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An Efficient Linear Scheme to Approximate 
Parabolic Free Boundary Problems: 

Error Estimates and Implementation* 

By Ricardo H. Nochetto and Claudio Verdi 

Abstract. This paper deals with a fully discrete scheme to approximate multidimen- 
sional singular parabolic problems; two-phase Stefan problems and porous medium equa- 
tions are included. The algorithm consists of approximating at each time step a linear 
elliptic partial differential equation by piecewise linear finite elements and then making 
an element-by-element algebraic correction to account for the nonlinearity. Several en- 
ergy error estimates are derived for the physical unknowns; a sharp rate of convergence 
of 0(h1/2) is our main result. The crucial point in implementing the scheme is the 
efficient resolution of linear systems involved. This topic is discussed, and the results of 
several numerical experiments are shown. 

1. Introduction. The aim of this paper is to analyze from both a theoretical 
and computational viewpoint the performance of a linear scheme to approximate 
the following multidimensional parabolic problem: 

au 
ft- ?43(u) = f(f(u)) in Q := Q x (0, T), 

(1.1) /3(u) = 0 on aQx (0,T), 
u(O) = uo. 

Here, 3 stands for a nondecreasing Lipschitz continuous function defined on R and 
Q for a polyhedral and convex domain in Rd (d > 1). The geometrical constraints 
upon Q, as well as the type of boundary condition considered, were chosen only for 
the sake of simplicity. It is well known that formulation (1.1) is so general as to 
include two-phase Stefan problems and porous medium equations. 

The usual technique to approximate (1.1) (with or without regularization of 3) 
amounts to discretizing a nonlinear elliptic partial differential equation at each time 
step. Both, theoretical and numerical results, are now well known for these schemes 
[10], [23], [16], [17], [18], [8], [20], [25] which behave rather well in approximating not 
only solutions, but also interfaces [19], [20]. However, when dealing with nonlinear 
problems, one usually tries to linearize them so as to take advantage of efficient 
linear solvers [7], [15]. The success of such a procedure relies on the smoothness of 
the solutions u and 0 : /= (u). Consequently, it is not a priori obvious that standard 
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techniques for mildly nonlinear parabolic equations apply in this context, because 
(1.1) is just a low-regularity problem. Moreover, high-order accuracy schemes in 
both space and time may be useless here, again because of the lack of regularity. 
So the question is how to linearize (1.1) properly. 

Our present purpose is to discuss the stability and approximating properties of 
a fully discrete linear scheme associated with the following discrete-time scheme 
(which is a nonlinear Chernoff formula): 

U0 U0, 

(1.2) E-n E) n = f3(Un-1) + f ( (U 

=un + ,[4E -,3(un1)] 1 < n <N :=-T 

Here, T > 0 is the time step and ,t > 0 is the relaxation parameter which satisfies 
the stability constraint ,t < L-1 (L: =Lipschitz constant of fi). This discrete- 
time algorithm was studied in an abstract and general setting by Brezis and Pazy 
[4] and was first used in numerical analysis by Berger, Brezis and Rogers [2] (see 
also Verdi [24] and Magenes and Verdi [14]), who showed its convergence. Sharp 
energy error estimates for both singular and mildly nonlinear parabolic problems 
were recently proved by Magenes, Nochetto and Verdi [13]. The error analysis 
has been extended by Magenes [12] to other algorithms suggested by nonlinear 
semigroup theory. The nonlinear Chernoff formula (1.2) can be regarded as the 
discrete-time phase relaxation scheme introduced by Visintin [27] and Verdi and 
Visintin [26]. This point of view was essential in [13], because it exhibits the 
variational structure of (1.2). Moreover, it allowed the use of variational techniques, 
first applied by Nochetto [16], [17], [18] and Nochetto and Verdi [20] for analyzing 
singular parabolic problems and dealing with minimal regularity properties (say, 
u0 E L 2(Q)), respectively. We remark, in addition, that (1.2) is in the same spirit 
as the Laplace-modified forward Galerkin method of Douglas and Dupont [7] for 
nondegenerate parabolic equations. 

The algorithm (1.2) actually gives rise to an effective numerical scheme after 
discretizing in space; namely, the variable en is approximated by continuous piece- 
wise linear finite elements and the variable Un by piecewise constants. The primary 
aim of this paper is to show that the resulting scheme is stable and preserves the 
approximation properties of (1.2). The tools in deriving the rates of convergence 
are essentially those in [13], [26]. The crucial step in implementing the fully discrete 
scheme is the efficient resolution of the linear elliptic partial differential equation 
in (1.2). We used an incomplete Cholesky factorization for preconditioning the 
resulting matrix, coupled with a conjugate gradient method [1], [15]. We chose 
this iterative technique because we had in mind an automatic decomposition, of a 
general domain Q, rather than a particular geometry. Therefore, we cannot take 
advantage of geometrical properties of Q which allow direct methods to be compet- 
itive. The numerical experiments confirm the ability of our scheme to approximate 
solutions. The observed orders of convergence agree with the theoretical ones. The 
approximation of the interfaces is not as good as for the -usual nonlinear scheme 
[20]; this is due to artificial diffusion added by the linear partial differential equation 
in (1.2). 
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The outline of the paper is as follows. Section 2 is devoted to stating the assump- 
tions and the continuous and fully discrete problems. The stability of the discrete 
scheme in energy and maximum norms is proved in Section 3. Several energy error 
estimates for both physical unknowns u and 0 = 3(u) are derived in Section 4. Fi- 
nally, the implementation of the method, as well as the results of several numerical 
experiments, are discussed in Section 5. 

2. Formulation of the Problem. In this section we shall establish the hy- 
potheses on the data and state the continuous and the fully discrete problems. 

2.1. Basic Assumptions, Notation and Finite Element Properties. We make the 
following assumptions: 

( C Rd (d > 1) is a polyhedral and convex domain. Set Q 
( x (0, T), where O < T < +oo is fixed. 

(3: R -* R, /3(0) = 0, is a nondecreasing and Lipschitz continuous 
(HQ) function; more precisely, 

(HO)1 0 < 3'(s) < L: < +oo for a.e. s E R; 

moreover, 3 grows at least linearly at infinity, 

(HQ)2 3C1, C2> 0: Vs E R, Isl < C1 + C213 (s)LI 

(Hf) f: R -- R is a uniformly Lipschitz continuous function, 

If(s1) - f(S2) < Lfs1 - 82 Vs1, s2 ER. 

