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On the Infrastructure of the Principal 
Ideal Class of an Algebraic Number Field 

of Unit Rank One 

By Johannes Buchmann* and H. C. Williams** 

Abstract. Let R be the regulator and let D be the absolute value of the discriminant 
of an order 0 of an algebraic number field of unit rank 1. It is shown how the infra- 
structure idea of Shanks can be used to decrease the number of binary operations needed 
to compute R from the best known O(RD6) for most continued fraction methods to 
O(R1/2D6). These ideas can also be applied to significantly decrease the number of 
operations needed to determine whether or not any fractional ideal of 0 is principal. 

1. Introduction. In [16] Shanks introduced an idea which has since been 
modified and extended by Lenstra [13], Schoof [15] and Williams [17]. This idea 
can be used to decrease the number of binary operations needed to compute the 
regulator of a real quadratic order of discriminant D from O(Dl/2+e) to O(Dl/4+e) 
for every ? > 0. In [21] and [17] Williams et al. showed that Shanks' idea could 
be extended to complex cubic fields. In this note we show that it can be further 
extended to any order C of an algebraic number field T of unit rank one, i.e., to 
orders of real quadratic, complex cubic, and totally complex quartic fields. 

We present an algorithm which computes the regulator R of C in O(R1/2De) 
binary operations. Here, D is the absolute value of the discriminant of 0. We also 
describe a method for testing an arbitrary (fractional) ideal a of 0 for principality. 
This technique requires a number of binary operations that is O(R1/2De + p(m)), 
where p(m) is a polynomial in the input length m of a. 

2. The Baby Step Algorithm. Let 7 have degree n over the rationals Q. 
and suppose T has s real Q-isomorphisms al, a2,... , c. and t pairs of complex 
Q-isomorphisms a8+, +1,... ,am ,m into C, m = s + t. Since 7 has unit rank 1, 
we have m = 2, and we have only two normalized Archimedian valuations on T, I Ii 
and 1 12, where by 1gjj we denote IaU(()Iei. Here, ej = 1 when ai is real and ej = 2 
when vi is complex. As is usual in the unit theory, we introduce the logarithm 
mapping 

Log: 7' , R 

-4 Log =log ICIi. 
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Since m = 2, the image L = Log(U) of the unit group U in C is a one-dimensional 
lattice on the real line R. The regulator R is a basis of this lattice. It can be 
determined by 

PROPOSITION 2. 1. Let ?7 be a unit in C such that Log 7 is the smallest positive 
value in L. Then 77 is a fundamental unit of 0, and Log 7 is the regulator of 0. 

Proof. Since L is a lattice of dimension one, each shortest nonzero vector in L 
generates L. El 

A first "naive" method for finding R is to walk in what we will call "baby steps" 
(cf. [11]) along the real line, starting at the origin 0 until we reach R. We will now 
explain what is meant by these "baby steps". 

Units 77 in C have the property that there is no a (0 0) in C such that jaIi < 1717j 
for i = 1 and 2. This is true because jN(a)j = Iaj1iaI2 (a E C), N(a) E Z, and 
IN(77) = 1. This property, however, does not completely characterize units, as 
there are many more elements of 0 with this feature. Indeed, we now present 

Definition 2.2. Let a be a (fractional) ideal of 0. We call ,u E a a minimum of a 
if there is no a (0 0) in a with IaiI < Iuij for i = 1 and 2. The set of all minima of 
a is denoted by Ma. 

These minima have several important properties. 

PROPOSITION 2.3. Let a be a fractional ideal of C. let ; E F<, and let /i E Ma. 
Then ;, is a minimum of ;a. In particular, if ? is a unit of C, then Ep is a minimum 
of a; that is, the unit group of 0 acts on Ma. 

Proof. Clear. El 

PROPOSITION 2.4. Let a be a fractional ideal of C and let /i E Ma; then 

jN(1)j < ? iJN(a), where N(.) denotes the norm. 

Proof. As pointed out in Buchmann [5, Proposition 2.2], this statement is a 
consequence of Minkowski's convex body theorem. 0 

PROPOSITION 2.5. Let a be a fractional ideal of 0. Then Log Ma is a discrete 
set on the real line ,Z>O; and, for each point x on the real line, there are only finitely 
many minima pi E Ma with Log / < x. 

Proof. Select a constant c E V' and consider all the minima ,u E Ma with 
ILog MI < c. For any such minimum we have 

(2.1) exp(-c) < I|plI < exp(c). 

But, from Proposition 2.4, we also know that 

(2.2) jN(p)j = Il1I/'12 < V/_N(a). 

