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Interpolation by Multivariate Splines 

By Charles K. Chui*, Harvey Diamond**, and Louise A. Raphael** 

Abstract. A general interpolation scheme by multivariate splines at regular sample 
points is introduced. This scheme guarantees the local optimal order of approximation 
to sufficiently smooth data functions. A discussion on numerical implementation is 
included. 

1. Introduction. In this paper we introduce a very general interpolation 
scheme by multivariate splines. Based on the quasi-interpolation formulas devel- 
oped in [3], we show that the interpolating multivariate splines so obtained give the 
optimal order of approximation to sufficiently smooth functions. 

Let q be a nonnegative locally supported piecewise polynomial function sym- 
metric with respect to the origin, and S the linear span of all the translates q(. -j), 
j E Z8, of q. Hence, S is a multivariate spline space on a certain grid partition A, 
with certain smoothness joining conditions, and of certain total degree, induced by 
q. Denote by q the Fourier transform of q. We assume that q is normalized, that 
is, 

E (j) 

and that S contains irp, the space of all polynomials in R' of total degree p. This 
is equivalent to the assumption that the commutator of X is of degree p (cf. [4]), or 
that q satisfies the Strang and Fix condition of degree p (cf. [6]): 

( 1 ) { D~q~42wj)=O, D0(2j) =,,p. 

The equivalence of these conditions is shown in [4] (see also [1]). 
The interpolation problem we are going to study can be stated as follows: Let K 

be a compact set in R' and f E C(K). For any h > 0, consider the sample points 

Ph = {jh E K: j E Z8} 

on K. The problem is to find an Sf,h in 

Sh = {s(./h): s E S} 

such that 

(2) Sf,h(Y) = f(Y), y E Ph, 
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and that the order of approximation of 8fh is optimal, namely 

(3) 11Sf,h - fHK = 0(hP+l) 

for all sufficiently smooth functions f, where for convenience we only consider the 
supremum norm over K. Interpolation problems of this kind have been studied in 
particular cases, notably for the quadratic box splines M1,,1,, and a class of cubic 
C' splines in [7] and [8]. Our techniques are applicable to splines in any dimensions, 
and our results can be applied to the cases mentioned. 

Let Sh,K denote the linear span of those functions of./h-j) whose supports have 
nonempty intersection with K. Then Sh,K is a subspace of Sh, and of course, the 
interpolant Sf,h is chosen from Sh,K. We note, however, that since the dimension of 
Sh,K, denoted by dim Sh,K, always exceeds the cardinality of the set Ph of sample 
points, denoted by cardPh, the interpolant Sf,h is certainly not unique. It should 
be remarked that in most situations, such as a closed polygonal region, a sphere, 
etc., we have 

dim Sh,K card Ph. 

Out of all interpolants of f from Sh,K (or Sh), we are required to choose an 8f,h 

that gives the optimal order of approximation to f as described by (3), when f is 
sufficiently smooth on some open set Q. K C Q. We will see that the requirement 
on the smoothness of the data function f depends on the zero set of the discrete 
Fourier transform of o defined by 

(4) b(w)- = o1:(j) e" w E RW. 
jEz8 

The importance of the positivity of 4 to interpolation problems is well known; 
indeed it is equivalent to the existence and uniqueness of cardinal interpolants for 
bounded data [5], [2], [4]. For our problem we show that if the function f is in the 
class 

(5) CP 1(Q) {g E CP(Q): Dqg E Lipo(1), jal = p}, 

where, hereafter, Q is some open set containing K, then the optimal order of approx- 
imation in (3) can be obtained. There are in addition, however, important cases for 
which 4 is not strictly positive, such as Zwart's quadratic bivariate spline M1,1,,1 
and several other bivariate splines whose supports are symmetric and whose dis- 
crete Fourier transforms vanish at isolated points. We are able to show that if 1 has 
isolated zeros, the optimal order of approximation by interpolants is still achievable 
provided that f E CP+21 (Q) and the interpolant is carefully chosen. Finally, we 
will show that if 1 becomes negative, vanishing on a manifold of dimension s - 1, 
then the condition f E CP+H+1,1(0) is sufficient for constructing interpolants with 
optimal order of approximation. The results for 1 > 0 and 1 having isolated zeros 
seem fairly sharp, given their generality and the analysis that leads to them; while 
the result for the remaining case is merely intended for sufficiency. We point out 
that little is known about the positivity of 1 in dimensions higher than two. In 
two dimensions there is a simple characterization, namely: For box splines 1 the 
positivity of 1 is equivalent to the (infinite) linear independence of the functions 
4(. -j) (cf. [2]). 
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In the last section we show how interpolants can be rapidly calculated iteratively 
if 1 is positive and that, regardless of the sign of 1, quasi-interpolants with the 
optimal order of approximation and satisfying the interpolation equations to an 
arbitrarily high order in h can be obtained. 

