for any positive integer n. 
k=O 

By (3.4), the expression (3.3) equals 

FE j+)(n - a - /3)t-j 
3. =ar(t -j + 1) 

V~n-a _ 5) (t - j + 1)nci-3-1f(j) = V ac+Of(t) 1F(n -ace-, j~ a 



518 HENRY L. GRAY AND NIEN FAN ZHANG 

(iii) When a is not a zero or positive integer, but 3 is a positive integer, 

a Vvf(t) = 1 Y'(t-k + l)_ V3f (k) 
a a F(-a) __ 

r(a) ,E(t - k+ 1)-a (fl (-1)'f(k 
-1) 

r(-a) k a (t-I- + 1)-a-1 (-I) f (k - f) 
1=0 k=a 

J'-)1=0 j=a-1 

=ZE 1 + ? 2, 

where 

E1- 1 ' ) t- __ 

E 2= (-a) E E (t - I -ji + 1)_ V-1(/;?) f(j), 
I-)1-0 j-=a 

_ 1 a-1a-i 

1=1 j=a-1 

On the other hand, by applying Property 1, 

t ~~~~~~~~~t 
V '3f (t) - r (-a) Z - i + 1I)--f (j) 

a 
j~~=a 

0 - = L (-,)l (p E(t _ I -_j+ 1)_ a!-f(i) = E 1 

Thus, 

V CV f(t) = VC +f(t) + r(,\ /E (t a -+ fj) 
a a a a = ~- 

Note. In the special case a = -1, /3 = 1, the sum on the far right in (iii) just 
becomes -f(a - 1). 

PROPERTY 3. When a is not a negative integer, 

t t 
V ?t V -CVf (t) = f (t). 
a a 

The proof is trivial by employing Property 2. 

PROPERTY 4. For c a constant, 

V [cf (t) + g(t)J = c V "f (t) + V ?g(t). 
a a a 

The proof is trivial. 
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PROPERTY 5 (LEIBNIZ RULE). If m is a nonnegative integer, 

Vmf(t)g(t) = 
M 

( ) [V m-nf (t - n)][Vng(t)]. 

If a is not a nonnegative integer, 

t t-a /a Ft-n 
V f(t)g(t) = (n) [ Vnf(t -n) [Vng(t)]. 

a 
~~n=O\f/[ 

Proof. If m is a nonnegative integer, the result is well known. Suppose, therefore, 
that a is not zero or a positive integer. Then 

V f(t)g(t) - P(-) Z(t -k + 1)>,_if(k)g(k). 

By induction it can be shown that 

E ( k) nV n 
g 9(t) = g(t - k 

Thus, 
t 
V af(t)g(t) 
a 

can be written as 

r(-a) Z(t - k + 1),_1f (k) E ( (-1)nvng(t). 

Since r(a + 1)r(-a)/r(a - n + 1)r(n -) = (-l)n for any nonnegative integer n, 
the above expression becomes 

1 /(t-k t ( k r(a + 1)r(-a) Vng(t) 

F(-a)(t - k + 1y f(k) tk - fk n+g)r(a - ) ( ) 

a 1 r(tk + 1)-( ) 

n1 t-a +t~r-n + -1)~a+1)( 

Z Z(t -k?+1>,if (k)Fa- 
- (-) n=0 k=a +n1)T'(- a) V1grt) 

t-a F(ae+ 1) 

f 1 t-n +1 
X r(n a a) E(t- n-k + 1)n-c-1f(k)} Vng(t) 

= E (a )Vn' f(t -n)Vn(t). 0 

PROPERTY 6. If p + 1 is not zero or a negative integer, then 
(i) when p + 1 - a is not zero or a negative integer, 

V t-a (t -a)p- ,; 

(ii) when p + 1 - a is zero or a negative integer, 

(t-a)p = 0. 
a+1 
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Proof. When a is a positive integer, the result is obvious. Hence, we only 
consider the case that a is not zero or a positive integer. 

