MATHEMATICS OF COMPUTATION
VOLUME 51, NUMBER 183
JULY 1988, PAGES 107-131

Convergence Rates for Regularized Solutions

By Mark A. Lukas

Abstract. Given a first-kind integral equation

1
F u(z) =/ K(z,t)u(t)dt = f(z)
0

with discrete noisy data d; = f(z;) + €, 2 = 1,2,...,n, let una be the minimizer in a
Hilbert space W of the regularization functional (1/n) Y (Zu(zi) — di)? + o||ul[3,. It
is shown that in any one of a wide class of norms, which includes || - ||w, if « > 0 in a

certain way as n — oo, then unq converges to the true solution ug. Convergence rates
are obtained and are used to estimate the optimal regularization parameter a.

1. Introduction. Consider the Fredholm integral equation of the first kind,

1
| Keoudi=1@, e
0
where f is given only as discrete noisy data
d¢=f(z,~)+€,~, 1=1,2,...,n.

The errors ¢; are assumed to be uncorrelated random variables, each with mean 0
and variance o2.
For an approximate solution to this ill-posed problem, we use the following form
of regularization: : '
1 n
e s REEEAY; 2
(L.1) minimize - z;(.%u(z,) di)* + of|ullyy -
1=
Here, a > 0 is called the regularization parameter and % is the integral operator
defined by

Fu(z) = /01 K(z,t)u(t) dt.

The space W is either L%[0, 1] or a reproducing kernel Hilbert space (RKHS) of
functions on [0, 1], i.e., a Hilbert space with the property that all the evaluation
functionals W — R, u — u(z), z € [0, 1], are bounded. Their representer R(z,t)
is called the reproducing kernel (RK) of W and satisfies R, = R(z,:) € W and
(Rz,u)w = u(z) for all z € [0,1] and u € W. It is not hard to show that the RK
R(z,t) is unique and symmetric. For examples and properties of these spaces, see
[1] and [9).
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For the purpose of regularization, the best examples of RKHS are the Sobolev
spaces of order m = 1,2,..., W™2(0,1] = {u: u(m=1) is absolutely continuous and
ulm e L?[0,1]}, with inner product and norm given by

(u, v)wmz = Y(u,v) + (™, (™), ~>0,
el m2 = Al + ™12,

or perhaps with other equivalent norms. Here and throughout, ||-|| and (-, -) denote
the L?[0, 1)-norm and inner product. Also useful are closed subspaces of W™?2 such
as

W = {u € W??[0,1]: u(0) = u(1) = 0}
with

(w,v)w = (", 0"),  lully = |lu"]1*
For the reproducing kerneis of these spaces, see [16] and [20].

To derive a solution to (1.1), we require that for each z € [0, 1] the linear func-
tional W — R, u — F u(z) is bounded. With W = L2[0,1], this is true if for
each z, ||K(z,-)|| < oo. If W is a RKHS, it will be true if, for example, R(t,t) is a
bounded function (certainly the case if W = W™2[0,1]) and for each z, K(z,) is
integrable. This follows since for all u € W,

lu(t)] = |(Re, ww| < (Re, Re) % lullw = R(t,)"?|ullw,
and then

| u(z)| =

/01 K(z,t)u(t) dt'

1
< sup R(t,t)"/? / |K (2, )] dt| ||
t 0

We will assume that for each z € [0, 1], ||K(z, -)|| < oo, and that K (z,t) € L2[0,1]x
[0,1]. This covers both cases above and also implies that % : L2[0,1] — L%[0,1] is
bounded.

Although integral equations of the first kind are the main application, the results
of this paper are not restricted to these. In fact, they will apply to any operator
equation Zu = f such that the functionals W — R, u — Z u(z) are bounded.

Let 0, be the representer of the functional u — Z u(z) so that for all u € W,
(e, w)w = Fu(z). f W = L2[0,1], then clearly n4(t) = K(z,t). If W is a RKHS,
then substituting u = R; gives

Nz(t) = Mz, Rt) = Z Re(z) = Z K4 (t),

where % is the integral operator with kernel R(t, s).
Now the regularization problem (1.1) is known (see [21]) to have the unique
solution, called the regularized solution,

(L.2) Una = N(Qn + anI)_ld'

Here 7;(t) = 7z, (t) and @y, is the n x n matrix with entriés

[@nlis = (nisn)w = F nj(z:) = Q(z4,25),
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where Q(z,y) is the symmetric kernel
Q(:E?y) = (nzany)W
1
KK*(z,y) = / K(z,t)K(y,t)dt, W =L?0,1]
0

Lo W a RKHS.
KRK*(z,y) = / / K(z,t)R(t, 8)K (y, s) ds dt,
0 0

From (1.2), note that
(1.3) F Una = Q(Qn + anI)_ld,

where
Qi(z) = Q(z;, ).

If feZ(W),let Z7f be the solution to Zu = f of minimal W norm. Equiv-
alently, Z'Tf is the unique solution to #u = f which is orthogonal in W to the
null space N(%'). Given any u € W, there exist unique elements ug € N(-%) and
u; € N(Z)* such that u = ug + u;. Substituting v = ug + u; into the regulariza-
tion functional (1.1) shows that for a minimum we must have ug = 0. Thus, for all
n and @, Unq € N(Z)*. Since N(#)* is closed in W, if u,, converges in W to
some solution of #Zu = f, then that solution must be Z1f.

By considering (1.1), it is intuitively clear that if « is held fixed while n —
0o, then the term «|u||4, will prevent un, from converging to ZTf. To achieve
convergence, the regularization parameter & = a(n) must tend to 0 but, as we
will see, it must not go to 0 too quickly. In this paper we show, under certain
assumptions, that in any one of a wide class of norms, u,, converges to %7 f for a
specific range of & = a(n) — 0, and we also determine the convergence rates. We
now proceed to define these norms.