The geometrical constraints on L, as well as the fact that f and f are independent 
of the space and time variables (x, t), were assumed only for the sake of simplicity. 
Consequently, a more general treatment is still possible (see Remark 11). The basic 
regularity required on the initial datum is 

(Huo ) uo E L 2 (0) 

This assumption will be strengthened later on in order to prove some of our results. 
Let {Sh}h be a family of decompositions Sh = {Sk}k1 of Li into closed d- 

simplices, so that L = UK l Sk; as usual, h stands for the mesh size. We assume 
that 

(Hsh) the family {Sh}h is regular [5, p. 132]. 

Since quasi-uniformity is not required, local refinements are allowed. A further 
property we need only in Lemma 2 is the acuteness of {Sh }h; this guarantees the 
discrete maximum principle to hold [6]. Let us now define the discrete spaces we 
shall work with: 

Vh :={X E Co (-i): XISk is linear Vk = 1,. .., K, X = 0 on (Li}, 

Vh := {f/ |Sk is constant Vk = 1, ..., K}. 

We denote by (,.) both the inner product in L2 (L) and the duality pairing between 
H-1 (L) and Ho' (L). The corresponding discrete inner product is defined by 

K 

(2.1) (X,qfO)h := 18k Jh(Xq) dx 
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for any piecewise uniformly continuous functions X and X, where Hh stands for the 
local linear interpolation operator. Notice that the integral in (2.1) can be evaluated 
easily by means of the vertex quadrature rule which is exact for piecewise linear 
functions [5, p. 182]. It is well known that (-, .)h is an inner product in V1 which 
satisfies [22, p. 260] 

(2.2) LX2 2() <? (X, X)h < CIIXI'L2(Q) VX E Vhb 

where C > 1 is a constant independent of h. The following well-known error bound 
takes into account the effect of numerical integration: 

(2.3) (X, 0) - (X, q)hI < Ch211VXJ L2(Q)HIV0qIL2(Q) VXqXEVVh. 

We now introduce the discrete H1-projection operator Ph; more precisely, for any 
z E Ho(Q), let Ph'z E V' be defined by 

(VPh Z, VX) = (VZ, VX) VX e Vh 

Since {Sh}h and the Green operator associated with the inner product in Ho (Q) 
are regular, the following approximation property holds for any z E Ho' (Q) [5, p. 
138]: 

(2.4) |z- PhllZHIr() < ChJHZH1Hr+1(Q), r = 0 1. 

We also introduce the L2-projection operator Pho onto Vho which, for any z e L2(Q), 

is defined by 

(Phz 10= (Z10) VE Vh 

and satisfies 

(2.5) 1Z- PhZHH-S(Q) < Ch r+T ZIIHr(Q), 0 < s,r < 1. 

We conclude with some notation concerning the time discretization. Let r := T/N 
be the time step (N a positive integer) and set tn := nT, I' := (t-1, tn] for 
1 < n < N. Wc also set 

zn := z(., tn) z = 1f z(.,t)dt (z :=z 0) 

for any continuous (resp. integrable) function in time defined in Q, and 

zn _zn-1 
azn := - 1 < n < N. 

for any given family {Zn}N0. 

2.2. The Continuous Problem: Regularity. We now state the variational formu- 
lation of problem (1.1) we shall work with. 

Problem (P): Find {u, 0} such that 

(2.6) u E L (0,T;L2(u)) nH1 (O,T;HH-1(0)), 0 e L2(0 T;Ho(0)) 

(2.7) 0(x, t) = f3(u(x, t)) for a.e. (x, t) E Q, 

(2.8) u(, 0) = uo 

and for a. e. t E (0, T) and for all 0 E Ho' (Q) the following equation holds, 

(2.9) ( 0 + (V0,oVl) = (f(0),q3). at 
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Existence and uniqueness are well known for (P) (see, e.g., [9], [11] and the refer- 
ences given therein). 

Next, we recall the further regularity results we shall use in the sequel. Letting 
assumptions (HO), (HQ)1, (Hf) and (HU0) hold, we have that 

(R1) if uo E L?` (Q), then u, 0 E Lc x(Q); 
(R2) if Af(uo) E L1(Q), then au/at E L'(0,T;M(Q)), where M(Q) denotes 

the set of finite regular Baire measures [10], [23]; [9], [11]. 
Remark 1. We stress that the assumption on the initial datum in (R2) may be 

weakened somewhat by taking 4\3(uo) = 1 + ,u, where 1 E L1(Q) and ,u E M(Q), 
provided that the set So :a= {x E u: f3(uo(x)) = o} n u is sufficiently smooth and 
supp u C So. The proof proceeds as in [11] after a suitable regularization. 

2.3. The Fully Discrete Nonlinear Chernoff Formula. Finally, let us state the 
fully discrete algorithm precisely. Let 0 < t < L 1 be a fixed number (the so-called 
relaxation parameter). 

Problem (Ph,,): For any 1 < n < N, find {U E, on} such that U h e Vh, on E 
and, setting 

(2.10) U? =Ph 

we have 

(2.11) (E) X)h + -(VE) ,VX) = K(U1) + f(f(U )),X) 

for all X E Vh 1 and 

(2.12) Un = un-1 + ,P 3(Un-1)] 

Since the matrix of the linear system (2.11) is symmetric and positive definite, the 
solution of (Ph,,) exists and is unique (see also Section 5). Moreover, since both 
Un and Ph?E3n are piecewise constants, Eq. (2.12) may be regarded as an element- 
by-element algebraic correction which takes into account the intrinsic nonlinearity. 

Remark 2. For computational convenience we would like to take the piecewise 
constant interpolant of uo as initial datum U?, rather than Ph?Uo. This is simply 
impossible, in general, owing to the lack of regularity of uo, but it is still possible in 
some cases of relevant interest for both Stefan problems and porous medium equa- 
tions. Namely, assume that the phases are initially separated by smooth surfaces, 
say Holder continuous, and also that uo is regular in each phase, say uo E C0,1/2. 
We then define U0 to be either the value of uo at the barycenter Yk of the simplex 
Sk, whenever Yk belongs to the interior of the phases, or any value in the range of 
uo restricted to Sk, provided Yk lies on the initial interfaces. It is easily seen that 

(2.13) 11uo - U0IHL2(Q) = 0(h1/2); 

this error estimate suffices for later purposes. 

3. Stability of the Discrete Scheme. We start by combining the equations 
(2.11) and (2.12) and rewriting the discrete problem as follows: 

(3.1) (aU ,X) + (VE) , vx) = -([Ph -I]e3,X)h + (f(i(Un )),x) VX e h 
T~ 
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Since the relaxation parameter ,t is chosen so that 0 < ,t < L-1, the following 
property holds: 

(3.2) a := I - ,43 satisfies 0 < a'(s) < 1 for a.e. s E R. 

The proof of the a priori estimates proceeds along the same lines as that for the 
semidiscrete approximation analyzed in [13]. However, for the sake of completeness, 
we present here a detailed proof. 

