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An Analysis of a Uniformly Convergent 
Finite Difference/Finite Element Scheme for a 

Model Singular-Perturbation Problem* 

By Eugene C. Gartland, Jr.** 

Abstract. Uniform 6(h2) convergence is proved for the El-Mistikawy-Werle discretiza- 
tion of the problem -Eu" + au' + bu = f on (0,1), u(O) = A, u(1) = B, subject only 
to the conditions a, b, f E 72,?o[0, 1] and a(x) > 0, 0 < x < 1. The principal tools 
used are a certain representation result for the solutions of such problems that is due 
to the author [Math. Comp., v. 48, 1987, pp. 551-564] and the general stability results 
of Niederdrenk and Yserentant [Numer. Math., v. 41, 1983, pp. 223-253]. Global uni- 
form &(h) convergence is proved under slightly weaker assumptions for an equivalent 
Petrov-Galerkin formulation. 

1. Introduction. Consider the model singular-perturbation problem 

Leu :=-Eu" + au' + bu = f on (0,1), 

u(O) = A, u(1) = B. 

Here we assume that E is positive and that the coefficients, a and b, and source 
term, f, satisfy 

(1.2) (a) a,b,f E f1',` 
(b) a :=min{a(x): O < x < 1} > O, 

where 7jfmP = 7fmP [0, 1] is the usual notation for the Sobolev space of functions 
on [0,1] whose mth derivatives are in LP. Under these conditions, the problem (1.1) 
is well posed for all E sufficiently small, and it possesses a regular &(E) boundary 
layer at the "downstream" end, x = 1. In particular, we have the following. 

Let 1 denote the weighted Sobolev norm 

111v111 := max{l1v1lo ,E11v'110o}. 

THEOREM 1. 1. Under assumptions (1.2), there exist positive constants E0 and 
c such that for all v in 72,1 

(1.3) 111v1l < c{llevl + 1v(O)1 + lv(1)1}, 0 < E < Eo. 

This theorem is proved under the more general assumption of bounded coefficient 
functions in [4]. Versions of this result for general mth-order linear problems with 
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continuous coefficients are in [11]. It also follows from results in [14] and [15, ?9.3]. 
A consequence of Theorem 1.1 is the strong uniform stability of "nearby" problems. 
Consider the perturbed differential operator 

Lev :=-Ev" + a' + bv, 

where we assume that a E Lw and b E L1. 

THEOREM 1. 2. If the discrepancies Ha-&IIK and fIb-bll 1 between the coefficient 
functions of the operators Le and Le are sufficiently small (uniformly in E), then 
there exists a positive constant j such that for all v in 02,1 

1Iv IF i ' I{ILevli + Iv(O)I + Iv(')I}, 0 < E < EO. 

Proof. We first observe that the L1-norm of the derivative of the solution of 
Leu = f can be bounded in terms of Hlf 1i, lu(0)1, and lu(1)1: If Leu = f then 

-Eu" + au' = f - bu 

and 

u'(z) u/(1)e-(l/e) lf a + e(l/e) fx a(f(t)-b(t)u(t)) dt, 

so that 

Ilu e-j (1) f 
1 
a + - ui 0t 11~ fta ,II < (1) 1 -(/E Iza lf -buill, sup Xe rzdx o ~~~~~~E o<t<l 

< Hlu'1 * a + (Hlf 11 + HblIj HlulH,0) a a a 
1 

< -(1 + IlblIj) HIlluHll + -Hlf li aa 

< ci{f lfIl + Iu(O)I + Iu(1)I}, 0 < E < Eo, 

where c1 depends on a, IIb I, and c from (1.3). Next define 

6 max{Hla - all, b - blli}, 

and bound IILevlI in terms of IIL~vlIj, lv(0)1, and Iv(1)l (for 6 sufficiently small): 

JILvlll < HILevlIj + Hla - al0 Iv'Hi + Hlb -bll b IvI 

? JILevlll + Ila - cllCo {clHLvlll + Iv(O)I + Iv(1)I} + Ilb -bll Il vllHF 

? IILevIIj + 1(6)HIILvllv + (6){ Iv(O)I + lv(1)1}, 

that is, 

IILevIlj < (1 + (6))H|Lev|I| + 6(6){lv(O)I + lv(1)1}. 