Hence, from (2.1) and (2.2) we get 

(2.3) I/il' < exp(c) and I/A12 < V/-N(a) exp(c). 

Since a is a free Z module of rank n, only a finite number of elements of a can 
satisfy (2.3). 0 

In particular, the set A = Log Mc is a discrete set iin R with subset L . Thus, 
we can write A as a sequence: 

A = (Ajez)- 
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The ordering of the elements A given in this sequence is uniquely determined by 
the condition 

(2.4) Ai<AJ'?fri<j forijEZ. 

Taking a "baby step" means going from Ai to Ai+,. Before we explain in further 
detail how this is done, we first note 

PROPOSITION 2.6. The sequence (A%) is purely periodic modulo the regulator 
R of 0. 

Proof. Since the absolute norms of the minima of C are bounded by VT, there 
can only be finitely many pairwise, nonassociated minima. This means that A 
modulo R is finite. But, since by Proposition 2.3, U acts on M:, the sequence 
must be purely periodic modulo R. E 

We remark here that Lenstra [13] and Schoof [15] in their description of thle coal 
quadratic case immediately consider the sequence (Ai) mod R. As, in this paper, 
it is R which we wish to compute, we will approach this sequence in a somewhat 
different fashion. 

We now describe the geometry of the sequence (Ai) somewhat further. 

PROPOSITION 2.7. (i) For every k E Z we have Ak+1 - Ak < log VAP. 
(ii) For every k E Z we have Ak+1 - Ak > C1 with 

2, n = 2, 

= n n=3, 

30, n = 4, 

and 
J log2, n= 2, 

c1= log4, n= 3, 

1 log(2cos(w/5)), n = 4. 
Proof. The proof of (i) is given in Buchmann [7]; the proof of (ii) can be found 

in [17] n = 2, Williams [18] n = 3, and Buchmann [4] n = 4. 0 

COROLLARY 2.8. Let p be the number of points in (Ai) (mod R); then 

RI (log VD) < p, < jR/c1 El 

Corollary 2.8 shows that the number of baby steps necessary to compute R is 
0(R). In order to perform these baby steps we must first be able to answer 

Questions 2.9. (i) How can one compute Ak+1 from Ak? 

(ii) How can one decide whether or not Ak = R? 
To facilitate answering these questions, we introduce the mapping 

0: Y X __ P(0) x ,', 

Oa 0 q(a) = (01(a), 02(a)) = ((1/a)C,Loga), 

where by P(0) we denote the group of all nonzero principal ideals of 0. That is, 
we represent the elements in Ox by a principal ideal of C and a real number. This 
representation has the following properties. 
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PROPOSITION 2. 10. (i) 0 is a group homomorphism whose kernel is the group 
of the roots of unity in 0. 

(ii) The kernel of 01 is the unit group U of 0. 

Proof. Since 01 and q02 are group homomorphisms, it follows that q is a group 
homomorphism. Now if 01q(a) = 0, then (1/a)0 = 0, and we see that both 1/a 
and a belong to 0. Hence a E U. If, moreover, 022(a) = 0, then laI1 = 1; but, 
since a is a unit, this means that 1a12 = 1 and that a is a root of unity. E 

The last statement shows that q represents each element of F< uniquely up to a 
root of unity. By looking at 01 (a), we can also tell whether a is a unit of 0; and, 
if a is a fundamental unit, then 102 (a) I will be the regulator of 0. 

When performing calculations, we represent the principal ideal 01(a) by a Z- 
basis. More precisely, we fix a Z-basis w1, W2 X ... , Wn of 0. Then a = q1 (a) is given 
by its denominator 

d(a) = mind' E Z>0 I d'a C 0} 

and an integral transformation matrix A = (a j) E Zn<n with the property that 
the elements 

( aikWk) /d(a) (1 < j< n) 
k=1 

form a Z-basis of a. This matrix is uniquely determined up to a unimodular transfor- 
mation from the left. We make the matrix A unique by choosing it in some normal 
form, for example, Hermite normal form. In this case we write A = HNF(a), and 
we have 0 < aij < ajj (i < j), aj = 0 for i > j. Since A and d are unique for a, 
we write a as a(A, d). The advantage of this representation is that we can represent 
minima of 0 by small numbers. 