2. Main Results. In the above discussion and analysis that follows, elements 
of R' and Z' are denoted by boldface type, such as x, w and j, k, respectively. 
Functions defined on Z8, or a subset of Z8, are denoted by upper case letters, 
e.g., 4, C, I, and their point values are accessed using the customary functional 
notation, such as 4(k). Given two functions A and B defined on Z8, their product 
is defined as convolution: 

(6) (AB) (k)_ A(k-j)B(j), 
jEzs 

assuming of course that the required sums exist. The dot product of two elements 
of R8, say w and j, is denoted by w j. 

The discrete Fourier transform of a function on Z8 is denoted by a tilde. Thus, 

A(w) _ A(k)eiwk. 
kEZn 

For each h > 0, an element Sh of the spline space Sh generated by q takes the form 

Sh - cj O(x/h - j). 
JEzs 

The interpolation conditions (2) become 

(7) Ecj 0(k-j)=f(hk) hkEK. 
jEzs 

We define the functions C and 4 on Z8 by 0(k) = Ck and 4(k) = q(k). The 
function Fh is defined by 

F (k) { f(hk) if hk is in the domain of f, 
F otherwise. 

The equations (7) can then be written (using commutativity of convolution) as 

(8) (40C)(k) = Fh(k), hk E K. 

Our analysis proceeds from here, following the operator method introduced in 
[3]. We decompose 4 as I - M, where 

{ if k = 0, 
I(k)= otherwise, 

so that I is the multiplicative identity. Since E 1(k) = 1 and 41 is symmetric, 
E M(k) = 0 and M is symmetric. It then follows that M can be written as a 
linear combination of second difference operators (thinking of M as an operator via 
multiplication). Indeed, we have 

M = 4 (j)A21 (9) M= 
iso 
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where 
1 if k = j or - j, 

A2 (k) - 4 2 if k = 0, 
0 otherwise. 

(Note that in the present context, A2 is a function on Z8 and acts as a second 
difference operator via multiplication.) 

Our interpolation scheme is in the form of a quasi-interpolant plus a remainder: 

(10) C = (I + M + M2 + + Mn)FhE QFhE, 

for some appropriately chosen n > (p - 1)/2. It was proved in [3] that 

E (QnFh)(k)qo(x/h 
- k) 

JEZ8 

reproduces all polynomials f E ,rp (R8) if 2n > p - 1. We have the following simple 
lemma concerning E(k). 

LEMMA 1. If (4)C)(k) = Fh(k), k E Z8, and hk E K, and if C = QnFh + E, 
then E satisfies (4E)(k) - Mn+'Fh(k), hk E K. Moreover, if f E Cm1'(Q), 

Q D K and Q is open, then Mn+lFh (k) = O(hmin(m+12n+2)), hk E K. 

Proof. Multiplying both sides of (10) by 4 = I - M, we obtain 

Fh (k) = (4C) (k) = (I - M) (QnFh + E) (k) = Fh (k) -Mn+'Fh(k) + (4E) (k), 

and the first part of the lemma follows. As for the second part, if K C Q and 
hk e K, then Mn+'Fh(k) represents a (2n+2)nd-order difference operator applied 
to the function f and evaluated at x = hk. The estimate O(hmin(m+1l2n+2)) then 
follows. O 

From the fact that 

5(Qn Fh)(k)q! (x/h - k) 
reproduces polynomials in irp, it is a standard proof to show that if f E CP' 1() 
then 

f - E(QnFh)(k)q5(x/h 
- k) =0(hP+') 

k K 

Since the actual coefficients C(k) differ from QnFh(k) by E(k), we see that if 
E(k) = O(hP+l) for all k such that o(x/h - k) is in Sh,K, then the optimal order 
of approximation will be attained by 

E C(k)o(x/h - k). 

We are thus faced with the problem of estimating the norm jjE(k)jj0,hk(EQ We 
approach this problem by studying the fundamental functions C*(k) that solve 
)C* =I. 