Our result follows by combining the above inequality with the original stability 
property (1.3). 0 

We note that the optimal stability constant above satisfies c = c(1 + 61(6)) (if 
c is the optimal constant in (1.3)). An immediate consequence of Theorem 1.2 is 
that to have a well-posed problem of the form (1.1), it is not necessary that the 
coefficient function b(x) be bounded from below; it is enough for the L1-norm of 
its negative part to be sufficiently small. We have the following, for example. 
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COROLLARY 1.3. The differential operator Le of (1.1) is strongly uniformly 
stable, in the sense of (1.3), for 0 < E < oo, if the Ll-norm of the negative part of 
b(x) is sufficiently small. 

Proof Let b+ and b- denote the positive part and negative part of b: 

b+(z) = { 0, if b(z) 0 
b () 

{ b(), if b(x) < O. 
b(x), if b(x) > 0, ,1 if b(x) >O. 

The differential operator L+, defined by 

L+v :=-Ev' + av' + b+v, 

satisfies the stability inequality 

HIlvIle ' c+{HlL+v~li + Iv(O)I + Iv(1)}, 0 < E < 00, 

for all sufficiently smooth v, where c+ is a constant that does not depend on E it 
can be shown directly that L+ satisfies a maximum principle for E > 0 (see, for 
example, [17]). The desired result follows from Theorem 1.2 and the observation 
that ib+ -b|ll = bIb-.111 ? 

The analysis of discretizations of (1.1) (or any differential operator, for that 
matter) in the case of unbounded coefficient functions is a difficult matter. Here 
we will be content to consider the case where a, b, and f are in W",oo for our 
global error estimate, and in 02,0,o later. In this case (since a and b are uniformly 
continuous on [0,1]), there will exist an El > 0 sufficiently small so that 

a2(X) + 4Eb(x) > O O <x<1, O<E<Ei. 

If the maximum possible values for El and/or E0 are +oo, then we will take them 
to be some arbitrarily prescribed finite values; the problem (1.1) can be analyzed 
by classical techniques for E large. Some of the analysis that follows will then be 
broken up into the ranges 0 < E < El, on which a2 + 4Eb > 0 is assured, and 
El < E < Eo, on which u and its derivatives can be bounded independently of E. 

We are interested in the error analysis of a well-known difference approximation 
to (1.1) proposed by El-Mistikawy and Werle in [3]. Let a uniform partition of the 
interval [0,1] be given by xi = ih, i = 0,...,n, where h = 1/n. Let uh denote a 
discrete approximation on this mesh to the solution u of (1.1), and let qi denote 
g(xj) for any function g defined on the mesh. The El-Mistikawy scheme is of the 
form 

LheUi := aUtU1 + a'J'OUi + CiUe i 

(1.4) = !h,-lfi-l + Oi,ofi + Oz,lfz+= Ih(f)i, i = 1,... n - 1, 

uh = A, u = B. 

The expressions for the coefficients and weights are rather complicated; they are 
characterized in the next section. 

A finite difference approximation to (1.1) is said to be uniformly accurate of order 
p (with respect to some norm II 11) if the associated discretization error, eh = u - uh, 
satisfies IlehII < chP for all 0 < h < ho and 0 < E < Eo, with an asymptotic error 
constant c that does not depend on E. The El-Mistikawy-Werle scheme is uniformly 
&(h2). This has been shown in the case b(x) 0 by Berger, Solomon, and Ciment 
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in [1], Hegarty, Miller, and O'Riordan in [7], and O'Riordan and Stynes in [12]. It 
has been established in the case b(x) > 0, a(x) _ const > 0 by Lorenz in [10] and 
in the case b(x) > b, a2 + 4Eb > 0 by Stynes and O'Riordan in [16]. 