PROPOSITION 2.11. Let ,u be a minimum of 0, let d = d(q$(,u)), and let 
A = HNF (X1 (,)). Then 

dV< i and jAjoo < v. 
Proof. The fractional ideal a = (1/ti) 0 contains 1 as a minimum. Hence the ideal 

a' = da is an integral primitive ideal which contains d as a minimum. Moreover, 
d must be the smallest positive integer contained in a', and we therefore find by 
Proposition 2.4 and the reasoning of Theorem 6.3 of [6] that 

N(d) = dn < N(a') v'T < dn-1 4V , 
which means that d < R. Since dw3 E a' and the numbers a, (j = 1, 2, ... , n) 
form a basis of a, we have ajj I d (j = 1, 2,3, ..., n). E 

We remark that the order of magnitude of a minimum can be as large as exp v 
(see, for example, Patterson and Williams [14]), which shows that the representation 
of a minimum ,u by using q is much better than the representation by means of 
the coefficients of the basis elements w1i, w2, ... , Wn of 0. Given this representation 
q(,u) of ,u, we are now able to answer Questions 2.9. We first prove 

PROPOSITION 2. 12. Let k E Z and let P1k E MO with Log P1k = Ak. Further, let 
r1 be a minimum in $1 (/'k) with minimal positive Log r . Then /1k+1 = rwAk E Mo 
and Log(Ik+1) = Ak+1* 

Proof. Follows easily from Proposition 2.3. 0 
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We are now able to present 

ALGORITHM 2.13 (The baby step method) 

Initialization 
A - In (Identity matrix of order n) 
d- 1 
R+ O 

Step 1 (Baby step) 
Compute in the ideal a = a(A, d) a minimum ?7 with minimal positive 
Logy7. Set d +- d((l/r1)a), A +- HNF((l/r7)a), R +- R + Log77. 

Step 2 (Ready ?) 
If d = 1 and A = In, then R is the regulator of 0 and the algorithm 
terminates; otherwise, go to Step 1. 

The computation of ?7 in Step 1 has been explained for n = 2 in [13], [15] and [17], 
for n = 3 in [17] and for n = 4 in Buchmann [5]. 

PROPOSITION 2. 14. Algorithm 2.13 computes the regulator R of C in O(RD') 
binary operations on numbers of size O(De). 

Proof. By Corollary 2.8 the number of iterations in Algorithm 2.13 is O(R). By 
[17] and [5] it takes O(D") binary operations to compute ?7 in Step 1. Finally, by 
Proposition 2.11, the binary length of the numbers involved is O(De). El 

3. The Giant Step Algorithm. Algorithm 2.13 is a very effective algorithm 
as long as D is small. It has been used, for example, by Williams and Broere [19] 
in the real quadratic case and by Angell [1] and Williams, Cormack and Seah [20] 
in the complex cubic case and Buchmann [5] in the totally complex quartic case. 
Other types of baby step algorithms have been used by Ince [11], Hendy [10] and 
Atkin (see Buell [3]). Unfortunately, as the values of D become very large, these 
methods become much too time-consuming. In fact, if 0 is the maximal order of 
T and if the class number of 0 is small, then by the Brauer-Siegel Theorem [2] the 
regulator R of 0 will be approximately of the same order of magnitude as ,/D. 
By Corollary 2.8 this means that the number of iterations of Algorithm 2.13 will 
be approximately of the same order of magnitude as y'P. For example, in [14] it 
was found that for the maximal order of Q(V'7P) with D = 350240722763374, the 
number of iterations is p = 70400728. Shanks [16] was the first to observe in the 
real quadratic case that it is possible to skip a large number of the baby steps by 
taking what we will call "giant steps". In this section we will show that his idea 
applies to the unit rank 1 case in general. 

Assume that we know the representations 0(,u1) and q(/2) of two minima l, ,U2 

in O, where, as before, C is any order of S7. Now we form k = 0(81)X(82) Using 
a Hermite reduction, X can be computed in O(D") binary operations (see Kannan 
and Bachem [12]). In general, k will not be the representation of a minimum of 0; 
but, we can apply a certain reduction procedure to k = (ap6) in order to make it 
the representation of a minimum. For this purpose, we use one of the algorithms 
of [17] or Buchmann and Williams [8], [9] to obtain a minimum ?7 in a. Then we 
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put a* = (1/ 1)a and 6* = 6 + Log 7 and we define the operation * by 

q( 1))*q5(P2) =(1 (P1)*+1 (P2), 02(P1)*02(P2)) 

=(a*,6*) 

PROPOSITION 3. 1. Let Pl,/2 E MO. 

(i) There is a minimum p* in 0 such that 0(k1)*0(k2) =(P*) 
(ii) We have -C4 < 02(P*) - k2(/1/2) < C5 with 

J logD, for n = 2, 

c4= 2log(D/3), n = 3, 

1 log 16D5, n = 4, 

and 
01 O.for n = 2, 

C5 = 1 < O.n = 3, 

log 16D, n = 4. 