3.1. Stability in Energy Norms. Given an absolutely continuous function A: R - 

R so that A(0) = 0 and 0 < A' < A < oc, D\ stands for the convex function defined 
by 

(xs):=) j A(z) dz for s e R. 

b, has the properties 

1 A2 8 D ) A2 (3.3) 1 A2(s) < -(s) < _s2 for s E R, 

which are easily proved. The following elementary relations will be used in the 
sequel: 

(3.4) 2ab < rja2 + b2/rZ for a, b ER, tl > 0; 

(3.5) 2a[a-b] = a2- b2 + [a-b]2 for a, b E R. 

LEMMA 1. Assume that (Ho), (HQ)i, (Hf), (Hu0) and (Hsj) hold. Then there 
exists a constant C > 0 independent of the discretization parameters such that 

N N 

(3.6) max 113(Un) n-2(Q) + > | _ - 2( + E T11(E~n12 < C. 
1<n<NIL()+E1ULH ) 

n=1 n=1 

The norm in the middle may be viewed as a discrete H1/2(0,T;L2(Q)) norm. 
The constant C in (3.6) is proportional to p-1 exp(C*Lf p-lT) as ,t 4 0, where 
C* > 0 is a universal constant. 

Proof of Lemma 1. The function On is an admissible test function in (3.1), 
because on E Vh . So let us take X = Ten and sum (3.1) over n from 1 to m < N. 
We proceed to estimate each resulting term. First note that 

n= [Un - Un-1] + 3(Un-1) 

(3.7) 11 1 1 
= )j (Un) - 1-a(Un-1) + _Un + 2-[a(Un) -a(U )] 

Next, using the definition of the L2-projection Ph?, the convexity of be and ba and 
the identity (3.5), we can bound the first term in (3.1) from below; namely, 

m m 
2 E: (U - E n 2 E (U-U- hoin 

n=1 n=1 

> [f V (n -) _/3(Un-)] + ![ (Un-1) _ I' (Un)] dx 

1F2 - .2 + II nUn-112 1 + .- [vm 
(Q) 

- 
1UIL()+ H1U ~ - 12 (Q)] 
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Here, we have also used that a is increasing, in order to eliminate the contribution 
of the last term in (3.7). The terms involving the functions ID and ID can be 
further bounded by means of (3.2) and (3.3) as follows: 

m 

f Z[( (Un) - (uD-1)] = f [1 (U) - (DOW ] 
Q n= 1 Q 

> ~~I13(Um) 1(12 - IO1 
- 2L I :(U I L2 (Q) -2 d I? | -2LQ3 

and 

-|E [(DC, (Un-1 ) _> De(Un )] = |[qa(DCUO) -qc (Dem )] 

Inserting these estimates into the previous expression and using assumption (H"'0) 
leads to 

m -n1_ 1 m0 

- [U)(U L2(Q) + E U L2() 
n=1 4p n=n 

The next term on the left-hand side of (3.1) provides the Hl-estimate, because 
Poincare's inequality holds. The first term on the right is nonpositive; indeed, the 
orthogonality property of the L2 -projection Pho implies 

m m 

(3.8) P E ([Pho -I] E) it)h = P E ([Ph - I] E)' [-h ]3)h _< ?- 
n= 1 n=1 

We now analyze the contribution due to the source term. In view of the definition 
of Pho and assumption (Hf), combined with the first equality in (3.7) and (3.4), we 
get 

m m 
E (U (f - u (Un-1 ) n) = E T (f() ( Un-1 ) ) , >j ) 

n=n n=1 

< C+ E ||(Un 1)122 (0) + 8 E |n 
_ n- 1 

ll2( 

Since the last term may be absorbed into the left-hand side of (3.1), the assertion 
(3.6) follows as a consequence of the discrete Gronwall inequality. O1 

Remark 3. From (3.6) and the first equality in (3.7) it is easily seen that 

i praoe o Phf t L e L2e(Q) < Ci 

Remark 4. If d grows at least linearly at infinity, as stated in (H,3)2, the first 
term in (3.6) provides the a prior bound 

(3-9) max I I Un 
JIL1 < <C. 

3.2. Stability in Maximum Norm. The present goal is to prove an a priori 
estimate in Lz (t). To this end, we need a further assumption on the triangulation, 
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namely that Sh is of acute type. In other words, 
The projection of the vertices of any d-simplex S E Sh onto the 

(3.10) hyperplane containing the opposite face lies in the closure of this 
face. 

Remark 5. In 2-D, the above constraint means that internal angles of any triangle 
of the decomposition do not exceed Ir/2. 

We then have the following well-known discrete maximum principle for the 
Laplace operator [6]: 

Let X E Vh' attain its maximum at the internal node x3 and let 

?3 E Vh' be the corresponding basis function. Then 

(3.11) f 
/VX of > O. 

Now we are ready to prove the desired LI-estimate. 

LEMMA 2. Assume that (Ho), (HQ)1, (Hf), (HSh) and (3.10) hold and in 
addition that 

(3. 12) uo E L?? (Q) . 

Then there exists a constant C > 0 independent of the approximation parameters 
such that 

(3.13) max IIU'IILc(Q) < C. 
1<n<N 

Proof. What we actually want to prove is the following estimate, 

(3.14) IIUnIILoo(0) < Cn = CoenTLfLo + LfLen _ 1]o < n < N. 

which obviously implies the assertion (3.13). Here, Co stands for a positive constant 
such that-Co < U0 = Phouo < Co in Q; this is possible in view of the boundedness 
in LI of the operator Pho and the assumption (3.12). Moreover, the constant fo 
denotes If (0) . 

The proof of (3.14) is carried out by induction. In view of (HQ)1, (Hf) and (3.2), 
the following inequalities hold in 0: 

(3.15) 3(-Cn_1) < f(Un1) < f(Cn_1), 

(3.16) -fo + Lff3(-Cnl) < f(f3(Un-)) < fo + Lff3(Cnl), 

(3.17) a(-Cn_1) < a(Un-1) < Ce(Cn_1). 

Let x E Q be a point at which En attains its maximum. Since on is piecewise 
linear, x is clearly a node of Sh. Let X E Vh, be the corresponding shape function. 
Now, with the aid of the discrete equation (2.11), inequality (3.11), the definition 
(2.1) of the quadrature rule and the elementary property f q =I supp ql/(d + 1), 
we arrive at 

O n ( ) I supp n < (f(Un-1), -) + i(f (p(Unl)),X) 
d = (En-q) - 

Lf~(C~1~suppq j3(Cn-1) + 
T 

[fo + LCn1] d+ 1 
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Here we have also made use of (3.15) and (3.16) to obtain the last inequality. 
The same argument produces a bound from below for On when arguing with the 
minimum of en. Therefore, we get the estimate 

(3.18) f3(-Cn1) - T1[fo - Lf13(-Cn-1)] <en <f3(Cn-1) + 1[fo + Lff3(Cn-1)]. 