It is the purpose of this note to show how tools developed in [4] and [5] for 
the analysis of a family of uniformly accurate discretizations of (1.1) (known as 
exponentially fitted HODIE schemes) can be used to prove the uniform &(h2) con- 
vergence of the El-Mistikawy-Werle scheme. The analysis does not require the 
previously needed conditions on the coefficient function b; it is simpler than the 
above cited papers; it requires less smoothness of the data; and it gives conver- 
gence with respect to stronger norms. In addition, as a preliminary step, global 
uniform &(h) convergence results, which generalize earlier work, are proved using 
stability/perturbation results. 

2. The El-Mistikawy-Werle Scheme. The El-Mistikawy-Werle scheme is of 
the form (1.4); it can be derived in various ways. It was first proposed in [3], where 
it was derived by approximating the coefficient functions a and b and source term 
f in (1.1) by piecewise constant functions 

a(x) = ai = +2i+1 b(x) = bi = 2 

and 

f(z) = ft +2 ' 
L 

and then constructing a three-point scheme that is satisfied identically by the so- 
lution of the approximate problem. It was shown in [1] that this scheme results 
when one solves the approximate problem on (xi, xi) and (xi, xi+,) and requires 
that the solution be in C' (xi-,1 xi+). It can also be derived from Marchuk-type 
local integral relations by using two-point quadrature rules (see [9]). In [12] and 
[16], use was made of the fact that the El-Mistikawy-Werle scheme is equivalent to 
a discrete Petrov-Galerkin scheme. This point of view works to simplify many of 
our calculations below, and we describe it now. 

Let B(,*) and B(*,) denote the bilinear forms 

Be(v, w) :=1 (Ev'w' + av'w + bvw) 

and 

Be(v, w) :]= (Ev'w' + ?v'w + bvw) 

and let (,.) denote the usual L2 inner product. Let {f,... ., On} be any basis of 
trial functions in f112 that satisfy 

suppq(0i) C [xi- Xi+ ] 

Oi (xj) = 6ij, ij j = OX . .. , n. 

And let {fi, ... ., On - } be the basis of local-support test functions given by 

supp(Oi) C [Xi-,,Xi+,], 
-<- /i4.? + bTi = 0 on (xi-,, xi) U (xi, xi+,), 

Oi(xi-1) = Oi(xi+i) = 0, Oi(xi) = 1. 
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Then the coefficients and weights in the finite difference scheme (1.4) are given by 

ai,- _ 
1 

BE (Oi- , Xi), ai,o = B, (Oij1 0i) aij l 
1 

BS (Oi+ 1 1 Xi)1 

(2.1) a~,.1 =xX = ~Be~k')1 i+1,1 = 

2h Jx1 tio 2h j Ii i1=2h Ii 

and the resulting linear algebraic system is identical (after scaling by h) to that 
associated with the Petrov-Galerkin approximation 

n 

(2.2a) uh =Eui Xi, 
i=O 

(2.2b)~ ~~B B(uhI 00v = (f, 0 tIi i = 1, ... ., n - 1 

uh (o) = A, uh (1) = B. 

Explicit formulas for the a's and /3's in (2.1) are given in [1] for the case where 
a2 + 4Eb > 0. We observe that this procedure is well defined, even when this 
condition is not met, provided h is sufficiently small. 

PROPOSITION 2. 1. Under assumptions (1.2), the finite difference scheme 
(1.4)/(2.1) is well defined for all 0 < E < Eo and 0 < h < ho for some sufficiently 
small ho that does not depend on E. 

Proof. We only need to know that the local problems defining the 4i functions 
are all well posed for h sufficiently small. Let LE denote the differential operator 
associated with the piecewise constant functions a and b: 

Lev :=-Ev" + av' + bv. 

Now, by the assumed smoothness of a and b and the construction of a and b, it 
follows that Ia - ao and Ilb - bi1 are both 61(h). So Theorem 1.2 implies that 
the operator Le is strongly uniformly stable, in the sense (1.3), for all 0 < E < Eo 
and 0 < h < ho for some ho. 