(i) We have 

a'i(t a)p (-a) _ (t-+) -l(j-a) 

_ 1 E r(t-j -a)r(j-a+) 
F(-a)j~~ F(t - j+1) F(j -a) 

r(C)j=a+l 

_ 
1 r(t - j-a-e- 1) r(j + p +1) 

(-a) _ r(t - j - a) r(j + 1) 

r(p + 1) t-a-1 ( --1 )- 
F E a ( (OC!)t-a-1-j (P + 1)j. r~ 

)j=0 

Using (3.4) again, 
t F(p + 1) _(t -ap- 

Va(t-a)p = (p-a + 1)t-a- = + 
a+1 r(t -a) -P 

(ii) When p + 1 - a is zero or a negative integer, say p + 1 - a =-m, where m 
is a positive integer or zero, then by Property 2 and (i), 

Va(t 
- 

a)p V m+1 V a-m-l(t- a)p 
a+1 a+1 a+1 

t 
= v m+r(p + 1) = 0. O 

a+1 

Example 1. 

V11 (x)W = (3/2) r/ - F(3/2), V W312(x)112 = 0 

PROPERTY 7. Let B(a, ,3) denote the Beta function when a, 3 are not zero or 
negative integers. For any real or complex numbers a and p with p + 1, p + 1 - a 
not zero or negative integers, 

1 _ p 1 
Va - 

a+l B(t-a, p) p-a B(t-a, p-a) 
Proof. Follows at once from Property 6. 0 

PROPERTY 8. For any b with IbI > 1, 
(i) when a is zero or a positive integer, 

Vabt= (b ) bt; 

(ii) when a is not zero or a positive integer, 

Vabt bt (k + ) c ; 

a F(-a) k=0 bk 

(iii) when a -* -oo, then for any complex number a, 

Vabt = (b1)bt 
-00 b 
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Proof. (i) Since Vbt = (b - 1)bt/b, the result is obvious. 
(ii) By using Property 1, 

t-a 

V b (-a) Z(k + 1)-lbt-k 
a r ( ce)k=O 

bt t-a 

=(-a) ZE(k + 1)-_l b-k. 
k=O 

(iii) From (i), the result clearly holds if a is zero or a positive integer. Therefore, 
assume a :$ 0,1, 2..... Then from (ii), 

Vabt li bt t-a 

V cbt =lim b E(k + l)-ce-lb 
- 

-00 a---oo r(a)Z k= + 

bt 0( +1 b- bt F0 (k -a) 1 
rF(-a) kO + 1)-a-1 -k r(-a) E r(k + 1) bk 

bt 
? 

f00 e- xk-a 1d 
r(-a) ?E bk k!9 

By applying Fubini's theorem, it is easy to show that summation and integration 
can be interchanged. Thus, 

t bt 0 0 ( X k 
V~b Cebt t J \b x-ale-xdx 

- F(- a) -k=o 
1c! 

= bt ) I e-x+x/bx-c-1 dx 
(- a) J 

F(-a) b )r(a) Kb )bt. E 

Example 2. When b = 2, 

Va2x = 2x-a. 
-00 

Example 3. Let f (t) be defined by 

01t = = t 2- 1,2. 

Suppose a 54 0,1, 2,.. .; then by Property 1, 

VCf(t) = _ (t - k + 1)-a1f(t) o F(a) k= 

=F(1a)(t +l)-a1= r(t- a) 
r(-a) r~~(-a)F(t + 1) 

Note, if a = 1, 2, .. ., i.e., a is a positive integer, 

7nf(t) = Vnf(t) = (-1)k (k) f(t k) 0 ~~~~k=O 
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which is the same result as obtained when a was not an integer, since 

()t F(t-n) F(n-t + 1) 
F(-n) r(n + 1) 

for any positive integer t. It is interesting to note the index Property 2 in this 
example. That is, by proceeding directly for a and /3 $ 0, or positive integers, we 
have 

va V f(t) =V 1 (t + 1)_,_ o o oT' (-/3) 
1 (t+1)_aj_1 

r (_ 1) (-13)_a 

by Property 6. Therefore, 

V a V: 
'I 

t _ 1 _ (t + 1 = V a+f W(). o o F(-ae -/3) o 

4. Applications. In this section we show how the fractional difference can be 
employed to determine the solution of a rather general class of second-order linear 
difference equations. Other such equations could be solved by the same approach. 
To demonstrate the ideas involved, we first consider a rather trivial example and 
then extend the technique to a more general situation. 

Example 4. The Leibniz rule can be used to write standard difference equations 
in a "factored" form. For example, consider 

t 
V aty(t) 
0 

and apply the Leibniz rule to obtain 

V aty(t) = t V1 y(t) + a 7VC1-ly(t -1). 
0 0 0 

Then suppose a is not zero or a negative integer and let 

8 t) 7 -a+' Z~t y(t) =, W 
0 

Then, using Property 2(ii), 

t ck() t ckt -a+1Z Z VaCty(t) = tvav C, Z(t) + aZ(t - 1) 
0 0 0 

= tVZ(t) + aZ(t - 1) = tZ(t) + (a - t)Z(t - 1). 