Now, since 

=n un-1 + PeoEn -_3(un-1)] = C(u 1) + Eph,?n 

(3.17) and (3.18) yield 

-Cn1 -T[fo -Lffl(-Cn-j)] < Un < Cn-O + T[fo + Lff(Cnl)] in U. 

By (HQ)l we can rewrite this expression as follows, 

IjUH ILoo(Q) < Cn-1 + T[fo + Lf max(fl(Cn-j), -f(-Cn-1))] 
< Tfo + Cn- 1[1 + FL LfL]. 

Finally, the claim (3.14) is an easy consequence of the inequality I + TLfL' < 
eTLfLo , which leads to 

Tfo + Cn- l [1 + TLf LQ] < Cn , 

where Cn was defined in (3.14). 0 
Remark 6. It is easily seen from Lemma 2 that the function f may be assumed 

to be only locally Lipschitz continuous, provided that f = 0 (see also [2], [13]). For 
instance, this happens for the porous medium equation, for which f(s) := 8sIm-1 
(m> 1). 

Remark 7. We now consider the particular, but still relevant, case uo > 0, 
f(O) = 0, which includes porous medium equations, as well as one-phase Stefan 
problems. Then the continuous physical unknowns u and 0 are clearly nonnegative. 
Since we wish this property to be preserved in our fully discrete scheme, we analyze 
the sign of the discrete solution. For T > 0 small enough, the function I + f is 
nondecreasing. Therefore, assuming by induction that Un-1 > 0 (which holds 
for n = 1 because U0 = Phouo > 0), we get [I + /f]( p(Un-l)) > 0. The facts 
that the matrix of the linear system (2.11) is an M-matrix and the right-hand 
side is nonnegative imply en > 0. Finally, we get Un = a(Un-1) + ,PoE?n > 0, 
concluding the argument. 

4. Error Analysis in Energy Norms. The primary aim of this section is to 
analyze the accuracy of the fully discrete nonlinear Chernoff formula (2.11), (2.12) 
in approximating the physical unknowns 0 and u. The key ideas were already 
explained and successfully used by Magenes, Nochetto and Verdi [13] in studying 
the discrete-time analogue of this algorithm. So the present concern is to extend 
these ideas to the fully discrete scheme (Phi). However, we believe that the current 
results deserve a detailed presentation. 

Before establishing the precise statements, let us show what the general strategy 
is. We first define the errors eo and eu by 

(4.1) eo(t) := 0(t) - En, eu(t) := u(t) - Un for t E In, 1 < n < N. 
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Then, after integrating (2.9) on In, we can write the set of discrete-in-time equations 
satisfied by the continuous solution; namely, 

(4.2) (OUn, <) + (VOnVq) = (fP( 3(u)) ,q) Vq0 E Ho(Q)I 1 < n < N. 

We now take the difference between (4.2) and (3.1), sum over n from 1 to i < N 
and multiply by r. The resulting expression is the following error equation, 

(ei -e X)+ V e]T[0-n _E],Vx) 

(4.3) = ([-Ph E , n) 

+ (- f / u )-f (/3 ( Un))], X) VX E Vh 

The next step is to choose a suitable test function X. Let us take X .= [Phl0@ -3] E 
Vhl and sum over i from 1 to m < N. After reordering we get 

Zft (eu(t), eo (t)) dt + Z1E2K V Z[o - e ],v [P0 - _ +11 
i~ Ii=l n=1 

m m 
= , f (u(t) - ui, eo(t)) dt + r(u- - Uz, [I -Ph]i) 

i-1 Ii=l 

(4.4) m m i 
+ - U ,ZT[PhOi -3 e]) + 1,LT [I - h] E ,n pl 

- 

n=1 h 

+ f _ E T[fn(/3(u)) -f((UE'))],PhO E -e%) III + ... + VII. 
i=1 n=1 

We now proceed to estimate each one of these terms. To begin with, note that 

(4.5) u = po + ce(u) and U h = tP,?&Y + a(U'), 

whence 

(4.6) eu(t) = ,eo(t) + [a(u(t)) -h(U ')] + ,uI-P,?]@ for t E In. 

Formula (4.5) is the connection with the phase relaxation scheme [26]. Moreover, 
we know that 

(4.7) eo(t) = [(u(t))-,5(Un')] _ -[Un - Un'] - [I _ Ih]en for t E In. 
/1 
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Then, in view of (4.6) and (4.7), term I in (4.4) can be split as follows: 

I = ,ujeo|L2(otm;L2((Q)) 

m 

+ EJ f (c((u(t)) - a(U-l'), 3(u(t)) - 3(U-l')) dt 

+ r-Z(UiUi-Ui- ) + E (eo(t), U -U- U') dt 

mm 

(4.8) 1 1' 
E (u (t),I U' - U~'-) dt + q ([ - Ph]el u0- iIiui-) 

- Z f (a(u(t)) - a(U-'), [I - Pho]E) dt 

m 

+ puE (eo(t), [I -Pho]E)) dt =: Ilm + 12 + + Ig. 
i=l 1 

The fact that both a and 3 are increasing functions implies that 12 > 0. Term 13 

is handled by means of (3.5) and (Huo); namely, 
m 

13 > 2L2(Q) 
- HUZ ? 2 (Q) > -Cr. 

-2 
i=1 1j 

For 14 we use inequalities (3.4) and (3.6) to arrive at 

1I41 ' AIM+TElUi _ZUi-12L2(Q) < AMI+CT. 

By virtue of the approximation property (2.5) of Pho and the a priori estimates (3.6) 
we have 

m 

(4.9) - L2(Q) < Ch2. 
i=l1 

Then, 

I81 < Im + Ch2. 

At the same time, using (2.6) and (3.9), we get 

|I7| < Ch {HU11L2(0tm;L2(Q)) + [ETjU iI2(Q) } < Ch; 

and, again by (3.6), we obtain 
m 

|161 < T liii- ui-42 L2(Q) + Ch2 < C + Ch 2. 

i=l1 

The remaining term 15 will be analyzed later, under various regularity assumptions 
on uo. Instead, we now bound term II in (4.4). To do so, we need the following 
elementary identity, which is an easy consequence of (3.5): 

m Z [ = [m j z 2 m 

2E~ai * E an = ai + E ai for ai E R. 1 < i < N. 
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Thus, using the approximation property (2.4) of the Ritz projection Ph' together 
with the regularity ft 0 E L (O, T; H2(Q)), which comes from integrating the 
original partial differential equation (2.9) in time, we easily obtain 

m i 
II > Z_(V Z[P En - -],v[Pho e]) 

n=1 

(4.10) >~ 2 || E v[P o# -e E] > 2 VJ P eo(t) dt 

2~~~~ 
> 2 V eo (t)dt - Ch2 = IIm - Ch2. 