Next we observe that for this range of E and h, all of the eigenvalues of L1 
must be positive. To see this, we first note that the eigenvalue problem for LE 
(namely -Eq" + aq)' + bq = Aq, q(0) = q(1) = 0) can be symmetrized by the Sturm 
Transformation q = X expjf a/2E) to yield the variational characterization 

Amin = inf oE (0 )2 + (a2/4E + b-a'/2)02 
0EHo t 02 

From this it follows that Amin +oo as E -O 0. 
Now for each E > 0, the differential operator LE is a closed operator on 71,oo 

(the Sobolev space 7/'oo normed by I II ) to L1 with domain D(Le) = 72,1 

It follows from the estimates in the proof of Theorem 1.2 that for v E D(Le) 

-I(L -Le)vlll < (h){llv~llg + JILEVlli}. 

So Le converges to LE in the sense of generalized convergence ([8, Chapter IV, ?2.6]), 
uniformly in E as h -* 0. Thus Amin, the minimum eigenvalue of 1, must converge 
to Amin as h - 0 (uniformly in E); see [8, Chapter IV, ?3.5]. 
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Therefore, Amin is positive for all E and h sufficiently small. This conclusion can 
be extended to the whole range 0 < E < Eo and 0 < h < ho by continuity: for Amin 
to vanish anywhere in this range would violate the assumed stability of LE. 

Finally, positivity of the eigenvalues assures us that Le possesses a nonnegative 
Green's function and a minimum principle. So there can be no conjugate points in 
[0,1], i.e., for any 0 < a < b < 1, 

LEv = 0 on (a, b), v(a) = v(b) = 0 

implies v 0 O. See, for example, [13]. Thus the well-posedness of the local problems 
defining the 4i functions in the El-Mistikawy-Werle scheme is guaranteed. El 

We remark that we had to resort to stability results for eigenvalues because 
there does not seem to be an easy way to symmetrize the differential operator Le, 
whose coefficient function a is not smooth. We already at this stage have enough 
information to establish that the El-Mistikawy-Werle scheme is uniformly 61(h), 
both nodally and globally, in its Petrov-Galerkin formulation, for certain types of 
trial functions. 

THEOREM 2.2. Let the trial functions {q,. . ., OnI} satisfy for 0 < E < E0 and 
0 < h < ho 

ILEd~jI < c hi i = 0,... n-1, j =i,i+ 1, 

where c is a constant that does not depend on E or h. Then the error, eh = u -uh, 
in the approximation (2.2) to (1.1) satisfies 

11jehIll < ca / h, 0 < E < ? 0, 0 < h < ho, 

where c' does not depend on E or h. 

Proof. Let U denote the true solution of the piecewise constant perturbed problem 

1eu = i, Tu(o) =A, TI(1) = B. 

Now, I I Iu- 1 I 1, is uniformly 6 (h): This follows from 

L,(u - U) = (ai- a)u' + (T - b)u + f ) 

(U-TI)(0) = (U-iu)(1) = 0 

plus the strong uniform stability of Le and previously established estimates on 
a - allow Ilu'H1, JIb - bIj, jul1H00, and LI - If ll. 

Let g(x, y; E) denote the Green's function for LE. Then g is well defined for 
0 < E < E0 and 0 < h < ho, and it satisfies Be(v,g(x, ;E)) = v(x) for all v in 
tool Moreover, for each nodal value xi, ;(xi, ) E spany, , nbl} From 
this we can deduce that the Petrov-Galerkin scheme (2.2) is well posed: 

Be(Vh10i) = O. i =1,. .. ,n-1, vh(o) = vh(l)=0 

implies 

vh (Xi) =0, i=O... ,n,* 

from which it follows that 
vh 0. 
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It also follows that uh agrees exactly with u at the nodes: 

(Tu - uh) (xi) = Be(Tu - uh, 9(xi *; E)) 

n-1 

= Zg(xi, xj; E)Be ( uh, kj) 
j=1 

n-1 

= Z (xi, Xj; E)[(f, ) _ BE(uh Ij)] 0. 
j=1 

Now on each subinterval the difference Tu - uh satisfies 

Le(TiUh)f u='JOq fh- j+ ,+1 on (xi, xi+i), 

(- uh)(xi) = ( -Uh)(Xi+1) = 0. 