Assume that the kernel Q(z, y) is continuous on [0, 1]x[0, 1] and define & : L2%[0, 1]
— L2%[0,1] by

@f(x) = /0 Qlz,v)/(v) dy

Then clearly & is bounded, selfadjoint and positive, i.e., for all f € L%[0,1],
(@f,f) = 0. To see the latter, note that for any ¢; € R and points ¢; € [0,1],
1=1,...,m,

m

(1.4) > eQ(tirts)e; =

1,5=1

Z cins,

In particuiar, if f € C[0,1], then for any Riemann sum

Z

m
@1,0) = lim_ ,;1 F(t)Q(ti t5) f(8) AtiAt; > 0.
Since C[0,1] is dense in L2[0,1] and & is bounded, the inequality is true for all
f e L?0,1].
Since Q(z,y) € L%[0,1]x [0, 1], & is Hilbert-Schmidt and the theory for these op-
erators (see [14]) yields the following. Other than a possible 0 eigenvalue and corre-
sponding null space, & has a (possibly finite) nonincreasing sequence of eigenvalues
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A > 0 (repeated according to their multiplicity) and corresponding orthonormal
eigenfunctions ¢;. These form a complete system in N(&)* C L?[0,1], and for any
feL?o,1]

oo

@f =Y Xi(f,6:)di,

i=1
where the sum converges in L2[0, 1]. Furthermore, since Q(z,y) is continuous, ¢; €
C|0,1] and, by Mercer’s Theorem, Q(z,y) has the uniformly convergent expansion

Q(z,y) = Zwi(w)m(y)

and . -
/ Q(z,x) dCL‘=Z/\i.
0 i=1

Thus, & is a trace class operator and it has a unique positive square root given by

@21 =3 N1, 406

1=1
Henceforth, we will assume that the nonzero eigenvalues A; of & decay like
0<api"? <)\ <ai™®, 1=12,...

for some p > 1/2.

Since Q(z,y) satisfies (1.4), there exists (see [1]) a unique RKHS H with RK
Q(z,y). Because Q(z,y) is continuous on [0, 1] x [0, 1], it is not hard to show (see
[20]) that H C C[0,1]. In fact, from [10], H can be described as

H=@Y*(L*0,1]) = {f e N(@)* c L?0,1]: i(f, 6:)? /X < oo}

i=1

with inner product
(fa g)H = (@1/21'14"@’1/21"]) = Z(f? ¢1)(g7 d’z)//\u
i=1

and also as
H=X%W)
with inner product
(f,9)a = (Z T}, 7 9w
The latter implies that # : N(%Z )+ CW — H is an isometric isomorphism.
Now for p > 0, define

H, = @"*(L*0,1]) = {f e N@)* c L?[0,1]: i(f, 0:)2 /M < oo} .

=1
Then, with the inner product

oo

(f7 g)H,, = Z(fa ¢z)(g’ ¢1)/’\:La

1=1
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H, is a Hilbert space. The collection of H,, u > 0, is called a scale of Hilbert

spaces (see [17, p. 335]). For example, if the eigenfunctions ¢; are trigonometric
and N(&) =0, then

oo
Hy=1{feL?0,1]: Y |fi**™ <oy,

j=—00

where fj is the jth Fourier coeflicient of f. But this is simply the periodic Sobolev
space with fractional order of smoothness pu.
Define W, to be the Hilbert space completion of

{ue N(Z)- CW: Fue H,}
under the inner product
(u,v)w, = (Zu, Zv)H,.

Note that Z': W, — H,, is an isometric isomorphism. When it is clear from the
function, we will write simply ||f||, for ||f||#, if f € Hy, and ||ul|, for ||u|lw, if
ueW,.

Note that H; = H and W; = N(%)+ C W. In addition, Hy = N(@)* C
L?[0,1] and Wy is even larger. In fact, L2[0,1] is continuously imbedded in Wy,
since for all u € L2[0,1],

llullwo = |2 ullao = [|PZ ul| < [|Zull < |Z|[[]u]]-

Here, P is the orthogonal projection of L2[0,1] onto N(&)~.
With u as the index, the spaces H, and W, are ordered according to the strength
of their norms—the larger is u the stronger is the norm. For if v < u, then

171, =3 LOL = 5 8 v ey 111,

1=1 g 1=1

and hence H, C H, with continuous imbedding. This is a strict inclusion, since
the function f € L?[0,1] with (f,#;)® = A/i~! belongs in H, but not in H,.
Furthermore, if v < u then H), is dense in H,. This follows since, if f € H, and
€ > 0, then there exists fy = Ef;l(f, #:)¢; € H, such that ||f — fn||, <e.

Given f € Hy, let Z1f € W, denote the unique solution in W, to Fu = f.
Note that when u = 1, Z'tf is simply the solution to Zu = f in N(Z )+ C W.
Now if uno € Wy, our problem is to estimate the expected squared error

(1.5) El|luna — 7" {3y, = EllZ una ~ I,
This can be decomposed into the squared bias

(1.6) | Btna = fIly, = IEZ una — fllE,
and the variance

(1.7) Elltna — Eunally, = EIlF tna — EZ unally,
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as follows:
E|\\Z uno — f||§,“ = E||EZ upa — [ + F Una — E&’Z’unan?{u
= E(EZ Una — [, EZ Una — f)H,
(1.8) + 2E(EZ una — f, Z Una — EZ Una)H,
+ E(Z una — EZ Una, Z Una — EZ Una)H,
= ||EZ tna — f”?{“ + E|lZ una — Ezuna”%{“,
since from (1.3), for any g € H,,

E(g, Z una — EZ una)n, = Z (9, Q(zi, ) 1, (Qn + omI)i_le(dj - f(=5))
5,5=1
=0.

Consider the following continuous regularization problem corresponding to (1.1):
(1.9) minimize |7 u — f||? + ol ul[3 .
ueW

It is known (see [8]) that this has the unique solution
Up = BE* (@ + )7 f

and that
Fue=G@ +a) ' f=(@ +a)"'@f.

In Section 3 we derive estimates of the error
lua —Z 7 Iy, = 1 va — I,

Although of interest on their own, these lead to estimates of the bias (1.6). For, in
Section 4, we show that if a tends to 0 in a certain way, then we can bound the
bias in terms of this error. In Section 5 we determine the asymptotic behavior of
the variance (1.7). These results are combined, using (1.8), in Theorem 2.1, giving
an estimate of the expected error (1.5) in regularization. From this, in Corollary
2.1, we determine the optimal rate of convergence for a.