Treating III requires a duality argument between H- 1(Q) and Ho' (). The fact 
that eo is uniformly bounded in Ho'(Q), i.e., IIVeoIIL2(0,T;L2(Q)) < C, which results 
from (2.6) and (3.6), and again the regularity property (2.6), lead to 

| m A ( }7 dt, eo ( ) |t 

< || 0U| JleoJ1L2(0,tm;HlJ(Q)) < CTd 
- at 

L2(Otm;H-1((Q)) 
< 

The other term IV is analyzed by making use of the approximation property (2.4) 
as well as (2.6) and (3.9). Indeed, we have 

IIVI < C {IUHIL2(O~tm;L2(C2) + [ lTlUUiI2(L)] 2 )} 

m - 1/2 
X ETII[ h I PhSIL2 (Q) < Ch. 

Li= 1 

Using now (Huo) and the approximation property (2.5), we easily obtain 
tM ~~~~~~1 

V~~ <Oh uo~~~~ij2(p) VI P,~~~1eo(t) dt < AIMn02 IVIl < ChJ luo L2 (Q) |V l Ph ea()d | <2Im+ Ch2 
- Jo ~~~~~~~~~~-2 

L2 (Q7) 

In order to get a bound from above for VI, we first rewrite this term in a suitable 
form; namely, 

VI = zETK( [I _P?] ZE On 
h 
l 

- ei) 

__l n=1 

(4.11) ? lT [K E ei) -( K ei)] 

=:VI1 + VI2. 
The estimate for VI, proceeds along the same lines as for III, with the only difference 
that now we exploit the superconvergence error estimate (2.5). Thus, 

(4.12) IVII < Ch2 Ir Z|| P0_oi-lHg(%)?0-, 
i=1 n=l H' (1) 
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where again the a priori estimates (2.6) and (3.6) have been used. The other term, 
V12, is an error due to the quadrature rule; so, with the aid of (2.3), we can control 
its contribution as follows, 

(4.13) VI21 < Ch2 r V Ien I IV[Ph -Oi]l IL2 (Q)< 
i=1 n=1 L2 (Q) 

It only remains to estimate the source term VII, which obviously satisfies 

VII =E |f K E [n(u)) - f(/3(Un-l))],eo(t) + [Ph-I]yi). 

In view of (3.4), (Hf), (4.7), the approximation property (2.4) and (4.9), we can 
write 

VIII <4I7m + II[I -PfljO12(o tm;L2(Q)) 

m i 

+ C ET ETIfj (:(U))-f (-(Un-1)) | 12 
i=1 n=1 

(4.14) 1 mm 
< 4 IM + Ch2 + C E ri TE iigui - Wi-4 2 

i=l i=l 
m 1 m 

+CZTH2[I -Ph ]eil9(Q) < CT+Ch2 +Im +C L 4 1 ?c TIi, 
i=1 i=1 

where we have also employed (2.6) and the discrete H1/2-bound in (3.6). 
Collecting all the previous estimates, and inserting them into (4.4), gives 

jeol IL2(O,tm;L2(S)) + - V/ e (t) dt 
'0 ~~~L2 (Q) 

< C [T+h?+- +?CZTe oL2(0,t1;L2(Q)) 

m 

+ - (u (t) Ui 
- 

ui- 1 ) dt . 

The last term will be shown to be Q(,r2v), where 0 < v < 1/2 depends on the 

regularity assumed on uo and 3(uo) (see the theorems below). Then, applying the 
discrete Gronwall inequality yields 

t ~~~~hi 
(4.15) JjeojjL2(Q) + ] e < C V + h"/2 + 1/2J =: a(h,r). 

O L??(O,T;H 1(Q)) ) 
1 

These estimates lead to the following H-1-error bound for the unknown u, 

(4.16) | eujL??(O,T;H-1(Q))) < Ca(h, T). 

In order to prove this result, we introduce the Green operator G: H-1 (Q) -+ Ho (Q) 
associated with the Laplacian; it is defined by 

(4.17) (VGf, Vq) = (f, 0) Vq E Ho' (Q), ' E H-' (Q). 
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The corresponding discrete Green operator Gh: H- 1((Q) -+ V 1 is defined by 

(4.18) (VGhf, Vx) X) VX E Vh E H' (Q). 
These operators enjoy the following properties: 

(4.19) IIVGhflIL2(Q) ?< IVGfIL2(Q) I =I|H-1(Q) = (fGf) 

(4.20) - [G-Gh]kIIL2((Q) ? Oh2 MIL2(Q). 

Taking X Gh(U' - Ui) as test function in (4.3) allows one to express the desired 
H`-bound as follows: 

||ezUI2H-1(0) = -IU_ H-1(0) = (e, Ge) 

= (eu [G - Gh]e') + KV z T [e - on], VGhe') 

+ ,uK( [-Ph? E iEn, Ghe< + (eu, Gheu) 
n=l h 

+ Z rT[fP(3(u)) -f (O(Un-1 ))], Ghe ) =: VIII + + XII. 

Using the a priori estimates (2.6) and (3.9), together with (4.20), it is easily seen 
that IVIIII = 0(h2). In view of (4.15) and (4.19), the next term is bounded by 

|IX| < ||VGhe JIL2(Q) V] eo < +eUCHl(,) ?0a (hr). 
0L2 (Q) 

Arguing as in (4.12) and (4.13) with term X gives 

IXI < Ch 2 
3nE| llVGhe'jIL2(Q) <- le' 112 +Co, (hir) 

n=1 H 1 (Q) 

because we can assume without loss of generality that a(h, T) < 1, thus h2/r < 1. 
By virtue of (Huo) and (2.5), term XI is easily bounded by 

IXII < 1 
le' (Q) + Ch2. 

The same technique applied in (4.14) can now be used, together with Poincare's 
inequality and (3.6), to arrive at 

IXIII < C IVGhe' IIL2(Q) 
1 f 3(u(t)) _ )(U')L2(Q) dt 

n= 1 I 

< -Ile' |-1Q +Co, (h I ). 