Thus the difference equation 

tZ(t) + (a - t)Z(t - 1) = 0 

can be written in the "factored" form 
t t 
VatV-a +lZ(t) = 0. 
0 0 

This type of observation will be used in this section to demonstrate how fractional 
differences can be used to solve difference equations. 
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THEOREM 4.1. Let y(x) satisfy the difference equation 

(4-1) (ax + b)y(x) + (cx + d)y(x - 1) + (ex + f)y(x - 2) = H(x) 

for all x in some set S. Let,u satisfy the equation 

e,2+ cm + a = O 

and define 

a = a -e2 

_ ab - afa2 - 2eba2 - ed ,3 

a-e,u2 

afI2 + eb m2 + ed ,3 
6-= a- e 2 

(4.2) a-b+d +f2 

v= 2 V 
a-e,u2 

Pi (x) = ax +/:, 

P2(X) = 'yx + 6, 

q(x) 

P2 (X) 

Let xo E S be such that Q(x) $ 0 for x > x0, where 

(4.3) Q(x) = 17 q(i). 
i=xO 

Then for all x E S such that x > x0 the difference equation in (4.1) has the 
equivalent form 

(4.4) V U[P1 (x) + P2 (x)]Q(x)VQ-1 (x) V -+1 Xy(x) = V-xH(x), 

provided ,u > 0 and v is not zero or a negative integer. We can assume a - eM2 $ 
0, since otherwise it is easy to show that Eq. (4.1) reduces to one with constant 
coefficients. 

Proof. For any function q(x), letting V = 1 - B, 

[P2 (x)V + P1 (x)]O(x) 

= [P2 (x) + P1 (x)] -P2 (x)B}q(x) 

= [P1 (x) + P2 (x)] [q(x) - q(x)q$(x - 1)] 

=[P1 (x) + p2 (X)IQ (X) [Q(X O(X - 
I)] 

= [Pl(x) +P2(x)]Q(x)VQ-'(x)b(x). 

Thus, 

V [P2 (x) + P1 (X)]Q(X)VQ- (X) 
xO xO 

= V V [P2 (x)V + P1 (x)] V Jl ,uXy(x) 
XO XO 

(4.5) = V P2(X) V IL2,ixy(X) + V VP, (x) V IL x (x) 
xO xO xO XO 
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But by the Leibniz rule, if we set 

g(x) = P2(x) and f(x) = V -v+21xy(x), 

we have 
x x 

v2 
V VP2(X) V L+21UXy(x) 

(4-6 
=P2(x) V V V V+2 y(x) + VVp2(X) V1 V-1 xv -+2 -y(x- 

Xo X? Xo Xo 

Similarly, 

V pi(x) V L'+lU y(x) 

.47) 
X O 

P)1() V" V V+l Uxy(x) + vaX7l 1 V _ y(x -1) 

Substituting (4.6) and (4.7) in (4.5) and collecting terms gives 

x ~~~~~-2 iPi(x) avl 
y [Pjp(X) +P2(X)]Y(X) + [-P2(X) + -VP2(X) - + ]Y(X-l1) 

+ [P2) 2 vVp2(x)1 y(x-2)} 

or 

lx {[(a + Y)x + ( + 6)]Y(x) 

(4.8) + [( + ) +x+ ( +y) 26 y(x- 1) 

+ [+ + + ] y(x-2)} 

Substituting for a, /3, -y and 6 in terms of a, b, c, d, e and f immediately yields 
(4.1). Consequently, by (4.8), when a, /3, -y, 6, v are determined by the system 
(4.2) and when li > 0, the difference equation (4.1) has the equivalent form (4.4), 
since the process can be reversed. El 

By using Property 6(ii), we have the following lemma. 

LEMMA 4. 1. If a is not zero or a negative integer, then 

n 

f(x) = Zdi(x - xo + l),~i 
i=1 

is a solution of the difference equation 

V af (X) = 0, 
xo 

where n is any finite positive integer and the di 's are constants. 