It was shown by Wahba [21] that if f € H; and o — 0 as n — oo in such a way
that nal/?P — oo, then

2
Bllune =71y < (1, + Slpa 0% ) 1.+ o),

where [, is a constant. In particular, if o* = cn—22/(42+1) for some constant ¢, then
E||unqa- _%Tf”%V = O(n_2p/(4p+1))~

However, the proof required the strong assumption that in various expressions
the eigenvalues \; and eigenfunctions ¢; of & can be used to approximate the
eigenvalues A%, and eigenvectors ¢, of the matrix %Qn. In this paper, we derive
the above result rigorously as a special case of Theorem 2.1 with 4 =1 and s = 2.

Results similar to those derived here were recently and independently obtained
by Cox [6]. However, his results are based on a different spectral decomposition (see
p- 15 of [6]) to the one above and are not specifically applied to integral equations.
Moreover, our method of proof is simpler and more direct. In addition, we find
lower as well as upper estimates of the bias.



CONVERGENCE RATES FOR REGULARIZED SOLUTIONS 113

For the special case of convolution integral equations with equally spaced data
dr = f(k/n)+ €k, Rice and Rosenblatt [13] use Fourier series to derive convergence
rates for a regularized solution. In the case of data smoothing, convergence results
for the smoothing spline estimate have been obtained by Craven and Wahba [7],
Utreras Diaz (18], [19], Speckman [15], Cox [4], [5] and Rice and Rosenblatt [12].

2. Main Results. In this section we state the major results of this paper and
draw some conclusions about the optimal regularization parameter.

For easy reference, we list below our main assumptions.

Assumptions. 2.1. The errors ¢; satisfy Ee; = 0 and Ege; = 026;;.

2.2. The nonzero eigenvalues \; of & satisfy

0<ai” % <) <agi™? for some constants a; and aq, and p > %

2.3. There exists v, 0 < v < 1 — 1/4p, and a sequence k, — 0 such that for all
f,9eH

1 n
| o= 3 rwated| <kl il
=1

In Theorem 2.5 we find sufficient conditions for Assumption 2.3 to hold.

We will use the following notation. Given two positive functions g(z) and h(z),
denote g(z) < h(z) if there exists a constant ¢ such that g(z) < ch(z) for all 2.
Denote g(z) =~ h(z) if h(z) < g(z) < h(z). Note that g(z) ~ h(z) is equivalent to
h(z) ~ g(z). We will also use the asymptotic relation g(z) ~ h(z) which means, if
say z — 0, that g(z) = h(z)(1 + o(1)) where 0o(1) — 0 as z — 0.

THEOREM 2.1. With Assumptions 2.1, 2.2 and 2.3, let f € H,, where s >
max{v,u} and p < 2 —v —1/2p. Suppose that o = a(n) — 0 as n — 0o in such a
way that

kna—u—1/4p =0

and, if u>v, s>v+2,

kna—u/2—u/2—1/4p —0.

Then, for uy < s < u+2,

2 2
o o
21) PlfII}+ —o 7V < Elluna = F I} < o THFIE + —aTh T,
and for s > u+2,
t 12 2 2 o? —pu—1/2p
Elluna_% f||u%a ”f“u+2+7a :

Proof. Combine the estimates in Theorems 3.1, 4.1 and 5.1, using (1.8). O

This result is similar to Theorem 3.1 of Cox [6]. However, the latter theorem,
when applied to integral equations of the first kind, does not immediately give the
above result because it employs a different spectral decomposition. Furthermore,
our proof of Theorem 2.1 is simpler and more direct.

For a given f, define

5§ =sup{s: f € H,}
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if the sup exists. Later we show by example that the lower bound in (2.1) cannot
be strengthened to read: for any € > 0

2
5 o
a¥—rte 4 70[—#—1/21) < E||tna —%Tf”;zu
Nevertheless, we can prove the following

THEOREM 2.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold and let f € Hy,
where s > max{v,u}, < u+2, and p <2—v—1/2p. For any € > 0, there exists
a sequence a = a(n) — 0 as n — oo such that

~ 2
oS hte 4 %a_“_lﬂp < E||una —%Tf”i

Proof. Combine the estimates in Theorems 4.2 and 5.1, using (1.8). O

With an extra assumption on f, the lower bound of Theorem 2.2 is valid for all
sufficiently small a.

THEOREM 2.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold and let f € H,,
where s > max{v,u}, §< u+2, and u <2 —v —1/2p. Assume that, given € > 0,
there exist L and C > 0 such that for all N

LN

(2.2) > (1,4 > CN~%e,

s+e
i=N At

Suppose that a = a(n) — 0 as n — oo in such a way that

(2.3) kna?~1/4=¢ .0 when u<v or when p>v, s<v+2,
and

(2.4) kpoV/3H/2=1/4P=¢/2 (0 when u>v, §>v+2.
Then,

) 2
of—HteE 4 ‘%a—u—l/?l’ < E||una —%Tf”?r

Proof. Combine the estimates in Theorems 3.3, 4.3 and 5.1, using (1.8). O
The condition (2.2) on f is quite general. It is satisfied, for example, if

(f, ¢l)2 > i—1—4p5.

AT
It can easily be shown that the set of all f € H, satisfying (2.2) is dense in H,.

If f satisfies (f, #;)? ~ AT, then § = —1/2p and f also satisfies condition (2.2).
In fact, for this special case the following estimates can be obtained.

THEOREM 2.4. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and assume

that f satisfies (f,$:)? =~ AL. If, for some e >0, a = a(n) — 0 as in Theorem 2.3,
then

2
oSk + %a‘“_l/z”, w<3I<p+2,
1 2
E||una—.ﬁ"7f||z~ azln—&+%a_“_l/2”, S=pu+2,

o2
a2 + ;'a_#_l/h,, s>u+ 2,
where 3 =1 —1/2p.
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Proof. Combine the estimates in Theorems 3.4, 4.3 and 5.1, using (1.8). O
From Theorem 2.1 we have the following

COROLLARY 2.1. The minimum of the upper bounds in Theorem 2.1 occurs at
o2 2p/(2ps+1)

7 ’ n<s < Mt 27
o~ o2 2p/(4p+2pu+1)

With a = o*, the upper and lower bounds in Theorem 2.1 have the same order, and
if a* — 0 as in Theorem 2.1, then

o2 2p(s—p)/(2ps+1)
(7 s p<s<p+2,
2 ~
E||una — '%Tf”u ~ o2 4p/(4p+2pp+1)
(7) , s> u+2.