In conclusion, we have proved the error bound 

max ||u - U||H-1(Q) ? Ca(h,r). 
1<i<N 

The assertion (4.16) follows from the fact that 

u E H'(0 T;H-'(Q)) C CO, /2(0,T;H-'(Q)) 

We are now in a position to state the main result of this paper. 
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THEOREM 1. Let (H0), (H8)1, (Hf) and (Hsh) hold. Assume that 

(4.21) UO e Lw(Q), AoV(uo) E L1(Q) 

and in addition that 

(4.22) max IU|IIL(Q) < C. 
1<n<N 

Let r be chosen so that r = C*h, with C* an arbitrary positive constant. Then we 
have 

(4.23) Ije9HIL2(Q) + ] e9 + |leU11LO(0,T;H-1(0)) = 0(h 1/2). 
0 L- (O,T;HI1 (0)) 

Remark 8. The a priori estimate (4.22) holds, for instance, for triangulations Sh 
that are of acute type (see Lemma 2). 

Remark 9. The assumption o/3(uo) E L1 (Q) can be slightly weakened according 
to Remark 1, because the only property we need is au/&t E L(O, T; M(Q)). 

Proof of Theorem 1. In view of estimates (4.15) and (4.16), it remains to demon- 
strate the bound 

(4.24) | j (u(t), U' - Ut-) dt < Cr. 

To this end, we need the following summation by parts formula, 
m m 

Zai[bi - bil = ambm - aobo - bii,[ai -ai-. 
i-1 i=1 

We can then rewrite the sum in (4.24) as follows: 
m m 

Zj | (u(t), zU - U- ') dt = Z T(til Ui ui- 
i~~~l I ~~~i=1 

m 

T(um Um) --T(uo, U0)-E T (ui - ai', Ui'), 

i=1 

where U-0 := uo. The assumption uo E L?(Q), together with (4.22) and (2.6), 
implies that the first and middle term are 0(r). For the last term we note that 

u -ut = - [u(t) - u(t-r)] dt = -(s) ds dt 

and the fact that du/dt E L'(O,T;M(Q)), because A,43(uo) E L'(Q) (see (R2) 
in Subsection 2.2). So, what we would like to do is to use a duality argument 
between M(Q) and Co(?!); unfortunately, this fails, because Ui 0 C0(Q). The 
remedy consists of regularizing Ui, say by convolution, in such a way that we get 
continuous functions Use having the properties 

Max J1Ugi1L??(Q) < C, U6- Ut strongly in L2(Q). 

Thus, 

-(f 11 1 U )I < - 1, U1) I + I(ui - ji-il u-1 i-1)I 

< Cr + CIIU ILO (0,T;L2(0)) jUiU1 - U?71j|L2(Q). 

Finally, taking the limit as e l 0 and using the a priori estimate (2.6) yields the 
assertion (4.24). 0 

We now extend the previous error estimate to a weaker situation. 
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THEOREM 2. Let (Ho), (HO), (Hf), (Hu0) and (Hsh) hold. Let T be chosen so 
that T = C* h4/3 for any positive constant C*. Then we have 

(4.25) 1jeoJIL2(Q) + f eo + |eu11Lo(o,T;H-1(Q)) = 0(h /3). 
0L??(0,T;H1 (Q)) 

Proof. The present task is that of proving the estimate 

m 
(4.26) LT(iUi,% - U'-1)? CT12, 

i= 1 

which implies that v = 1/4 in (4.15). Indeed, the relation between i and h, as well 
as the final rate of convergence, are trivial consequences of (4.15) and (4.16). In 
order to derive (4.26), we make use of the a priori estimates (2.6) and (3.6), which 
lead to 

m m' - 1/2 

uUi-Ui-1 < CTr I/2UL2(0,T;L2(Q)) E -i Ui uL2(Q) 
i~~~~~~~l ~~~~~i= 1 

< C'r1/2 

and complete the proof. 0 
As one can easily check, the dominating terms on the right-hand side of (4.15) 

are i14 and h/I-'2, rather than h"2. If we are interested in getting a better 
balance between these terms, we can simply modify the discrete scheme as follows. 
We now look for functions Un E Vh and On E Vh' (1 < n < N) so that for all 

x E Vh' we have 
U0 = PhOu0, e0 = PhONuo) 

(4.27) (eAX)h +-(ven, VA) = K:ufl) + 

+ ([I -Ph , X)hi 

Un u=an + tOe~n _ -(Un-l )]. 

This scheme is still stable and computationally feasible. Indeed, the proof follows 
the same lines as that of Lemma 1, except for the term in (3.8), which is replaced 
by 

m m 

81 E- I][E_ - en ) = EMh? - I][e~ _ o n1], [I - PKhe)h 
n=1 n=1 

=- -I]em, [Ph - I]em)h + 2 ([P?- I]60, [Ph -I]6?)h 

m 
,(hP - I][ ] [E)h _ I] [E9n _ Eyn-]< 

n=1 

where we have used the identity (3.5). 
Finally, we have the following improved result, which reproduces for the fully 

discrete Chernoff approximation the one already shown by Verdi and Visintin for 
the phase relaxation scheme [26]. 
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THEOREM 3. Let (Hc2), (HOI), (Hf ), (Hu0) and (Hsh) hold. Let {e n ,Un I}nN 

stand for the discrete solutions associated with the scheme (4.27). Then, for T = 

C*h2, where C* denotes any positive constant, we get 
I't 

(4.28) JjeojjL2(Q) + | eo + jeujLo(OT;H-l(Q)) = 0(h /2)2 
Jo LL(O,T;H'((Q)) 

This result improves the one in (4.25), but at the expense of a more restrictive 
time step. 

Proof of Theorem 3. We only have to estimate the contribution coming from 
term VI in (4.4), which now is 

vi = IILTK[I - PO] E[een -1] pl_ 

i=_ n=1 h 
m 

- EZT (I - P]E), ph- #i - i) 
i=1 

m 
+ p ET [(E4i Ph02 - E4i) h - (Ei, Ph 0i - Ei) VI1 + V12 

i=1 

Then, arguing similarly as in (4.12) and (4.13), yields 
m 

VI1 , IVI21 < Ch2 EZTe iIH1 (0) I Pho-% 
- eYI H1(n) < Ch2, 

i=1 

which implies the desired result. 0 
We conclude this section with some comments. 
Remark 10. From Eq. (2.12) and the a priori estimate (3.6) it follows that 

N 

E T 1 
h O 

(Un) I 12 2 (Q) 
n=1 

N 
E Z T-[Un _ Un-1] _ [l(Un) - 3(Un1)]11j2(Q) <CT. 
n=1 

By using (4.9) we get IIeo(u)I IL2 (Q) < Ca(hj), where e/3(u)(t) := 0(t) -_ (Un) for 
t E In. 

Remark 11. The error estimates shown above hold also in other situations. 
Indeed, assume that 9Q E C011 (Q is no longer convex!) and that either a nonho- 
mogeneous Dirichlet condition or a linear flux condition is imposed on (02, i.e., 

(4.29) k (u) + p(x3(u) = g(x, t) on a, 

where 0 < p(x) < P < ox for a.e. x E D9Q. In this case, the domain cannot be 
decomposed exactly, and one is forced to analyze the layer Qzfh. The appropriate 
techniques to handle such a case were presented by Nochetto and Verdi in [20] and 
are omitted here. 