Proof. Since t1 is a minimum in a = (1/pVp2)0, the element p* = 7/1/I2 must 

by Proposition 2.3 be a minimum in 0, and k(p*) = k(P1)*k(jU2). The bounds in 

(ii) for n = 2,3 follow from estimates given in [17]. 
When n = 4, we note that k1i(pi) and k1(P2) are reduced ideals; thus, 

d(a) = d(ol (Pl)02 (Y2)) < D. 

If we put d = d(a) and a' = da, then N(a') < d4. Thus, by using the algorithm of 

[8] we can find a minimum p' of a' such that 

(3.1) I'() < 4Wd. 

The latter inequality follows from (4.3) of [8]. By (3.1) we now have 

ly'li < 16W2d2; 

but, since IN (,')I = I1S'I1IIAI2 > 1, we get 

lp'li > (16W2d2)-1. 

Now t = p'/d is a minimum in a; hence, 

(16W2d4)-1 < k7li < 16W2. 

Since d < D, W < \/I@ (see (2.2) of [8]), we find that 

(16D5)-1 < k711i < 16D. 0 

Thus, we see that if we are given the representations 0(pui) and W(p2) for two 

minima P1, P2 of 0, we can make the giant step O(Yl)*(k(2); and, by Proposition 
3.1 (ii), we can almost precisely predict the value of /2 (P1)* k2 (). This information 

is now used in 

ALGORITHM 3.2 (The giant step algorithm) 

Initialization 
K +- 2c4,K +- [,c] 

Step 1 (Baby steps) 
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By the method of Algorithm 2.13, compute the representations of the 
minima u in 0 with 

(3.2) 02q(A) < ic+C5 +log v'i. 

If R is found, then terminate the algorithm. If not, store all these 
representations and sort them such that the denominators d and the 
HNF's, representing the first component of 0(,u), are in lexicograph- 
ical order. We denote these representations by 0(1),(2),..., 

where Xi = (?(i), 0(i)) 

Step 2 (Choice of width of giant step) 
From X(1), 0(2) ... ., (i) choose ?* with 

/C< ?2 < K + log v/i 
(This is possible by Proposition 2.7(i).) Set @j,(O) 0 ?*,i 0. 

Step 3 (Giant step) 
Compute 

x(i+1) = @(i) * 0* 

and put i +- i + 1. 
Step 4 (Test) 

If @(i) - g(k) for some k E {1, 2,3, . . .,j}, then set R = @4i) - 0(k) 

and terminate the algorithm. (Of course, we determine whether or 
not i= q(k) by conducting a binary search of the first components 
of the baby stock 0(1), (2) ... , q(i).) 

Step 5 (Increase ic) 

If i = K, then put rc +- 2rc, K = [ic] and go to Step 1; otherwise, go 
to Step 3. 

THEOREM 3.3. Algorithm 3.2 computes the regulator R of 0 in O(R1/2De) 
binary operations. 

Proof. For a fixed rc, and /* fixed by Step 2, we have by Proposition 3.1 (ii) 

-PW (j + 1)V +EerX 

r=1 

where -C4 < Er < C5 and j < K= [i]. It follows that 

X2 ) > r. - C4KC. 

Thus, if 

(3.3) ,c> (R + C4/4) 1/2 + C4/2, 

we must have @V (k) > R. Thus, the first time we have a rc satisfying (3.3), we must 
have some i (1 < i < K) such that 

XP W > R and xPi-1) < R. 

Since 
XPW = (i-l)+ 
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we get 
R < T) < R+r+logVDi+c5. 

It follows from (3.2), Proposition 2.6, and Proposition 2.10 that there must be some 
k E {1,2,. .. j} such that 

p () =0(k) and R = T ) - 0(k) 

For a fixed value of ,c, the number of binary operations performed by Step 1 of 
Algorithm 3.2 is, by the argument of the proof of Proposition 2.14, O(,cDe). Also, 
the number of binary operations needed to compute a giant step is O(De); hence, 
for a fixed value of ,c the entire algorithm performs O(,cDe) binary operations. 
Since R = O(Dl/4+6), we know that we need to increase ,c O(D") times until (3.3) 
first holds. It follows that in order to find R, Algorithm 3.2 performs a total of 
O(R1/2DI) binary operations. E 

4. Principal Ideal Testing. As already mentioned in [17] and [8], it is possible 
to modify the previous algorithm in order to produce a principal ideal test. To this 
end, we introduce the notion of a reduced ideal. 

Definition 4.1. A (fractional) ideal a of 0 is said to be reduced if 1 is a minimum 
in a. 