It is clear that to make full use of Corollary 2.1, one should take s as large as is
allowed by f € H,. This gives both a weaker condition on k, and, if s < p+2, a
better convergence rate for the error.

Let

€na = E”u'na _'%Tf”?u
and suppose that & = @&(n) minimizes e,o. We say that o = «(n) is optimal if
ena ~ €ng-

COROLLARY 2.2. Suppose f € H,, where s > max{v,u} and p < 2—v—1/2p.

(a) Assume that as n — o0, o = a(n) — 0 as in Theorem 2.1.
() If s > p+ 2, then o is optimal if and only if

o2 2p/(4p+2pp+1)
a~ | —

and then

2 a?
E||une _'%Tf”u ~ <_

4p/(4p+2pu+1)
)

(i) Suppose s < u+2 and 5 < u+2. If a is optimal, then for any0 < e < 3—p,
o2\ 2P/ (2p(5=€)+1)
(2.5) az (7)

(b) Suppose s < u+2 and 3 < pu+2, and let 0 < e < 5— p. Assume that f
satisfies condition (2.2) and that as n — 00, a = a(n) — 0 as in Theorem 2.3. If

a 18 optimal, then
o2\ 2P/ (2p(3t+e)+1)
a | —
(%)
Thus, from the class {a: a ~ (0?/n)t, t € R}, the optimal a 1is
(02 )2p/(2p§+1)
o~ | —
n
Furthermore, for any sufficiently small § > 0,

0.2

o? 9
< El|luna - Z 1% = (7

2p(5—n)/(2p5+1)+6
(%)

)2p(§—u)/(2p5+1)—5
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(c) Assume that f satisfies (f,$:)2 ~ AT and § =r —1/2p > p. If, for some
€ >0, a=a(n) — 0 as in Theorem 2.3, then
o2\ 2P/ (2p511)

; s u<3< u+2,
N 2\ 2p/(4p+2ppu+1)
o —
(7) s s> 173 + 2

18 optimal and
o2\ 2P(5—K)/(2p5+1)

7 y u<s<u+ 21
2 o
Elluna — '%Tf”u ~ o2 4p/(4p+2pp+1)

(7) , §>p+2.

If 5= u+2 and o solves

1 o?
ol4p+2ou+1)/2p 1y = o

)
(07 n

then o 1s optimal.

Proof. (a)(i) From Theorem 2.1 and Corollary 2.1, it is clear that e,5 ~ €na=,
so a* is optimal. Now suppose « is optimal and let o = Cpa*. Then

(C2 + CF127)(0)? & epg & €pa- ~ ()2

This implies Cp, = 1, so a =~ a*.
(a)(ii) Let s = 5 — € and suppose that « is optimal. If (2.5) were not true, then
there would exist a subsequence n; such that, as 1 — oo,

o2 ) —2p/(2ps+1)
— 0.

0, = a(n,) (—

n;
Substituting a = a(n;) into (2.1) gives

0;‘#‘1/21’

€n.,a(n,) ~ €n,a*(n,):

This shows that « is not optimal, a contradiction.

(b) This follows by a similar argument to that in (a)(ii).

(c) This follows directly from Theorem 2.4. O

Note that from Corollary 2.2(c), if f satisfies (f, )2 ~ AT with § =r—1/2p < 2,
then the rate of convergence of the optimal « is independent of u. Therefore, if one
has a good estimate of the optimal o for the L2-norm (4 = 0), then the regularized
solution should be accurate in all W,-norms, 0 < u < 5. This behavior has been
observed in practice by Wahba [22]. On the other hand, from Corollary 2.2(a)(i),
for arbitrary f with § > 2 the rate of convergence of the optimal o is dependent on
u for u satisfying 0 < u <5-2.

Lastly, in this section we find sufficient conditions for Assumption 2.3 to hold.
One possible approach to this question is to make a smoothness assumption on the
vth root of Q(z,y). However, this approach appears to be impractical.

A practical approach to the verification of Assumption 2.3 is developed by Cox
in Section 4 of [6]. In our notation it proceeds as follows.
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Suppose that we can find [ > 1 such that Z: W — W2 is bounded. Then for

f=Fu, g=FveH=IXW)wehave f,g € Wh2, and it is not difficult to
verify that

(2.6)

1 n
/0 fg= 3" 1(@i)a(z)| < dallfllwsllollws2.
=1

where

1
dn=sup|z — Fu(z)], Fa(z)= Y, =
(0.1] i: 2,5z
Now, from interpolation theory (see [17]) it is known that the intermediate spaces

between L2 and Wh2 are
(L2Wh2)e, =W2,  0<0<1.

Here, W92 is the Sobolev space of fractional order 8l (which equals the Besov
space Bfl). It is also known (see [2, p. 244]) that the intermediate spaces between
Wo and W are

(Wo,W)g,2 =W, 0<6<.

Therefore, because both Z: W — W2 and Z': Wy — L? are bounded, then for
any k, Z : W, 1= W*2 is bounded, too. Hence, with k = 1, there is a constant ¢
such that
I llwrz = [ Z ullw2 < cllulli = ellfllip,

and similarly for g.

Substituting these bounds into (2.6) yields Assumption 2.3 with k, = c2d,, and
v = 1/1. However, because the assumption requires v < 1—(1/4p), then for integral
[ we actually need [ > 2.

It is not hard to see that if the points z; are uniformly spaced as z; = ( — a)/n,
0 <a <1, then d, = O(n~!), and this is the best possible order for d,,. In this
case, with a further assumption on %, we show in Theorem 2.5 that it is possible
to improve on Cox’s estimate.

First, define the Sobolev space of periodic functions by

W;’;f = {ueW™?0,1: u?(0) =u?(1), i=0,...,m -1}

1 1
(4, V) per =/ uv +/ u(mp(m)
0 0

with inner product

or, equivalently, by

[e o)
Wit = Que L*0,1]: Y |a;|*(2r5)*™ < oo

j=—o00

with inner product

1 oo
(u,v)per=/ uv + Z a0 (2m5)%™.
0 oo )

Here, 4; denotes the jth Fourier coefficient of u. For nonintegral m, the second
definition defines the periodic Sobolev space of fractional order m.
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THEOREM 2.5. Ifz; = (i—a)/n,i=1,...,n,0<a <1, and Z: W — W52

per’

B > 1/2, is bounded, then Assumption 2.3 holds with v = v/8 and k, < n~"7 for
any 1/2 <y < .