Remark 12. Assume that a mixed boundary condition is imposed on the bound- 
ary. Thus, there is a lack of regularity, which makes the'standard L2-duality ar- 
gument fail. However, the error bound II[I -Phl zI IL2 (Q) < C6h1/2-6 IIZIIHO(Q) still 
holds. The current analysis applies in this case, provided the surface of separation 



44 RICARDO H. NOCHETTO AND CLAUDIO VERDI 

between Dirichlet and Neumann conditions is regular enough, giving in the weak- 
est situation of Theorem 2 a rate of convergence O(h'/4-6) under the mild relation 
T= C*h. 

5. Numerical Results. In this section we first describe the implementation 
of our scheme and then the results of some numerical tests. These experiments 
were performed in collaboration with M. Paolini and G. Sacchi. Further discus- 
sions, comparing performances of the present algorithm and other techniques in 
approximating both solutions and interfaces, will appear elsewhere, [21]. 

5.1. Implementation of the Scheme. To begin with, we rewrite the discrete 
problem in matrix form. Denoting by {J }0 ' and {fk}IK the canonical basis of 
VIl and Vh2, respectively, we define the following matrices 

M :={(f0, k)h} = K:= {(V0qV01)'}J1, A :=M+ -K, 

p = {(f (,okl}J., kK 

Moreover, we denote by Yk the barycenter of Sk E Sh and by {xj} the nodes of 
Sh. For any q E Vhl and X E Vh2 we also denote by 4 = {0iV=and 1 'I = {fkk}=1 
the vectors with the nodal values of 0 and the barycentric values of X, respectively. 
Setting 

K K 
n-1 1:(Un-1)0k and Fn-1 = E f((Uk )) k 

k=1 k=1 

and noting that Ph?k= k1=1 q5(Yk),k for q E Vhl the discrete problem (Ph,,) can 
be written equivalently as follows: 

(5.1) AEro = P [Bn' + -Fn'1 

(5.2) _k k +,([@n (Yk) 0(Uk _)]) k = 1, ... ., K. 

Since A is a symmetric and positive definite matrix, the linear system (5.1) admits 
one and only one solution. The crucial point in the performance of the method is 
the efficient resolution of the linear system (5.1), because Eq. (5.2) is just a set of 
scalar algebraic corrections. 

Our algorithm has been implemented for general polygonal domains in two di- 
mensions by using an automatic grid code to decompose the domain into triangles. 
A Cholesky factorization of the matrix A is recommended whenever the bandwidth 
is "small" [1]. Indeed, since the matrix A remains unchanged at each time step, 
the factorization is made only once at the beginning. Nevertheless, when the use of 
an automatic grid code is required, for instance in decomposing a general domain, 
the bandwidth might be "large." Then, iterative methods seem to perform better 
than direct ones. In particular, since A is positive definite, an incomplete Cholesky 
factorization for preconditioning the matrix A, combined with conjugate gradient 
iterations, is recommended for solving the linear system (51) [1], [15], [21]. More- 
over, the matrix A is strictly diagonally dominant in the experiments below, which 
makes the preconditioning easier [1], [15], [21]. 
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We now turn our attention to the approximation of the free boundary. The loca- 
tion of this crucial unknown as zero-level set of the solution { n}I'1 is inaccurate 
for two-phase problems and simply impossible for one-phase problems. This is due 
to the behavior of the operator [I - A]-1, which smooths out singularities or, 
in other words, which replaces a movement of the interface at finite velocity by a 
diffusion at infinite speed. Moreover, the higher the interface velocity is, the bigger 
is the artificial diffusion added by [I- Az]-'. This heuristic explanation tells us 
two things. First, we have to seek the discrete interface as a a-level set for ar $ 0; 
this is in the spirit of [19]. Second, the level ar should be related to the expected 
speed of the free boundary, rather than being kept fixed. 

5.2. Numerical Tests. The goals of our numerical experiments were to evaluate 
the actual order of convergence of both variables u and 0, as well as the approx- 
imation of the free boundary. If Un and on are the discrete solutions associated 
with a mesh size h, we set 

N K A1/2 

E h:={TZ f Hh([En -n]2) dx} 
n= 1 k= 1 Sk 

and analogously for E?, with obvious changes where u is discontinuous. Then, 
assuming the relations Eh = ChPu and Eh = ChPO, it follows that 

log(E~h1 /E?h2) log(E hi/E h2) 

= log(h1/h2) 
' pe - log(hi/h2) 

The space domains in all examples below are rectangles, which are decomposed 
uniformly. The discrete initial data are chosen according to Remark 2. Examples 
1, 2, 3 are concerned with the two-phase Stefan problem for which the function: 
is 

N(u) :=c1u if u < 0, 3(u) :=0 if 0 <u< 1 

/(u) := c2(u-1) if u > 1. 

Example 4 is the Barenblatt-Pattle solution of the porous medium equation for 
3(u) := ulul. We also point out that, even if mixed boundary conditions are 

prescribed in our examples, both the approximation property (2.4) and the error 
estimates (4.23), still hold; indeed, the regularity of the associated Green operator 
follows from applying reflection techniques. All experiments were performed on an 
IBM 4361, using the relation T = C*h. 

Notations. N: number of time steps, Nel: number of triangles, Nn: number of 
nodes, CPU: CPU time in seconds. 

Example 1 ([2], [20], [24]). Let Q = (0,0.5) x (0,0.25), 0 < t < T := 0.25, 
C, = C2 = 1. The exact enthalpy is 

u(x, t) : 2[eD(x yt) - 1] + 1 if 4D(x, y, t) > 0, 
e ID(X,Y,t)-1 if 4D(x, y, t) < 0, 

where 4D(x, y, t) := -x-y + 2t + 0.1 = 0 is the free boundary. Neumann conditions 
are assigned on the sides x = 0.5 and y = 0.25, and Dirichlet data are prescribed 
on the sides x = 0 and y = 0. We obtained the results summarized in Table 1 and 
Figures 1 and 2. 
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TABLE 1 

Nel Nn N Eu 102 E6 103 Pu PO CPU 
100 66 25 5.29 5.89 9 

0.17 0.62 
196 120 35 4.99 4.77 30 

0.30 0.58 
400 231 50 4.48 3.88 107 

0.25 0.58 
900 496 75 4.05 3.06 457 

Example 2 ([20], [24]). Let Q := (-0.22, 0.18) x (0,0.2), 0 < t < T 0.4, 

C, = 1/2, C2 = 1/3. The exact enthalpy is 

u(x, y, t) . 64 (x,y,t)+1 if 4D(x,y,t) >0, 
2 1, 2(x, y, t) if 4(x, y, t) < 0, 

where 4D(x, y, t) X2 + y2 _ e- 4t/4e2.4 = 0 is the interface. Dirichlet data are 
assigned on the sides x = -0.22, x = 0.18 and y = 0.2, and a vanishing flux 
condition is prescribed on x = 0. Table 2 contains the computational results. 
Discrete and continuous isothermal curves are shown in Figures 3-5. 