The equivalent factored form can now be used to obtain a solution of the equation 
by simply operating on both sides of the equation by the corresponding inverses. 
That is, applying Theorem 4.1 and Lemma 4.1, we have the following corollary. 
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COROLLARY 4.1. For the equation 

(4.9) (ax + b)y(x) + (cx + d)y(x - 1) + (ex + f)y(x - 2) = 0 

(i) when ,u > 0 and v is not an integer, 
n 

y(x) = AsX V Q(x) V Q'(x) [p1 (x) + p2(x)] d1(x- +1) 

(4.10) 

+ kp7X V V1 Q(x) 
xo 

is a solution of (4.9) for x > x0, where n is any finite positive integer, k is an 
arbitrary constant, the dj 's are constants, and x0 is finite; 

(ii) when u > 0 and v : 0.-1 ,-2,..., 

y(x) = kp-XVv-lQ(x) 

is a solution of (4.9), where k is an arbitrary constant; 
(iii) when ,u > 0 and v = 0, 

y(x) = kp-x 

is a solution of (4.9), where k is an arbitrary constant. 

Although it has not been shown, we conjecture that for proper choice of the dj 
and x0 the solution in (i) can be shown to be the general solution. Of course, one 
can use any of the solutions in (i) to find another linearly independent solution by 
standard methods and produce the general solution to (4.9). 

COROLLARY 4.2. When ,u > 0 and v is not an integer, Eq. (4.1) has a partic- 
ular solution 

y(x) = ,u X V Q(x) V 'Q'(X)[P1(X) + P2 (X)V' xV -xH(x) 
SO SO SO 

for x > xo. 

Example 5. Consider the following equation 

(3x + 4)y(x) - 8(x + 1)y(x - 1) + 4(x + 2)y(x - 2) = 0. 

By solving the system of equations (4.2), 

a=2, /3=1, -y=l, 6=3, pu=1/2, v=1, 

and pi(x) = 2x + 1, p2(x) = x + 3. Then, 

q(x) = x3+ and Q(x) = 11 q(i), 3x + 4 i- 

so that x0 =-2. The equivalent equation is thus 

V 1 [P1 (x) + P2 (x)]Q(x)VQ1(x) (I)- y(x) = 0. 

By Corollary 4.1(ii) it is easy to see that y(x) = k2xQ(x) is a solution, where k is 
an arbitrary constant for x > -2. 

A second solution can be obtained by using this solution to reduce the order of 
the equation and proceeding by standard methods or by (4.10). 
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5. The Limiting Case. In several instances in the previous sections, we re- 

ferred to the limiting case, i.e., the case a = -ox. In this final section we explore 

that case more closely and give sufficient conditions for many of the previous prop- 

erties to hold. 

PROPERTY 1'. For any a and nonnegative integer p such that p - a is not zero 

or a negative integer, when V'f(t) exists, then 
-00 

V f(t) = lim V t - k + 1)p-a- if (k) 

Proof. By the definition, let n = max{0, no} such that 0 < Re(no - a) < 1. 

Then 

V 0f(t) = alim 'c>t) - (t-k + 1)n-a- if(k) 
V00 

t 
a--+-oorF(n - a) 

~a' 

VP t 
a lima r ce_) ,:(t -k + 1)p_oj_ 1f (k) I 
a- +-oorF(p - 

k=a 

since the two quantities under the limit are equal by Property 1. 0 

PROPERTY 2'. (i) If ar and /3 are both zero or positive integers, or 

(ii) if ar is any complex number and /3 is not zero or a positive integer, and if 

(a) VOf (t) exists; 
-00 

t t 
(b) lim V' V7 f(t) exists; 

a- -oo a b 
b-+ -oo 

(c) V a+&?-nf(t) exists, where n is defined as in the proof 
00 

of Property 2, or 

(iii) if a is not zero or a positive integer but /3 is a positive integer, and 

(a) V-f(t) exists; 

(b) V f V~f(t) exists; 
00 -00 

then 

V7& V f(t) = V 7+ f(t) 
-00o -00 -00 

Proof. (i) is obvious. 
(ii) Let n1, n2 be integers such that 

0 < Re(n1 -ca) < 1, 0 < Re[n2 - (a +13)] <1, 

and let n = max{O, ni, n2 } 
First we note that the existence of 

V 7 V pf(t) 
-00 -00 
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is implied by assumptions (a) and (b). Then, by the definition, 

t t3 ~~~t t 
v a 

_ = lim V - lim V f(t) 
00 _00 a- -oo a b- -oo b 

Vn t 

=lim V (t - k + 1)n-a-1 
a-00 F(n-a) ka 

ka 

1 k 
x lim () E(k -j + 1)>:_l f (j) 