Proof. Denote
1 18
D= [ 1= @,
i=1

If fe H, then f € Wfé?, and by expanding f in a Fourier series it is easy to show
that

D(f) — Z fj’ne—27riaj'
J#0
Then, for any 1/2 < v < S,

ID(A)| =D fine™ ™% (jn)" (jn) ™"

J#0
1/2 1/2
< | Dol (in)* Y Gn)™
370 3740
< IS llpzzen™,
where
1/2
co=ca() =D i™
J#0
Because W);2, v > 1/2, is a Banach algebra (see [3]), we also have for f,g € H C
w2
per

ID(£)| < can™ || fllwze lollw 3
Now, since #Z: W — Wé’e’f and % : Wy — L? are bounded, interpolation theory
implies that Z : W., ;3 — W2 is bounded. Therefore, for some constant cs,

WA llwgez < esll Sl

per

and similarly for g. Substituting these bounds into the bound on |D(fg)| proves
the result. O

3. Estimates of the Continuous Regularization Error. In this section we
derive upper and lower estimates of the error ||uq — %1 f||,, where u, solves the
continuous regularization problem (1.9).

We will see that estimates in this and later sections depend on the behavior of

the sum
oo )\3_ z

S@) =2 i ray

=1
With Assumption 2.2 on the eigenvalues )\;, this behavior can be determined as
follows. For the proof, see Lemma 2.1 of [6].
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LEMMA 3.1. If 2 < 2—1/2p then S(a) is finite for any a > 0. In this case,
as a— 0,
a 1% 4f —1/2p<2<2-1/2p,
S(a)=T(a)=<{ In l, if z2=—1/2p,
1, * if 2 < —1/2p.
In fact, as a — 0,
c1(2) £ S(@)(T(2)™" < e2(2),

where
c1(2) = (a1/a2)**a3/ ™ 1(2)(1+ o(1)),
ca(2) = (a2/a1)* %0}/ I(2)(1 + o(1))
and o L2
1) = { /0 T —1/2p<z<2—1/2p,
1 if z=—1/2p.
If 2 < =1/2p, then S(@) 1 3272, A% = c(2).

Suppose that f € H, for some s > 0. It is possible, of course, that f belongs to
H, for all s > 0. This is the case, for example, if f is a finite linear combination of
$i, i =1,2,..., or if (f, ¢;)? decreases exponentially. If this is not the case, then
5 < 0o. Note that f may or may not belong to Hs. If, for example,

)2
(fy‘ls_z) . 1‘ 7 i>9
AZ t(Ing)r
then f € Hs for r > 1 and f ¢ H; for r < 1.
THEOREM 3.1. Under Assumption 2.2, if f € H,, then

o(1), S = U,
A(IfIE = llua =TI < § @7#IAIE,  w<s<p+2,
a2||f||;2¢+27 s2u+2.

In fact, if s > pu+2, then
llua = Z T2 ~ @I F1|Z42-
Proof. We have
7 ua — fIIZ = IIQ’(@+0)‘1f -l =@+ )7 fIE
fa¢z i_ 2 = (fa(bz)z /\:—ll
(3.1) Di+a)? M =@ Z ¢ (Aita)?

- MS"wmmzmwmﬂw
S“"@) 2 L+ GO

where 8 = (a/a;)/?.
Clearly, from (3.1), ||% ua — f|I2 Z 02|\ fII2.
If s = u, then clearly

(e3¢ 2 2
_ 2 _ (f’ ¢z) a
”.%Ua f”u—; /\f ()\,+a)
decreases to 0 as o decreases to 0.
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If p < s < p+2, then it is not hard to verify that the function
ﬂt 4p+2pu—2ps
g(t) = (6t)

(1+(Bt)?r)2 °
has maximum value < 1. Thus,
17 va — fIi, < (az/a1)~#a~#||f||3.
If s > p+ 2, then from (3.1)
17 ua — fIIZ < &®|If11Z42

t >0,

and furthermore
| Z ua = fIIZ ~ I f||242- D

A result similar to Theorem 3.1, under different assumptions, can be found in
[11]. Next we have the following lower bounds.

THEOREM 3.2. Under Assumption 2.2,

a® *F(a), u<s<p+2 (alsos=uf f€ Hs;),
llua = Z £} 2 { o*B(a), §=p+2, f¢Hs
?||fllZyes  5>p+2 (alsos=p+2if f € Hy),

where F (o) satisfies: For anyc > 0 and e > 0, F(a) > ca® for an infinite sequence
of o — 0. Also here, B(a) 1 0o as & — 0 and satisfies B(a) < o | f||%42—-

Proof. Let 8= (a/a3)'/? and N = [1/6] + 1. Then, for any ¢ > 0,

i 2
17 o — f||,‘_azz (0 1 1 (L)

Mo ita? Tas O
(3.2)
1 ax S-ute/2 +e/2 (f7 ¢z
2 (9”(12) ar el ZN ATte/2? et
1=
Now we claim that for any C and 6 > 0,
2N-1
(f,¢i)? -
G(N) = Z /\s+e/2 = >CN~
i=N A

for infinitely many N. If not, then there exists C > 0 and é > 0 such that for all
but finitely many N, G(N) < CN~¢%. Hence, there exists D such that for all N,
G(N) < DN~%. Then

2K
> <ZG2’°><DZ2‘“°

Since the series on the rlght converges, while the series on the left diverges, we have
the desired contradiction.

Putting § = pe and F(a) = of/2G(N) gives the first bound. Note that if
[ ¢ Hs, then we need not have included the exponent €/2 in (3.2). Instead, simply
put 6 = 2pe.