LEMMA 2. If o$ > 0, then the fundamental function C* satisfying 4'C* = I 
exists, is unique, and has the following properties: 

(a) IC*(k)l < aexp(-blkl), a and b > 0, and 
(b) C* = I + M + M2 + , where Mn satisfies the inequality 
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Proof. Existence/uniqueness and property (a) were observed in [2]. To verify 
Eq. (11), we simply note that (Mn) = (M)n, so that 

IMn (k) I = (2r)8f Mn (w)eiw k dw 
(12) _ I 

< (2Yr)j {1-minQ(W)} dw. 

The representation of C* as the Neumann series in M follows from 
n\ 

(I-M) Ad Mm = I_ Mn+l 
m=O 

and taking the limit as n -- x. 5 
Actually, only property (a) is necessary to provide the order of approximation of 

our interpolation scheme. However, (b) provides an efficient numerical scheme for 
computing C*, and the same technique will be used next to construct a fundamental 
function if 1 has isolated zeros. 

If 1 has zeros, the fundamental function C* is obviously not unique. Never- 
theless, interpolation can be effected on bounded regions and the optimal order of 
approximation attained. The construction of our fundamental function begins with 
an asymptotic expansion of Mn for large n which is uniform in k. 

LEMMA 3. Suppose that in the 2wr-cube W in R8, 4?(w) is nonnegative and has 
zeros at the isolated interior points {w3 } and 1 has positive definite Hessian Hj at 
wj. Then 

M (k) = (2irn)`/2 E B exp (kTHrlk) 

(13) >x 1 + E Poj(n)Qc (>) n 
- 

//2) 

+ 0(n[(m+l)/3]-(m+1+,9)/2), 

where PO,3 is a polynomial in n of degree at most [Jaj/3], and QOF,3 is a polynomial 
in s variables of degree oja. The approximation (13) for Mn is uniform in k. 

Proof. We estimate Mn(k) by estimating the integral 

Mn (w)et" k dw = (2wr)8 Mn (k), 

using the ideas of Laplace's method in asymptotic analysis. The maximum value of 
M(w) is 1 at precisely the roots w, of 4. Outside of any fixed neighborhood of the 
w, Mn(w) is exponentially small (as n -+ x) and the contribution to the integral 

tMn (w)e` dw 

from that portion of W lying outside that neighborhood is likewise exponentially 
small. We consider then the contribution to the integral 

Mn(w)ewJI dw 
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from a ball B(e) of radius e about the root wj. This leads to consideration of the 
integral 

J Mn(Inw + wj)eik(w+w3) dw, 

where B(e) is now a ball of radius e about the origin. It is not difficult to show that 
with exponentially small error, we can scale e with n, choosing e = n-2/5. This is 
because in a neighborhood of wj, we have 

M,(w + wj) < (1 - CIW12)n < exp(-ncn-4/5) = exp(-cnr1/5) 

for some positive constant c, whenever jwj > n-2/5. We note that the exponent 
-2/5 was chosen so that ne2 -x X as n -x X but n63 -+ 0 as n -x oo. Consider 
now a Taylor polynomial approximation for Mn(w + Wj) for w E B(n-2/5). We 
have 

Mn(W + wj) = exp {nlog H1- + a! W m+) 

(14) ja1II 
- exp (nwjw) {i+ E p,(n)S+ (n[(m+l)/3] WIM+) 

where P,(n) is a polynomial in n of degree no larger than [lal/3], and m is an 
arbitrary integer. The above expression must be integrated against eik (w+w3) over 
the ball B(e) about the origin. If we consider integrating term by term, we see 
that the integrals may be extended to all of R' with exponentially small error in 
n. This leads naturally to consideration of integrals of the form 

(15) exp (nwHW ) eiw.k W dw. 

A standard result in probability theory, specifically multivariate Gaussian distribu- 
tions, is that 

J (rw T Hw iw.kd (2ir)s/2 (kTHl1k' 

exp 2 e dw =/f /2 exp - 2n J 
The integrals (15) can then be obtained by differentiation with respect to k. These 
derivatives have the form 

/ nwT Hw 
J exp eiw*k wc dw 

(16) 2 / ( (27r)8/2 ( kTHlk) 1 Q&(k/v) 

where Q, is a polynomial of degree jal, with coefficients independent of n and 
k. Finally, we consider the contribution of the remainder term in (14) involving 

O(Iwlm+l) to the integral 

f () MIn (, + wj)eik. (w+wW) dw. 
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Since Iewk = 1, we can extend the integral back to R' with exponentially small 
error, obtaining 