The local Green's function, gi(x, y; E), for this constant-coefficient problem can be 
constructed explicitly and shown to satisfy 

SUp{19i(xy;E)Ie 6a (x,y;E) :Zi<XY<Xi+0<KE< Eo}<Ci 

for some absolute constant c1. It follows that 

IIliu iUhIIIE,(x,,x+l) < Cl {L Il + IjuhIIlL (ILgTcl + ITLoi+iI} 

< c2 h, 0 < E < eoi = 0,. ..,n-1. 

Our result now follows from the triangle inequality 

||-hI||E < IIIU-UlE+11-hl 

We obtain as corollaries of the above generalizations of results in [16, Section 6]. 

COROLLARY 2.3. The following trial functions yield globally III | II -uniform 
&(h) schemes in the Petrov-Galerkin approximation (2.2) to (1.1): 

(a) -'?! + Ui + bq i = 0 on (xi-,, xi) U (xi, xi+,), 

oi(xi-i) = qi(xi+i) = 0, oi(xi) = 1; 

(b) - Eq0' + do' = 0 on (xi- , xi) U (xi, xi+1), 

oi(xi-i) = Oi(xi+i) = 0, oi(xi) = 1, 

for any ah =) 

Proof. Part (a) follows directly from Theorem 2.2, since Leqi = 0 in each 
subinterval by construction. To establish the validity of the conclusion for the 
function in (b), note that 

JEoi = -Eq' + aoi + Loi = (a - &) + bo 
*~~~~~~~ 

i 

implies 
rx+ 1 rt+ 1 rXZ+1 

ITeoil < lI a-oo 0q$ 
0 

+ IlblkJ lkil 

< li- allOO (1) + llblloo . (h) = (h), 

and similarly for f>X ILei+i I. o 
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In an analogous way, the local representation 

XI+i (~uh) (X) i(x, y) (7-Leuh)(y) dy 

can be used to establish uniform global accuracy with respect to the weaker Sobolev 
norm 

1IIvI11e,1 := max{I1vI1,e6Iv'I|i} 

for the trial space of piecewise linear "roof functions." These satisfy locally Levi = 

c&(1/h), and we get II1ehII1 e,1 = 6(h) in this case. 
Irrespective of the trial functions used, Theorem 2.2 guarantees that the nodal 

accuracy of the El-Mistikawy-Werle scheme is uniformly 61(h). To get 61(h2) nodal 
accuracy requires a little more smoothness and more work. This can be attacked 
using local projections, as indicated for general superconvergence results by Douglas 
and Dupont in [2], or using the global Green's function, as in [12] and [16]. Both 
of these approaches are complicated by handling certain nonuniform behavior as 
E -O 0, as is any analysis of these problems. Here we prefer to show how this higher 
rate of uniform convergence can be established in a few more strokes, using fairly 
traditional finite difference truncation/discretization error analysis. 

3. Truncation Error. Associated with the finite difference approximation 
(1.4)/(2.1) we have the local truncation operator, Ti, defined for smooth v by 

Ti[v] LhV(Xi) - Ih(Lev)i 

=i,-iV(Xi-1) + aiov(xi) + ai,1V(Xi+1) 

-{3i,-.Lev(xi-1) + /i,oLev(xi) + /i,1Lev(xi+i)} 

B. (v, b)-h(Lev,</i) hh 

= hj[he(v, Bi)-,B(v, b)] + j (Lev - Ls vi) 

= ((a - a)v' + (b' - b)v + (Lev - LV), vi). 