In the case § = p+ 2 and f ¢ Hj,

1% ua — fII}; = &*B(a),
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where clearly

B(a)=;(f’)\‘?) ()\,-—ll—a)z Too asal0

and
B(a) < a”°||flI5 42—
The third bound is obvious from Theorem 3.1. O
Theorem 3.2 cannot be strengthened to read: If u < 5 < u + 2, then for any
e>0
for all sufficiently small . To see this, let 8 = (a/a;)'/?? and
ﬂt\4p+2pu 2ps
g9s(t) = g——z—z,
(1+ (Bt)%)
Then, as in the proof of Theorem 3.1,

H<3<p+2

5— ¢
1700 = 11 < (anfary =+t S~ L ),
=1
Now define a function f as follows: Let k; be an increasing sequence of positive
integers such that J = {j =0,1,2,...: 5 ¢ [k — 1,k + 1], I = 1,2,... } is infinite,
and suppose

(3.4) (fs4:)* _ { . i=2Y jelJ

/\3 ~ o0, otherwise.

Forl=1,2,...,let k =k and B = 2~2". Then, with a = 4p + 2py — 2p5 > 0 and
b =2p5 — 2pu > 0, it is not difficult to show that

Z (fy/\‘ﬁz) 1,) < Zgﬂ 22 )+ Z (221)
i=1 g Jj= k+2

a(ln 2)2 st (ln b(In2)? s’ = 0),

where ¢ = min{a/4p,b/2p}. Thus, for this example, (3.3) does not hold.
With an extra assumption on f, (3.3) does hold.

THEOREM 3.3. Under Assumption 2.2, if 4 < § < u+2 and f satisfies condi-
tion (2.2), then for all sufficiently small

llua = Z I} 2 o*7HFe.

Proof. If N = [(a/a3)~1/?P] + 1, then as in the proof of Theorem 3.2,

17 e f||2—a22 SO

M (N + )?
> aé—u+e/2 (f7 ¢z)
~ /\s+e/2 ’
=N

and the result follows. O
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In Theorems 3.1, 3.2 and 3.3, the bounds cannot in general be improved to have
the exponent of o equal to § — u. To see this for the lower bound, in the case
f € Hs, consider a function f such that

(02 _ 1 o,
AZ tlne’ -

It can be shown that for this example

- 1\ !
as“‘(ln—> , p<s<u+2,

1 ue — 112 o
2 —
Q ln(ln—>, S=u+2.
e
In the case f € Hg, a function f such that
(fa ¢z)2 1 .
— = >2
XN a2 =0
gives -2
a§‘“<lna) , U<3<pu+2,
Fua— s~
In— 5= .
()
For the upper bound, consider a function f with
(f, ¢1.)2 — ll’l_’t
A3 7
Then, .
a®Hln =, U<s<pu+2

o
|Z uo = FIIZ ~ R 1\? B
o (ln E) , S=u+2.
Exact error estimates can be obtained in the following special case.

THEOREM 3.4. Under Assumption 2.2, if f satisfies (f,¢:)? ~ X[, r > u+
1/2p, then §=r —1/2p and

oSH, u<s<pu+2,
lua = Z I~ § o2 In(1/a),  5=p+2,
a?, §>u+2.

Proof. The result follows immediately from (3.1) and Lemma 3.1. O

4. Estimates of the Bias. We begin this section by expressing % un, in a
form suitable for estimation. Define an operator &,, by

@uf(a) = 1 > Qa2 (@)

LEMMA 4.1. For alln and o > 0,
FUung = Gp(@n+ ) 1d = (@, + )" 'C,d,
where d(z) is any interpolant of d. Also,
EZ Uno = Cn(@n+a)  f = (@, + ) '@, f.
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Proof. For any g € H,

n

(@ng:0)m = =3 0(2)(Q(20), 0
=1

= %Zgz(zi) > 0.

=1

Therefore, &,,: H — H is a positive operator. If (&, + a)f = 0 for any function f,
then

(@n(@nf)@nf)u + (@nf,@nf)u =0.

This implies, from above with ¢ = &, f, that &,f = 0. Hence, af = 0 and so
f =0. Thus, &, + o has an inverse.
To see that Z unq = (@n + a)~1@,d, note that from (1.3),

(@n + )T Una(z) = (@n + @) Y_ Q(2,2;)(Qn + anl)~1d,
Jj=1
= Y Q2R 7,) (@ +anD) 4
1,7=1

+a)_ Q(z,2:)(@n +anl)d;

=1

= 13 Q(2,2)(Q@n + anD)(Qn + anD)~1d;

n
=1

=@pd.
Then also Z unq = @, (&, + o)~ 1d, since

(@n+a) Y@ +a—a)d=d—a(@,+a)"'d
= (@ +a—a)(@, +a)"ld

The second part of the result follows by the linearity of expectation E. 0O

It will be shown that under certain assumptions the bias ||EZ unq — f||x can
be bounded in terms of the continuous error ||.Z uq — f||u, wWhich was estimated in
Section 3. We will use the fact that

[NEZ una = fllu = |Z ua = fllul < |EZ tna — F uallu

and estimate the right-hand side.
By Lemma 4.1,

EZ ung — Zua =@+ ) '@ f — (@ +a) '@f
=(@n+a) '@ f— (@ +a) '@, f
+@+a) '@ f-(@+a)'@f
=@ +0) N C-G)C+) '@ f— (@ +a) (@ -C)f
=@+ o) Y@ - @) (EZ una — f)-
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This working shows that (€ + )" (& —&,): H — H, forif g € H, let f =
(1/0)(@n + a)g. Then
@ +0)" (@ -Cg= (@ +a) N @ -G @+ ) af
=@ +a)" Y@ -G (f — EZ una)
=F uy — EF ung
and both # u, and EZ uy,, belong in H.
Now from above,
EF uno — f=EF upa — Fuqg+Fusg—f
=@ +a) Y@ -@)(EF una — )+ Fua— f
and hence,
[I_ (g"'a)—l(g_é:n)](E'%una -1 =FZuq — f.
Note that I — (€ + a)~!(& — &,,) has an inverse, since
- @+ E@-G)=E@+a) @ +a-C+G,)
=@ +a) @ +0)

and this has inverse (&, + a)~1(& + a). Hence, if the sum converges in H, for
some u, then

EF Una—f=[[—- (@ +a) €@ -G)] " (Fua—f)
=Fua—f+ D (@ +) & - G) (Fua— /)

=1

and so

o0
(4.1) EX tne — FHta =Y (@ +0) (@ - @n) (Fua — f).