TABLE 2 

Nel Nn N Eu * 102 E0 104 Pu PO CPU 
64 45 20 5.51 12.46 4 

0.28 0.44 
144 91 30 4.93 10.43 16 

0.16 0.52 
324 190 45 4.62 8.46 67 

0.29 0.43 
784 435 70 4.06 7.00 328 

Example 3 ([20], [26]). Let Q := (0, 0.85) x (0, 0.1), 0 < t < T := 1, C, C2 =1. 
The exact enthalpy u(x, y, t), which does not depend on y, is defined by 

{4-[82t - XI()] if 
X < 

82(t), if 0 < t < 0.25; 

{ s1(t)2-x2 + 1 if x < s1(t), 
4[s2(t) - x] if s1(t) < x < s2(t), if 0.25 < t < 0.75; 
- [x - s2(t)]2 if x > s2(t), 

s 1 (t) 2 _ x2+ 1 if x < 81(t), if075<t<1, 

-[x-1(t)]2 - 2[x - si(t)][t -0.75] if x > si(t), 

where si(t) t - 0.25 and s2(t) := 0.5[t + 0.25] determine the mushy region. A 
Dirichlet condition is assigned on x = 0.85 and homogeneous Neumann conditions 
are imposed on the sides x = 0 and y = 0, y = 0.1. We obtained the results 
contained in Table 3. 
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TABLE 3 

Nel Nn N E, 102 Es 103 Pu PO CPU 

24 26 31 5.38 8.30 4 
0.35 0.79 

96 75 62 4.22 4.81 42 
0.33 0.78 

384 245 124 3.35 2.81 439 
0.31 0.75 

1536 873 248 2.69 1.66 4581 

The evolution in time of discrete and continuous free boundaries is shown in 
Figure 6, whereas discrete enthalpies for several time steps are drawn in Figure 7 
as functions of the space variable. 

Example 4. Let Q: (2,3) x (0,0.1), 0 < t < T 1. The exact density is 

u(x, yt) I (t) 1- x()) if x < s(t), 

0 if x > s(t), 

where s(t) = [12(t + 1)]1/3 determines the interface. The solution does not depend 
on y; hence, we prescribe a vanishing flux on y = 0 and y = 0.1. Dirichlet data are 
imposed on x = 2 and x = 3. Table 4 sums up the computational results. 

TABLE 4 

Nel Nn N Eu 103 E0 104 Pu PO CPU 

40 33 20 6.97 8.43 7 
0.58 0.70 

90 64 30 5.51 6.36 26 
0.66 0.79 

250 156 50 3.92 4.38 162 
0.69 0.85 

640 369 80 2.84 2.93 825 

Figures 8 and 9 illustrate the evolution of the true and approximate interfaces 
as well as of the density u for various time steps. 

The actual rates of convergence of the variable 0 agree with the theoretical one 
shown in Theorem 1. Moreover, the algorithm seems to approximate the variable 
u in L2(Q) as well. Even though this is not suggested by theoretical results, the 
observed rate is almost O(h1/4) for the Stefan problem. 

The numerical evidence indicates that the present algorithm is not capable of 
locating interfaces without any further treatment of the discrete solution; this is 
due to the artificial diffusion added by the operator [I - /\] '. Since the location 
of level sets away from the free boundary is quite precise, the correct remedy might 
be a sort of local postprocessing of the discrete solution; this is the subject of 
current research. However, problems having a smooth free&boundary which moves 
along a prescribed direction suggested by the initial datum can be simply handled 
as follows. The discrete free boundary at time t' is to be sought as a an-level 
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set of the variable On, where on depends on the discrete interface velocity. More 
precisely, we propose the empirical relation 

wn := Ch1/2 for n = 1, 2; a js?-2 0 - for 3< n <N. 

where dsn denotes the average change of the discrete interface location from time 
tn-1 to tn and C > 0 is a constant to be determined in dependence of the initial 
velocity. 

We finally present some pictures illustrating the success of the above procedure 
in approximating the exact free boundaries of our four numerical tests. Discrete 
and continuous isothermal curves are depicted as well. 

Example 1. Nel = 900, Nn = 496, N = 75; h = 2.357 x 10-2, r = 3.333 x 10-3, 

1= U2 = 3.93 x 10-2. 

Y 

1 

X 

FIGURE 1 

Discrete and continuous (dotted lines) interfaces at 

times t =0.05, 0.1, 0.15, 0.2, 0.25. 

Y 

FB 
X 

FIGURE 2 

Discrete and continuous (dotted lines) interfaces and 

a-isothermal curves for t = 0.15 and a = -0.1, -0.2, 

0.2, 0.5. 
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Example 2. Nel = 784, Nn = 435, N = 70; h = 2.02 x 10-2, r = 5.71 x 10-3, 

1=5 2.02 x 10-2. 

Y 

Y 

FIGURES 3-5 

Discrete arnd continuous (dotted lines) interfaces 

and u-isothermal curves for t = 0.08, 0.24, 0.4 and 

a = 0.03, 0.06. 
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Example 3. Nel = 1536, Nn = 873, N = 248; h = 1.53 x 10-2, r - 4.03 x 
515=2.04 X 10-2 a 2 = 2 O 01 ' 2 2.04 x= 2 0 

WATERX; 

I~~~~~~~~~~C 

MUSHY / 

// /~~~~~~ 

/// X 

/~~ 

F IGURE 6 

Discrete and continuous (dotted lines) interfaces for 
y= constant. 

U(X,, ) 

/~~~~~~~ 

WATER 

_ / _ 

F IGURE 7 
Discrete enthalpy for t = O., 0.25, 0.5, 0.75, 1. and 

y = constant. 
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Example 4. Nel = 640, Nn = 369, N = 80; h = 2.79 x 102, T = 1.25 x 10-2, 

U1 =U2 =2.54 X10-3. 

AT 

/ 

F IGURE 8 

Discrete and continuous ( dotted lines) interfaces for 

y = constant. 

u(X,.,. 

F IGURE 9 

Discrete and continuous (solid lines) density for t =O., 0.25, 

0.5, 0.75, 1. and y = constant. 
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