The local truncation error, rh, is then given by 

ri := Ti[u] =h a)u' + b)u +(f- 7), 0i), 
where u is the solution of (1.1). As a consequence of this definition, it follows that 
the discretization error, eh := u - uh, satisfies 

Lh eh h= r 

A key to the analysis is the test function Oi, and we now establish a preliminary 
estimate concerning it. To simplify notation, all of this analysis is carried out on 
the generic subinterval [-h, h] under an implicit transformation. The generic X 

function is then defined by 

-EO 
// 

-do/ + b = 0 on (-h, O) U (O. h), 

0/(-h) = 0/(h) = O. O(0) = 11* 

where a and b are piecewise constant functions defined in terms of the values of a 
and b at -h, 0. and h as before. 
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LEMMA 3. 1. Under the assumptions (1.2), the local test function V/ above sat- 
isfies 

(a) t > 0, 

(b) max-h<x<h |+(X))I, fah 1'kI = (1), 

(C) fh ? h/2, 

(d) fh(x + h/2)' + fo(x - h/2)0 = -(h 
uniformly in 0 < e < so, 0 < h < ho. 

Proof. The nonnegativity of it follows from the fact that Le cannot have any 

pairs of conjugate points in [-h, h], as noted in the proof of Proposition 2.1. Now 

for 0 < E < e1, it is monotone increasing on [-h, 0] and monotone decreasing on 

[0, h], so that 0 < it < 1 and 

rh ? rh 

1?0t1 = 0 ?/ - 0 // = 2. 
-h -h 

For e1 < E < 62, < and h k' are uniformly bounded, and (b) is established. 

Property (c) can be proved by observing that ?i(x) > (x+h)/h on -h < x < O- 
a reflection of upwinding. And part (d) follows either by a direct (but messy) 

calculation or by observing that it = Oko + 6(h), where ?ko satisfies 

-E6t" - a00' = 0 on (-h, 0) U (0 h), 

O/o (- h) =1 Oo (h) = O. 00o(O) = 1 

and 

fO(h j(x + 
2 )0 + (-) 20o 

= O. E 

In our truncation error analysis, we will use, instead of local Taylor series type 

approximations, the following representation result for solutions of (1.1). This 

theorem is a consequence of a general representation result proved in [5] and refined 

somewhat in [4]. 

THEOREM 3.2. Under assumption (1.2) and the requirement a, b, f E 72,oo, 

the solution u of (1.1) admits the representation 

u(x; E) = v(x; E) + w(x; E) exp ( L1 a) 

where v and w and their derivatives up to order 2 exist almost everywhere on (0,1) 
and can be bounded uniformly in 0 < E < e0. 

We require one more preliminary estimate concerning the exponential layer type 

function. 

LEMMA 3.3. Under assumption (1.2), the following inequality is valid for all 
C, h > 0: 

(3.1) f exp (--L a) -exp (<- a) ?chmin{e h}, 

where c depends only on a. 
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Proof. From the Mean Value Theorem we get 

(1/6) a -(1/)fa e(1/e)x (a -e 

for some a e int(-(1/e) f~ a, -(1/e) fi a). It follows that a < -(1/e) a(h - x) and 

e (1/E) f~h a - e-<l/e) f>'a < e-(l/e)a(h-x) * (h -Z) 2 I|a'II0h Er~~~~ x- l lo.h 

(e- Iaha h 2 ~~a} 26 

The estimate in (3.1) when h < e follows directly from this. 
To handle the case e < h, we first note that 

J(h - x)e-(l/e)a(h-x) =-2he-(2/e)ah + 
- 

(1-e(2/e)ah) < IF 

It then follows from above that 
fh Ie(1/) f a -(1/s) f ' 'l < la' L hf h -)e-h(l/e)a(h-:x) < lIIa eh 0 

We now establish our truncation error bound for the El-Mistikawy-Werle scheme. 