=1

We need to show that this is small in the g-norm. Intuitively, the difficulty lies

in the fact that the parameters o and n have opposing effects. Clearly, for Z uq to
converge to f, we require that @ — 0 as n — co. Now as n — 00, & — &, in some
sense approaches 0. However, as @ — 0, (€ + a)~! becomes unbounded. Thus, in
order that (& +a)~!(& — &,) approach 0, we can expect that a must tend to 0 at
some specific rate.

LEMMA 4.2. Ifu<2—v—1/2p, then for allge€ H,,
1@ + @)1 @ — @)gllu < VEa (v + pknl|gll,a=CTrFL/0)/2,

Proof. Since H is dense in H,, it suffices to verify the inequality for all g € H.
By definition,

(€ +0)7H @ — @il = 3 (EFLGm Enlendd

=1
i (@ - @n)g, $:)?
A+ a)2X

1=1
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Now,
1 1 n
(@-@ob) =) [ 005D o(@)e) |
=1

and hence by Assumption (2.3),

(& = @)g,8:)| < Aiknllgll 18]l
= Aiknllgllo (00) ™2 = A2kl

Therefore,
00 /\2—1/—/4
(@ +a)7@ = @nlly < Rl Y (3o
By Lemma (3.1), since 0 < v+ pu < 2 —1/2p,
00 /\2—1/—;1, /
[ < —v—p—1 2p.

This proves the lemma. O
LEMMA 4.3. Suppose v <1—-1/4pand p <2—-v—1/2p. Ifa = a(n) =0

and knpa~?~14 0 as n — 0o, then for all n sufficiently large, the resolvent

Roa = S (€@ + o) (@ - &)

=1
s a bounded operator H, — H,, and for allg€ H,,

[|Rnagllu < \/-CE(V+M)kna_(u+u+l/2p)/2||9||v‘
Proof. If the sum converges, then for any g € H,,

| Rnagllu < D 1II@ + @)@ = @)l gl

=1
Since v < 1 — 1/4p, we can let 4 = v in Lemma 4.2 to obtain
(@ + )" H@ — @n)glly < Vez(20)knllgllom /4P

Hence, by induction,

N[(@ + )" (@ ~ @) gl

< Ve (u+ v)kna” TR ]|, (/23 (20 kna v T 4P)
Since k,a~¥~1/4 — 0, we have
Vez(2v)kna™v 4P < 1/2

for all n sufficiently large. Therefore, for such n,
oo
Y ll@+0) (@ - @)l
=1

= Vea(v + pkna” VHHFEO) ]|, (1 — /e3(20)kna T/ 4P)
= Vea (v + wkna™ W THHR2| g, (14 o(1)).
Since by definition (/c2(v + p) = \/c2(v + u)(1 + o(1)), the lemma follows. O
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Applying Lemma 4.3 to (4.1) gives
H1EZ una = fllu = || ta = fl|ul
(4.2) < ”E'%Una - %ua”u
< V(v + Whno= U2 0 .

By Theorem 3.1, if f € H,, s > max{v, u}, then the right-hand side e(a) of (4.2)
satisfies

o(1), s=v,
e(0) S kna VTV IQM BT St 22 1] v <s <2,
of|fllv+e, s>v+2.

By examining the exponents, if 4 < v then
s/2=u/2 <s<pu+2
< 3o A—V—1/4p o ’ vsssp )

o(@) = kno {a, s> p+2,

and if 4 > v then

kna—u—1/4pas/2—u/2, M <s<v+ 2’
e(a) < { kpa=v/2-1/2-1/4ps/2-p/2 v+2<s<pu+2,
kpo~V/2—#/2=1/4pq s> p+2.
Hence, from (4.2), if as n — oo
(4.3) kna~v—1/4 when u <vorwhen uy>v, u<s<v+2
and
(4.4) kna~V/27#/2714 0 when p > v, s>v+2,
then

(4.5) NEZ uno = fllu = 17 va = fllu

_ [ o(a®/?#/2), s<u+2,

| o(a), s> p+2.

By squaring (4.5) and using Theorem 3.1, we have the following estimate of the
bias squared.

THEOREM 4.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f € H,
where s > max{v,u} and p < 2—-v —1/2p. If o = a(n) — 0 as n — oo so that
(4.3) and (4.4) hold, then

(| Etna “%Tf“i = ||ua "%Tf”z

_Jole™#),  s<pu+2,
~ | o(e?), s> p+2.

From above, if in fact o satisfies
kna_"_l/4p ~ ad/2, d>0,

then the error estimate o(a*~#) in the case s < u + 2, u < v can be strengthened
to O(a®~#+4). Then, for the function f defined by (3.4),

| Buna — 7 fI[}, < O(a®#F°),

where e = min{d, 1+ u/2 — 5/2,5 — u}. This shows that for the case 5 < u + 2 it
is in general impossible to bound the bias as follows: For any ¢ > 0,

|Buna — Z I}, 2 o5

Nevertheless we can prove the following.
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THEOREM 4.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f €
H,, where s > max{v,u}, < pu+2and u<2—v—1/2p. For any € > 0 there
exists a sequence o = a(n) — 0 as n — oo such that

|| Etna _'%Tf”i e

Proof. By Theorems 3.1 and 3.2, for any € > 0 there exists an infinite sequence
of & — 0 such that

we  Twe=SIE o s Sminfuu) 42
17 ua — fII2 akt2=5-¢ min{v,u} +2<3< u+2.
Substituting these inequalities into (4.2) yields
(4.7) HIEZ una = fllu = [Z va = fllul < allZ ua = fllu,
where
u < kno~v—1/4p—¢, 5 < min{v, u} + 2,
~ | knpolTv/2-8/2-1/4p=¢/2 min{v,u} +2 <5< u+2.

Now the sequence of & — 0 can be chosen to make a = o(1). For, if the sequence
converges to 0 too quickly, then by simply repeating an appropriate number of
terms, a new sequence can be constructed which does satisfy the constraints. The
result follows from (4.7) and Theorem 3.2. O

THEOREM 4.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f €
Hg, where s > max{v,u} and p < 2 —v —1/2p. If f satisfies condition (2.2) and
a=a(n) — 0 asn — oo so that (2.3) and (2.4) hold, then

[|Euna _%Tf“u = ||ua _%Tf“u(l +0o(1)).