(17) I exp ( w2 ) eiwkO(Iwm+l) dw = 0(n- (m+l+s)/2 

Combining the previous estimates (14)-(17) we have 

JBX) M1n ( + wj)eik (w+w3) dw 

=eik (2w )/2 exp (- 2T1 + E Poe (n) Q(e n-ilk/21 

+ n (n[(m+l)/3]n-(m+l+s)/2) 

where H, Pa!, Qc, all implicitly depend on j. The above estimate is uniform in k. 
This completes the proof of Lemma 3, for one only needs sum over j and divide by 
(2ir)8 to obtain the desired result (13). a 

If s > 2, then 
00 

EMn 

n=O 

converges to a fundamental function C* by virtue of (13). The asymptotic behavior 
of C* is calculated in the next lemma. 

LEMMA 4. Let s > 2. If 1?(w) is nonnegative and has isolated zeros at a set of 
points w3 where the Hessians Hj of 4?(w) are positive definite, then the series 

00 

ZMn 
n=O 

converges uniformly to a function C* which satisfies (1C* = I and has the asymp- 
totic behavior 

(18) C*(k) = (27r>8-,/2 z -i~ (k Hik 1-/ F i (1 + O(1/Ikl)) 
X (IIH- 2 )2 

for large values of Jkl. 

Proof. We need sum the series (13) over n. We know a priori that Mn(k) = 0 
for n < ciki for some constant c > 0. The last term, 0(n1(m+1)/3I-(m+1+s)/2) in 
(13), when summed from n = ciki to oo, contributes O(IkI[(m+l)/31+(l-m-8)/2). 
The rest of the terms in (13) give rise to a generic sum of the form 

n, n dexp (- 2 

where we have extended the sum down to n = 1 with exponentially small error in 

Iki. Using the Euler-Maclaurin summation formula, one can show that 

v0 e ( kTH-lkk = j f ex (_ kTH-lk d 
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Here and throughout, e.s.t.(.) denotes a term which exponentially decays in (.). 
Transforming the integral via u = 1/x, we have 

E n-rexp ( kTH k) =(kH -k) 1-l 1) + e.s.t.(Ikl). 

The result (18) then follows upon retaining the first term and estimating the re- 
mainder. Indeed, if desired, one can compute a complete asymptotic expansion of 
C* (k) by including additional terms. 5 

If s = 2, then the series 
00 

E Mn 

n=O 

does not converge. Instead, a fundamental function is obtained by subtracting from 
Mn an appropriate solution of the homogeneous system 41C = 0 so as to produce 
a convergent series. 

LEMMA 5. For s = 2 and 4?(w) having isolated zeros, the series 

(19) -n 2ir(n 1) Z ek)) 

converges to a fundamental function C* (k) with asymptotic behavior 

(20) C* (k)= E (2+n (k )) 0(1/k) 

where -y is Euler's constant. 

Proof. Given the asymptotic behavior of Mn in Lemma 3, for large n the terms 
in (19) are 0(n-3/2) so that the series converges. On the other hand, the series in 
(19) represents a fundamental function, since applying '1 to the partial sum from 
0 to m, we obtain 

M ~ ____ eik~wj (r 
(4)) E M 1Hn)) -(4) _ M n)I-mmn+' -+ I 

(n=O ( 2ir(n + l) -IH. I7 ) n=O ) 

as m -- ox. It remains to find the asymptotic behavior. The estimation of C* 
requires the estimation of the sum 

E (ex -kQTH-1k) 1 ) 

or 
00 

E ((l/n)e-a/n - 1/(1 + n)) 
n=O 

for large a. Using the Euler-Maclaurin summation formula we can estimate 
m m 

E (1/n)e-a/n = ] (1/x)e-a/ dx + 0(1/m) + e.s.t. (a) 
(21) n=O 

= j (1/u)e-6 du + 0(1/m) + e.s.t.(a), 
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and integrating by parts, we have 

Z(1//n)e-a/n = ln(m/a)(1 + 0(1/m)) + f lnue-u du + 0(1//m) + e.s.t.(a). 
n=O /m 

On the other hand, 
m 

E 1/(n + 1) = ty + ln(m) + 0(1/m). 
n=O 

We then obtain 
m 

lim Z { (1/n)e-a/n - 1/(n + 1)} 
n=O 

(22) too 
(22)- -Ina+ fIn ue- udu + e.s.t.(a) 

=--2 -lna + e.s.t.(a). 