THEOREM 3.4. Under assumption (1.2) and the requirement a, b, f e 72,o, 

there exists a constant c such that for 0 < e < e0, 0 < h < ho, and i = 1, .., n-1, 

(3.2)lIrih I < c h {+-exp (--a(l-Zi)) 

+min{h -} exp (-a( - xi+1))} 

Proof. Recall that 

-i ((a!- a)u' + (bb)u + (f-f7), 0/i) h 

and 

U=v+wexp a) 

where v and w have uniformly bounded derivatives up to second order. We first 
show that (f - 7, /) = (h3): 

0f (-h) +f (0)1 ~ h If() - + fAh)I 
(f-f, ) = f - 2 ] + f 2 ] 2 

=|fh [f(?). (X + 2) + (h2)] + / [r') - + c&(h2)] l 

f'(O) -&(h3) + (h3) = (h ) 

using Lemma 3.1. In exactly the same way, the contributions ((a - a)v', V/i) and 
((b - b)v, /)i) can be shown to be uniformly &(h3). 

The remaining terms of rih are 

1 ((a; - a) (w' + aw) e(l/e) L' a i) + h') ((b-b)we(l/e) fj a 
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of which the most difficult is the part involving aw/e. We write 

-a)awe-(l/6) f1 a0i) 
-(l/s I~la - -(1/E) 

K,+ 
a( a) (1/6) 

f-i 
a+ 0 

-a)aw, (e-(1/e) fXi a - e(l/e) ,f:2Xl a } 

Now the function 0 := exp(A fgx a)+p satisfies conditions that are locally adjoint to 
those of 4: 

-?eq" + a' + Ix = O on (-h, O) u (O, h), 

q5(-h) + f(h) = 0, O(M) = 1. 

It satisfies a lemma like Lemma 3.1, and this can be used to prove that the term 
-a)aw, exp(, fxx d)4i) above is uniformly &(h3P). 

Lastly, we use Lemma 3.3 to appraise the final expression: 

I((a-a)aw, (e(1e/6) fa - 
/6) fh a) 

< c hh 1 le (1/)f - e (1/f) Ij 
-h 

< c'h2 min{e, h}. 

So, combining these estimates, 

! (a- a) awe- (1/6) fS' a 

c -(i/eXf1 z+a K 
- 

C 
{e h + h mine, h}} 

< c { -e-(1/e)q(1-xt) + min {h h 
} e-(1/e)q(l-z,+) } 

The two remaining terms involving w can be estimated similarly, and (3.2) re- 
sults. 5 

4. Discretization Error. The El-Mistikawy-Werle scheme possesses a discrete 
stability property that is analogous to the continuous stability property (1.3). This 
can be established using general results of Niederdrenk and Yserentant [11]. We 
first define some notation. Let vh be an arbitrary mesh function. Let D denote the 
forward difference operator 

Dvh v vh 

Define the discrete 1-norm, JJ Jlh,1, and oo-norm, 11 Ilh,oo by 

n-1 

IlVhI|h,l := h E jovh, IlVh Ih,oo := max{IvI: i = ..... , 
i=1 

and 
L1D hh. _af~N 

. 
= 

. 
,., 1 
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The discrete weighted Sobolev norm, II II he, is then given by 

IIIVhI ||he := MaXf llsh lh oo, EIDVh |lh,.I 

We have the following 

THEOREM 4. 1. Under assumption (1.2), there exists a constant c such that the 
finite difference scheme (1.4)/(2.1) satisfies 

(4.1) IIIVhII|h,e < c{IILh eVhIIh,1 + IVhI + IVhI}, 0 < E < 60, 0 < h < ho, 

for any mesh function vh. 

Proof. It follows from results in [11] see [5] or [6] for a description of those re- 
sults for problems like ours that all we have to do here is verify that the coefficients 
of our scheme satisfy (for each i) the "Niederdrenk-Yserentant" conditions: 

(a) Ii,- 1 + ac,o + ai,1 < M < oo, 
(b) h(aeij - ae-,_) > m > 0, 
(c) a -1 < -e/h2 < a,_1 < 0, 

where m and M are some constants that do not depend on E, h, or i. Under 
these conditions, uniform consistency (in the sense that IIT[k]IIh,1 -+ 0 as h -+ 0 
uniformly in E for ? in the null space of Le) implies strong uniform stability, (4.1). 