PROPOSITION 4.2. Let a be any fractional ideal of 0 and let ,i be a minimum 
in a; then (1/p)a is reduced. 

Proof. Follows as a direct consequence of Proposition 2.3. 0 

Proposition 4.2 provides us with a method for computing a reduced ideal in the 
ideal class of any given ideal of 0. Algorithms for doing this have been given in 

[17] and [8]. 

PROPOSITION 4.3. Let a be a reduced ideal of 0. Then a is principal if and 
only if there is a minimum ,u of 0 with 01 (,u) = a and 0 < 02(A) < R 

Proof. Buchmann [6, Theorem 6.2]. 0 

We are now able to present the following method for testing a given ideal a of 0 
for principality. 

ALGORITHM 4.4 (Principal ideal testing with baby steps) 

Step 1 (Computation of the reduced principal ideals) 
By the method of Algorithm 2.13 compute 01 (u) for every minimum 
,s of 0 with 0 < 02 (A) < R. Store all these representations in terms of 
their denominators and their HNF's and order them lexicographically. 

Step 2 (Reduction of a) 
Compute a minimum ,u in a and put a* = (1/,u)a. Store this ideal in 
terms of its denominator and HNF. 

Step 3 (Comparison) 
If a* = 01 (,u) for one of the representations computed in Step 1, then 
a is principal; otherwise, a is not principal. 
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As already proved in [8] we have 

PROPOSITION 4.5. Let a be a fractional ideal of 0. Algorithm 4.4 tests a for 
principality in 

O(log(jHNF(a)jOd(a)) + DE log(d(a)'N(a)) + RD') 

binary operations. 0 

It is clear that Algorithm 4.4 will run very quickly when the number of reduced 
principal ideals of 0 is small. If this is not the case, then we can again use the giant 
step technique to improve considerably the speed of this algorithm. We do this in 

ALGORITHM 4.6 (Principal ideal test with giant steps) 

Step 1 (Determination of the baby stock) 
By the method of Algorithm 2.13 compute the representations of all 
the minima pu E 0 with 

02(A) < \ +C4 +C5 +log1V/. 
Store all these representations in terms of their denominators and 
their HNF's and order them lexicographically. Denote these repre- 
sentations by 0(1), X(2), .. ., k(i, where X(i) = (X(4i), 0i)). 

Step 2 (Reduction of a) 
Compute a minimum ,i in a and put a* = (1/p)a. Store this ideal in 
terms of its denominator and HNF. 

Step 3 (Initialize giant step procedure) 
Put i *- 0, K = [aIRt] + 1. Find q* in the baby stock such that 

a+ C4 < 0*2 < + C4 + log V/i. 

Put T(?) a*. 
Step 4 (Test) 

If i > K, then a is not a principal ideal and we terminate the algo- 
rithm. If i < K and @(i) - X(k) for some k E {1, 2,3,. . . ,j}, then a 
is principal and we terminate the algorithm. 

Step 5 (Giant Step) 
Put 

i-+1 

Go to Step 4. 

THEOREM 4.7. Let a be a fractional ideal of 0. Algorithm 4.6 tests a for 
principality in 

0(log(IHNF(a)Ijd(a)) + DE log(d(a)nN(a)) + R1/2DE) 

binary operations. 

Proof. Assume a is principal. By Propositions 4.2 and 4.3 there must be a 
minimum pu of 0 such that q1(u) = a* and 0 < 02(u) < R. We also have 

k 

l(k+l) - kq4 +k2(/) +EEr, 
r=1 
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where -c4 < er < C5. If 02 (A) < \"H + C4 + C5 + log V'P, then Algorithm 4.6 will 

determine that a is principal when k = 0. Otherwise, 

k 

@2 ) = (?02 + Er) + 02 (A) > (k + 1) v/. 
r=1 

Thus, when k = [Va-] we have T4k+l) > R. It follows that there must exist some 
i (1 < i < [a\IR] + 1 = K) such that 

@(i-) <R and (z) > R. 

Since 
@(i) = (i-l) + 0* + i 

we get 
R < '@2X < R+ v +c4 +logV-ii+c5. 

It follows by Propositions 2.6 and 2.10 that 

-i 
=(k) for some k E {1, 2,3,.. , j}. 

On the other hand, if a is not principal, then @(i) (- a) cannot be principal; 
thus, T1(i) $ 0(k) for any i or k. 

By the same arguments as those used in the proofs of Proposition 4.5 and The- 
orem 3.3 we see that Algorithm 4.6 will execute in 

O(log(jHNF(a)jId(a)) + DE log(d(a)'N(a)) + R1'/2 D) 

binary operations. E 
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