Proof. By Theorems 3.1 and 3.3, the bounds (4.6) and hence (4.7) are valid for
all sufficiently small . This proves the result if 5§ < u+ 2. If § > u + 2, the result
follows from Theorems 4.1 and 3.1. O

5. Estimate of the Variance. Although not essential, the first result is of
interest here.

LEMMA 5.1. Let .
f24) = (@ +0) ' Q(z,Y)
and

5:(4) = ~ (@ + ) Q)

where (@, + a)~! acts on Q as a function of its first variable. Then for each
k=1,2,...,n,

for(¥) = 02, (y) = T uin (¥)-
Here, uk , is the regularized solution with data
d* =(0,...,0,1,0,...,0),

where the 1 is in the kth place.
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Proof. By Lemma 4.1,
Tk, (y) = (@ + o) @, d*

= (@ +a) Y QU z)dt

i=1

= %(gn + a)_lQ(yvzk) = Gz, (y)

Also, from Lemma 4.1,

'%ufwz (y) =

I

-
Il
-

Q(2i,y)(Qn + anl)~'d¥

[
M=

(@n + omI);:ilQ(zi, y)

@
Il
—

p—t

= ~(@+0)7'QzkY) = fur(v). O
Now we derive the following expression for the variance (1.7).
LEMMA 5.2. We have
n
E||.%una — E%unallz = 02 Z ||Fk||/2u
k=1
where Fy = fz, = gz, = Fuk,, from Lemma 5.1.

Proof. Using Lemma, 4.1 and Assumption 2.1 about the errors &; = d; — f(z;),
we get

E||F tna — EF unall2
= E||(@n + &) ' @n(d - NIIZ

2
a1l
=El(@n+a) 1;; ;Q(',xi)% )
= iél (%(gn + a)_lQ('a z'i), %(@)n + a)_lQ(‘, ZE]‘))” Esisk

n
o? Y IR o
k=1
Of the three possible forms of F}, we will use

Fi(y) = 9au (4) = ~ (@ + ) Qy, 1),

It will be shown that (&, +a)~'Q(y, zx) can be approximated by (Z+a) "1 Q(y, zk),
and this will lead to an estimate of the variance.

Corresponding to Lemma 5.1, it is not hard to show that for all z,y € [0, 1],
(@ +0)7'Q(z,9) = (@ + )7 Q(y, 2),

where (€ + a)~! acts on @ as a function of its first variable. Note also that
(@ + a)~'Q(y, zx) can be thought of as Fus(y) = (€ + @)~ '@ f(y) with data
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f(z) = 6(z—zx), a Dirac delta “function”. In the case of data smoothing with W =
w™2(0,1], (€ + @) ~1Q(z,y) is the Green’s function of a certain linear differential
operator. This fact was exploited by Cox [4].

Proceeding as in Section 4,

(@n + )7 'Q(y, zx) — (€ + @) ' Q(y, zk)
=(@+0) @ - @) (@n + )" Qy, )
and hence
- (@+0)" 1@ - @)@+ ) ' Qy, zx) = (€ + ) ' Q(y, zx).

Since

(@ +0)7'Qy,2k) = —(@ + o — @) (@ + 0) "' Qy, 2x)

RImQ|+

Q. 2x) - €@ + ) Qy, ),
(@ + a)~'Q(y, 7x) belongs to H; and hence to H,. Then by Lemma 4.3,
(@0 + )7 'Q(y, 2x) — (€ + ) ' Q(y, k) = Rna(@ + 2) ' Q(y, zx)
and
1(@n + )~ Q(y, zx) — (€ + @) ' Q(y, zk) ||
< Ver (v + pkna” CHEHR| (@ + 0) 1 Q(y, zk) |-
From the expansion of Q(z,y) it is easy to verify that

(5.1)

@+ 07 Qua) =3 (52 ) dweilan),

where the sum converges uniformly for any o > 0. Therefore,

[e ] ) 2 2
(6:2) I+ @ anl =2 (55a) 5

By Assumption 2.3,

1 - 2 ! 2
2 dile) - [ otas

1 n
RO BLACHRS
" k=1

(5.3)

Hence, combining (5.2) and (5.3), we get

LSS @+ o Quanii -3 () 4
n Yo Zh)llu 1 Ait o /\f

(5.4) o NS =
i ()
Let
Ac=l@+ )7 QW ze)llu, - Br =€ +.0)7'Qy, ze)llu
and

Ck = V&3 (v + wkna™ CHHD2|(@ + a) 71 Q(y, k)|,
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Using (5.1), we have

n n
> A=) B

k=1 k=1 k=1 k=1
n n
(5.5) <D Ci+2)  BiCy
k=1 k=1

Fer(Em) (Ser)

Now from (5.4) and Lemma 3.1, since p < 2—1/2p and v + ¢ < 2 — 1/2p, we
have

1 n
6:) 2 D BE2 e~ hnealy
=c1(wa#?(1—¢),
where
€ = (ca(v + p)/c1(w))kna™ = o(1),

since k,a~?~1/4? — 0. Also, from (5.4) with 4 = v, and from Lemma 3.1, since
v <1—1/4p, we have

1 & - 1
. Z = co(v + p)k2a~ (vHu+1/2e) = Z (€ + )~ 1Q(y, zx)||2
(6.7) k=1 gt
< ca(V)ea(v + wkZa~ 2 HP(1 4+ 6),
where

6 = (c2(2v)/ca(V))kna™ = 0o(1),

since kn,o~v~1/4 (.
Substituting (5.6) and (5.7), we find that

Z Ck/ Z B < (ca(v)ea(v + p)/er () kaa™2 =Y/ (1 + o(1))
k=1
=o(1),
since k,a~¥~1/4P — 0. Using this in (5.5) yields
n n
(5.8) > A} =) Bi(1+0(1)).
= =1
From (5.4) and Lemma 3.1, we have
n
(59) ex(W)ah 1 < 237 BY < oo,
=
since by definition, ¢1(u) = ¢1(#)(1 + o(1)) and co(u) = c2(u)(1 + o(1)).

Combining (5.8), (5.9) and Lemma 5.2, we have the following estimate of the
variance.
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THEOREM 5.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold and p < 2—v—1/2p.
If o= a(n) — 0 and kna=?~1/4" — 0 as n — oo, then

2 2
0 -_— p— U _ _
cl(,u)_.n a k12 < E|luna — Euna”Z < 62(.“')‘7?01 u—1/2p
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