Using (22), we obtain 

C*(k) = {Mn(k) - 2r(r+ 1) E } 

= E-eikw1 2 (2-r+In (kTHX k)) +0(1/Ikl). 

Again, higher-order terms in an asymptotic series for C* can be easily calcu- 
lated. 5 

The next case to consider is when 4(w) becomes negative for some values of w. 
Our bounds on the fundamental function in this case are not sharp and we do not 
have as pleasing a representation for the fundamental function as in the other two 
cases. Nevertheless, our bounds will be adequate to furnish a smoothness require- 
ment of f which leads to the optimal approximation order upon interpolation. 

LEMMA 6. Suppose that the set {w: 4?(w) = O} is a manifold of dimension s -1 
on which the gradient of '1 does not vanish. Define the function C* by 

00 

C* (k) = (2ir) -' E fg ,Mn (w)eik w dw 

(24) n=C ( J(W)>0} 
(2 - M(w))neik w dw) 

where the regions of integration are subsets of the 2wr-cube W. Then C* is a funda- 
mental function satisfying 41C* = I and C*(k) = 0(IkI). 

Proof. When 4(w) = 0, M(w) = 1, and if b < 0, then we have M > 1. Consider 
first the behavior of 

X M~~n (w,)e ik "' daz 

for large n. M is less than one over the region of integration, so that with expo- 
nentially small error the region of integration may be changed to {O < 4(w) < E}. 
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The integration is performed by making a change of variable so as to integrate first 
over the level surface M(w) = u and then over 1 - E < u < 1. This leads to the 
iterated integral 

fl 
un 

f 
{ 

eikw J(w, u) dw_1A du, 

Ju=i-elJ M(W)=u 

where J is the Jacobian of the transformation. Let the inside integral be denoted by 
F(k, u). Because of our assumption that the level set '1 = 0 is an (s - 1)-dimensional 
manifold on which the gradient of 4$ does not vanish, 

IF(k, 1) - F(k, u)I = O(IkI)I1 - ul or F(k, u) = F(k, 1) + O(IkI)(1 - u). 

Substituting and using integration by parts, we obtain 

I l F ~ k , 1) _ (IkI) f' 
u( F(k, u) du = un+ 1 du + e.s.t.(n) 

(25) Un- ?+1 ?+jj _ 

F(k, 1) + 0(jkl/n2). 
- -+1 

Likewise, consider the integral over the region 1(w) < 0 in (24). If we set 2-M = u 
and again integrate first over level surfaces of 1, we obtain the integral 

f1 un {|IM eikWJ(w, 2 - u) dw8_1 } du = j unF(k, 2 - u) du, 
u=1- M (w) =2-u u - 

and upon integration by parts it becomes 

(26) F(k, 1) + 0(Ikl/n2). 

Consider now the definition of C* in (24). The leading terms in the two integrals 
cancel, so that for large n the terms in the sum are O(n-2). Therefore, the series 
converges and the convergence is uniform on compact subsets of k. Applying '1 = 
I - M to the partial sum of the series, we can take it inside the integrals and apply 
it to the exponentials, obtaining 

- / ln (Wj( - M M))) {(1 (1-Mw))) d-} 
{$>01 n=O0 

'$<01 n=O0 

f| (1- Mm+1 (w)) dw+ {1 - (2-M(w))m+l} dw 

(2wr)8 as m -- ox, 

showing that (24) does indeed define a fundamental function. 
As for the asymptotic behavior of C*, the terms in the sum in (24) were shown 

to be O(Ikl/n2), so that the sum is O(IkI) as desired. O 
Having obtained the required estimates for the asymptotic behavior of the fun- 

damental functions associated with the different classes of 1, we can now prove our 
main result. 
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THEOREM 1. Let f be a function of class Cm'l(Q) as defined in (5), where Q 
is an open set in RI and K a compact subset of Q. Suppose that f is interpolated 
by the spline Sh on K as in (7), where the coefficients C(k) = Ck are given by the 
interpolation scheme C = QnFh + E and E is chosen as follows: 

case A) If 4?(w) > 0 for all w, then 

(27) E(k)= E C*(k j)Mn+lFh(j), 
hjEK 

where C* is given by Z' 0 Mi. 

case B) If 4?(w) > 0 and zero only at isolated points where its Hessian is positive 
definite, then for s > 2, E is given by (27) and C* is again given by ZE-0 Mi. 