=lim 
V 

a--oo F(n - a) 

1 k 1)( 
b lbimY' r(/3) E(t - k + 1)n--1 EZ(k-j + 1)_,a-lf(i) b ooF(-) ka j=b 

By the assumptions (a) and (b) we can let a = b. Then, 

t t Vn ~~1 t k 

v-? -o(n(t) = limn E EZ(t-k+1)n-ai1(k-j+1)-_a-jf(j). -00 -00 F(n - ce F-) -ooka ' 

By the same argument as in the proof of Property 2(ii), 

t Vnt 

_00 V Vft) a lim Z (t-j + 1)n_--f(j) VJ - ) F (n- -a- 3)a-~- j0 
a 

vn t-a 

-F(n-a-3) a jQi100Z(k + 1)n-o-fl1 f(t- k). F~n a- 
--ook=O 

But lima o Zo Et-a (k + 1)n_,i31 f(t- k) is convergent for any t by assumption 
(c). It is then easy to show that 

t-a t-a 

vn liM j0(k + 1)n -a f(t- k) = lim Vn Z(k + 1)n-o-f-1f(t- k). 
k=O k=O 

Therefore, 

7& Vft)=limt-a 
- -oo0 f(t ) la-im- F(n -a - 3) (k + 1)n-o-fl-f(t- k) 

- V &+ff(t) 
-00 

(iii) We have 

t 
V&V7ff(t) = lim V V0ff(t) 

-00 a---00 a 

1 t 
=a- -00 F(-ae) k=a 1O ( 
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By the same argument as in the proof of Property 2(iii), 

v&Vf f0t)-a V a' Vf (t) =lim L( )E(-,l)I I E (j + l) _a 1f (t - 1 A 
00 a--+-0 

F(-a)1=0 1j=O 

13 [t-i-a 

=lim 1 ( E ) + 1)a1 t-1i- 
a- +-oo F(-ae) 1=0 

( ) 

t-a 

+ E (j+1>-"-if(t-l-j)l 
j=t-I-a+1 

Since 
t-I 

~~t-l-a 

tVlaf(t) = lim E (j+ 1> _1f(t -l - ;) 
-00 a ~oo F-a) 

exists, for any fixed t and 1, (j + 1) ->af (t - 1 - j) approaches zero as j -+ oo. 

Therefore, Et-at I (j + 1) if(t - 1 - j) approaches zero when a goes to 

negative infinity. Thus the second limit in the above is zero. Hence, 

t 1 
0 ~~~~~~~t-l-a 

V Vlf (t) = lim 1 (-) E (j + 1) .c1f (t - j) 

0 a ooFr(-a) 1 l0 j) 
-lim V j+ 1).,a-1f (t - I) 

a F+-o(-a) = 

- lim V&?flf(t) 
a---oo a 

Therefore, 

V V qff(t) = V&?ff (t). O 
-00 -00 

A special case of Property 2' is the following result. 

PROPERTY 3'. If the assumptions of Property 2' are satisfied for a and f(t), 

then 

V, V f(t) = f (t). 
-00 -00 

PROPERTY 4'. For c a constant, if 

V-f(t) and V7g(t) 
-00 -00 

exist, then 

V&[cf(t) + g(t)] = c V7&f(t) + V7g(t). 
-00 -00 -00 

The proof is trivial. 

PROPERTY 5'. If a is not a nonnegative integer and 

lirn Z ( -n) lim ;E( ) [V t-nf(t -n) [Vgn(t)] and lim a-nf(t) 
b- +-00 n=O n bbbo 
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exist for any fixed t, then 

t 
00 

a -t00 

V'a f(t09(t)=A V nf (t -n)] [V ng(t)j. 

Proof. For any fixed t, 

E 

()Va am-nO 

f (t 

[ urn V ft[(t)f li E(a liM a-ntnf (t )] [Vng(t)]. 
a n=O n -b-+-oo b 

By the assumptions, we can let a = b. Thus the above expression equals 

a- 0-oo / Ln) a J 

By Property 5, 

E~~1 (a) a~'-nf(t- n) [,7ng(t)j 

a-b-oo a t 

= V0f(t)9(t) ? 
-00 
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