We verify these conditions. To simplify notation, we again transform to the 
interval [-h, h]. We first note that 

Iae-i + ao + al = Be(l, )I 

= Lo| bt < 211blloo|llolloo < ?? 

and 

h~h h(al -a-,) -B hB(x, Vt) ) h (EIP/ + -dip + by?/)) 

=hJl (ai + bx)+ > -(a- hIIbII.) - > -a > 0, 
h h h ~~~~2 4 

for all h sufficiently small. Here we have used the facts ((a) and (c) of Lemma 3.1) 
that Vt > 0 and fhh k ? h/2. These give us (a) and (b). 

Next observe that by taking 0-1 and q$1 in (2.1) to be the piecewise linear "roof 
functions" satisfying 

0-1(-h) = 01(h) = 1, q-1 (0) = q-1 (h) = 01 (-h) = q1 (0) = 0, 

we get 

1 h =6(0 /) h2 { i-h( )ip 

and 

a =h-Be (01 XI)) = { + |( + bx)?) 

Since a(x) > a > 0 and it > 0, it follows that the two integrals above are non- 
negative for all h sufficiently small, and a-1 < e/h2 < a1. The fact that a1 < 0 
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can be seen, for 0 < E < e1, from a direct examination of the formula for a,, and 
(c) is established for all 0 < E < e1 and h sufficiently small. We can extend the 
validity of (4.1) by continuity to the entire range, 0 < e < eo and 0 < h < ho, since 
we already know from Section 2 that our problem is well posed throughout that 
range. 0 

Combining our truncation and stability results, we can now establish our main 
uniform convergence result for the El-Mistikawy-Werle scheme. 

THEOREM 4.2. Under assumption (1.2) and the requirement a, b, f e W, 
there exists a constant c such that the discretization error, eh = u-U h, of the finite 
difference scheme (1.4)/(2.1) satisfies 

Illeh IIh,e < ch2, 0 < E < E0, 0 < h < ho. 

Proof. As previously observed, the discretization error satisfies 

Lh,,eh = rh, e h = enh =O 

It follows from Theorem 4.1 that 

IIlehI Ih,e < cII|h IIh,l, 0 < E < 60, 0 < h < ho. 

But our truncation error bound (3.2) gives us 

IIrhI|h,l < ch {I|I|h,1 1 - exp (--a(l - xi)) || 

+min {1 } exp (--a(l - xi+,))1 }E 

Now, 111 h,1 < 1, and 11 exp(-g a(l-xi)) I1h, < 11 exp(-An a(l-x) Ii < E/a, by inter- 

preting the discrete 1-norm of the exponential as a rectangle rule subapproximation 
to the continuous 1-norm. 

We estimate the remaining piece as follows: 

n-1 

IIe-(1/)a(lxt+1)IIh,1 =h e-(l/g)a(l-xi+1) 

i=1 
n-1 

= h E e-(1/e)a(1-xi) + h 
i=2 

< lie- (l/e)a(l-x) III + h < 6 
+ h. 

a 

Combining these observations, we get 

IIrhIh,1 < ch2 {1+ ? + (a +) }, 

and our uniform &(h2) bound follows. 0 

5. Concluding Remarks. These tools, the representation result of [4] and [5], 
here Theorem 3.2, and the stability theory of [11], seem to be very useful for the 
analysis of these types of problems. They have been used to analyze another well- 
known finite difference approximation, the Allen-Southwell scheme, in [6]. There, 
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results are obtained that, as in the present paper, are more general than previous 
analyses. 

In the family of exponentially fitted HODIE schemes for problem (1.1), discussed 
in [5], there is a three-point formula that is similar to the El-Mistikawy-Werle 
scheme. Both use samplings of the data at xi-1, xi, and xi+1 to compute the 
difference coefficients and weights for the ith node. The former scheme has a 
classical convergence (for fixed e) of 6(h4) and is uniformly &(h2); while the El- 
Mistikawy-Werle scheme is classically and uniformly &(h2). The global extensions 
of the schemes are very different, and it turns out to be more effective to analyze 
them separately, rather than to try to deduce convergence properties of one based 
on direct comparison to the other. 
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