case B') If 4?(w) > 0 and zero only at isolated points wl where its Hessian is 
positive definite, then for s = 2, 

E(k)= E (2lnNEeik 1 +C*(k-j)) M + hF (j), 

where C* is given by (19) and N = h- diamK. 
case C) If 4?(w) = 0 on a manifold of dimension s - 1 where the gradient of '1 

does not vanish, then E is given by (27), where C* is defined by (24). 
Then, 

f- ckO(x/h-k) =0(hP+1) 
k .K, oo 

provided that f satisfies the following smoothness conditions and n is as given: 
For case A, f E CPe1 and 2n > p - 1; for cases B and B', f E Cp+2,1 and 

2n > p+ 1; for case C, f ECP+s+'' and2n > p+s. 

Proof. In view of the remarks following the proof of Lemma 1, we need only show 
that E(k) = O(hP+l) in each of the four cases. In case A, owing to the exponential 
decay of the fundamental function, Mn+lFh = O(hP+l) is sufficient to guarantee 
this. In case B for s > 2, C*(k) = O(IkI2-I), so that if Mn+lFh = O(hP+3), then 
we have 

E(k) = E C* (k -j)Mn Fh(j) = O(hp3) E 1k -i12 
hjEK hjEK 

= O(hp+3) li12-8 = O(hP+3)0(N2) - (hP+'). 
jl<N 

In case B' we obtain, by similar inequalities, 

E(k) = O(hP+3) E 0 (lnlj ) - O(hP+3) fln (-) r dr 

= N2O(hP+3) = 0(hP+') 

In case C the relevant estimate becomes 
rN 

E(k) = O(hP+ +2) E ?(Ojj) = O(hP+8+2) (r)r'- dr 
ljl<N 

= (hP+8+2)N8+1 = O(hP+l) 

as required. This completes the proof. O 
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In case A, the interpolation problem is exceptionally stable. Basically, any 
bounded interpolation operator gives the optimal order of interpolation as shown 
in the next theorem. 

THEOREM 2. Suppose 4(w) > O, f E cP"1(o) n C(QI), o open. Further- 
more, suppose that the coefficients Ch(k) satisfy ('1Ch) (k) = f (hk), hk E fl, and 

ICh(k)I = O(Iklm), where m > 0 is a constant independent of h; for instance, 
Ch(k) = C*Fh(k) (when f(x) is polynomially bounded). Then, on any compact 
K c Q, 

f- Ch (k)q$(x/h - k) = (hP+ ). 
k oo, K 

Remark. We do not require that Q be bounded. 
Proof. For compact K c Q, we need only show that the coefficients Ch (k) differ 

by O(hP+l) from those of the quasi-interpolant, QnFh(k), for all k such that 

hk E K+ {_ hk: q$(x/h - k) 0 0 for some x E K}. 

We may assume that Ch is defined for all k; and where it is not defined, we set it 
to be zero. Since Ch is the cardinal interpolant of 'Ch, we have 

Ch(k) = EC* (k-j)bCh(j). 
j 

Now C* = I +M +M2 + +Mn + E* = Qn + E*, where E* = C*Mn+l. We 
compare Ch(k) with QflFh(k) for hk in K+ and obtain 

Ch (k) = E Qn (k -j)Ch (j) + E C* (k-j)Mn+loCh (j). 
j j 

If hk E K+, then the first sum may be restricted to hj E Q, since Qn is local, and 
then for hj E Q, J?ChO(j) = Fh(j), so that 

Ch(k) = QnFh(k) + EC* (k-j)Mn+1 bCh(j), hk E K*. 

Define e = inf{Ix -yl: x E K, y 0 Q}. Let Q2' be a covering of K with balls of 
radius e/2. Then in the above sum, we have 

Mn+ l ?h(j) = O(hP+l) for hj E Q'F. 

For hj 0 ?2', hk E K+, 

E C*(k-j)Mn+l Ch(j) < E O(e bIlkijj)O(jIm) = O(e -1/4h). 
hj, Q' Ik-jI>E/2h 

We then obtain 

Ch(k) = QnFh(k) + E C*(k-j)O(hP+l) + O(e-be/4h) = Q Fh (k) + O(hP+') 
hjEQ' 

for hk E K+. This completes the proof of the theorem. C 

Of course, a simple method of choosing interpolation coefficients to satisfy the 
hypotheses of Theorem 2 is to define f(x) = 0 outside its original domain and then 
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choose for Ch the cardinal interpolant. Naturally, only those coefficients whose 
corresponding splines '1 have support with nonempty intersection with f! need be 
calculated. In Section 3 we present an iterative interpolation scheme which does 
not require precomputation of C* (k). 

We close this section with a final remark concerning the smoothness requirements 
in Theorem 1 leading to the optimal order of approximation. In cases B and B' of 
the theorem, where cardinal interpolation is not unique, it may be the case that 
not only is 

E eW"' k 
q(x/h - k) = 0 

k 

when x is at a grid point, but the sum may be identically zero. If this is the case 
at all the zeros w3 of A, then the smoothness requirement can be decreased by one 
derivative. We have the following 

THEOREM 3. In cases B and B' of Theorem 1, if 

E eiW k (x/h - k) = 0 
k 

for all x, then the condition f E CP+1'1(Q) is sufficient to guarantee that the 
interpolation scheme gives the optimal approximation order. 

Proof. In the proof of Theorem 1, the smoothness requirements were obtained 
by requiring that the remainder E(k) was O(hP+l) for all relevant k. Given the 
hypotheses of this theorem, we can do better by considering the size of 

e(x) = E E(k)qo(x/h - k) 
k 

for x E K. For case B, we make use of the definition of E(k) in (27) and interchange 
summations of k and j, obtaining 

(28) e(x)= ( Mn+1Fh(j)EC*(k -j)?(x/h-k)) 
hjEK k 

The inner sum may be rewritten as 

EC*(k-j)q$(x/h-k) =EC*(k)q$ (x hih -k 
k k / 

From (18), giving the asymptotic behavior of C*(k) in case B, we see that C*(k) 
is a sum of terms of the form 

aeiw k(kTH-1k)1-8/2[1 + O(1/IkI)], 

where w is a root of 1, and the sum is over the roots w of 1. Consider then the 
sum 

E(kTH-lk)1-8/2eiwkq (x -jh - k) 
kh 

The number of nonzero terms is finite and occur for k in a neighborhood of (x/h-j). 
This would lead to an estimate of O(Ix/h _j12-) upon first glance. However, by 
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the assumption of linear dependence of the translates of q$, we have that for each 

xi 

Eeiwkq x(-hj _k) =0. 

From this it follows that 

E (kTH- l k) 1-8/2eik q ( x hj - k) = 0(Ix/h -iIl'-8) 

and finally 

E C* (k -j)q(x/h -i) = O(Ix/h -i 1 -8) 
k 

Using this estimate in the expression (28), we have 

e(x) = O(hP+2)0 (E il) = O(hp+2)O(N) = O(hP+l) 
ljl<N 

as required. A similar analysis applies in case B' and leads to the same result for 
e(x). a1 

We remark that the quadratic Cl spline M1,,1,, is an example for which the 
theorem applies, since the fact that 

(-l)jkjq(x - k) = 0 
k 

for all x corresponds to the existence of the root w = (7r, r) of 1. 

3. Some Remarks on Numerical Implementation. Owing to their sta- 
bility when used to interpolate, splines for which 1(w) > 0 seem most desirable 
from a computational viewpoint, given Theorem 2. One simple implementation 
of an interpolation scheme is to precompute C* from the infinite series EM' 
or from the recursion C* = I + MC*, Co* = 0. Since C*(k) decreases expo- 
nentially in Ikl, its effective support is local and, in any case, one need only store 
C* (k) for a set of values of k sufficient to calculate the interpolant, with coefficients 

C(O) = EhkEj C*(i - k)f(hk), for those j affecting the approximation. 
A more direct iterative method for computing an interpolant is given by the 

recursion C(n+1) = Fh + MC(n), C(o) = 0, where C(n) denotes the nth iterate and 

C(n) = En MmFh -- C, the interpolating coefficients. Of course we are calculating 
the cardinal interpolant of Fh here, and while the values of the coefficients in the 
interpolating region K will in practice converge quickly, this method still requires 
that values of coefficients be maintained for splines q$(x/h - k) whose supports 
do not intersect Q! and in fact may be a considerable number of grid nodes away. 
Instead, we will show that an optimal interpolant (i.e., one that satisfies Theorem 
2) can be obtained by defining C(k) = 0 for hk 0 Q! and performing the iteration 

C(n+1)(k) = Fn(k) + MC(n)(k) only at those k such that hk E QI. 

THEOREM 4. Suppose 1(w) > 0, Q is an open set and f satisfies the hypotheses 
of Theorem 2 and is bounded on Q. Then the recursion 

C(o) (k) = 0 for all k, 

(29) C(n+1) (k) = f (hk) + MC(n) (k)I hk E QI. 

C(n+i)(k) = 0, hk Q 
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converges to a vector C of coefficients satisfying (1C(k) = f(hk), hk E Q, and on 
any compact subset K of2, I.f - Zk C(k)q$(x/h - k)llooIK = O(hP+'). 

Proof. Consider the linear operator MQ defined as follows: If A is a function on 
Z8, then 

f MA(k) if hk E Q. 

We calculate an upper bound on the norm of MQ relative to the 12 (Z8)-norm. We 
have 

(30) IIMn(A)1112(zs) < IIMA1112(zs) = II1Al241L2[-.,.]s < rIIAI1 2 zs(Z 

where r = maxM(w) and we have used Parseval's equality to equate II 1112(v) and 
I HI [L2r[-,] (under an appropriate normalization). 

Let C(J) denote the nth iterate of (29) when 
(n) 

1 if k=j _I(k 
f (hk){ othek) 

0 otherwise 

Then, for hj E Q., 

C(J) = IJ + MQ (IJ) + M2 (Ij) + + Mn(IS). 

Now, IIMQn(Ij)Ijoo < IIMn(I)Il2(zs) < r n, and since M is locally supported, we 
have for some constant a 

{rn if li-ki ?an, 
(31) jMn (Ij ) (k) | < 4 0 if li-kI > an. 

For general data f(hk) we can write for the iterates C(n) 

C(n (k) = C(j)) (k) f (hj), 
hjeQ 

so, if m > n, 

IC(m) (k) - C(n) (k) I < 11f 110 , IC )(k) - C (J) (k)I 
hjeQ 

? 11f ljol E E jM'(Ij)(k)j < 11f 1100,0 M '(Ij)(k)j 
hjEEQt=n t j 

m 

?11 11 ,Q E(2at)"rt (using (31)) 
t=n 

? I1f looQna(n + 1)8rn, where Ol is a constant. 

Thus, C(n) (k) converges uniformly in k, geometrically in n to a solution C of 
')C(k) = f(hk), hk E Ql. Moreover, the previous calculation shows also that 

IC(k)l < clIfIloo,o, where c is a constant independent of h and Q and k. Theorem 
2 can then be applied and shows that the spline with coefficients C(k) gives the 
optimal approximation order. This completes the proof. 0 

Actually, it is not difficult to modify the proof to show that if f(x) is merely 
polynomially bounded, the recursion (29) will converge to a vector of coefficients 
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C(k) interpolating f on Q, yielding a spline with optimal approximation order on 
compact sets. 

The assumption of zero coefficients for B-splines whose centers lie outside Q 
will probably lead to poor performance in the approximation near the boundary of 
Qi. If one desires an interpolant giving a uniformly good approximation on Q2, the 
following procedure could be used: 

(a) "Pad" the data around the boundary of Q1, using either known values of 
f (x) or extrapolated values giving O(hP+') error. (This of course assumes that 
f is sufficiently smooth on Q to allow the extrapolation.) The "padding" should 
be sufficient that the quasi-interpolant QnFh(k) (see (10)) can be computed using 
only original or padded function values at all those k whose corresponding B-splines 
q(x/h - k) affect the approximation on Q. 

(b) Writing the desired coefficients in the form C = QnFh + E, we have (DE(k) = 

f(hk) - bQnFh(k)I hk E S2, as the equation to be satisfied for interpolation. 
One then sets E(k) = 0 for hk 0 'a and applies the recursion (29) to compute a 
solution. Since the proof of Theorem 4 shows that IE(k)I < clIf(hk)-bQnFh(k)IIo, 
for hk E Ql, and this quantity in turn is O(hP+'), the coefficients C(k) differ 
by O(hP+l) from those of the quasi-interpolant and so yield an approximation 
uniformly O(hP+l) in error on Q2. 

As a final remark, we observe that the recursion C(n+ i) (k) = f (hk) + MC(n) (k) 
can be rewritten as bC(n)(k) = f(hk) + C(n)(k) - C(n+1)(k). We then identify 
C(n) (k) - C(n+i) (k), the difference in two consecutive iterates, as the interpolation 
error at the grid point hk. This makes monitoring the convergence of the iterates 
a simple matter. 
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