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Formulae for Jacobi Weight Functions* 

By Walter Gautschi and Sotirios E. Notaris 

Abstract. We study Gauss-Kronrod quadrature formulae for the Jacobi weight function 
w(d) (t) = (1-t) a(1 + t) and its special case a = f = A- of the Gegenbauer weight 
function. We are interested in delineating regions in the (a, f)-plane, resp. intervals in 
A, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes 
and the Kronrod nodes interlace; (b) all nodes contained in (-1, 1); (c) all weights 
positive; (d) only real nodes (not necessarily satisfying (a) and/or (b)). We determine 
the respective regions numerically for n = 1(1)20(4)40 in the Gegenbauer case, and for 
n = 1(1)10 in the Jacobi case, where n is the number of Gauss nodes. Algebraic criteria, 
in particular the vanishing of appropriate resultants and discriminants, are used to 
determine the boundaries of the regions identifying properties (a) and (d). The regions 
for properties (b) and (c) are found more directly. A number of conjectures are suggested 
by the numerical results. Finally, the Gauss-Kronrod formula for the weight w(al/2) is 

obtained from the one for the weight w(ca), and similarly, the Gauss-Kronrod formula 
with an odd number of Gauss nodes for the weight function w(t) = ItlV(1 - t2) C is 
derived from the Gauss-Kronrod formula for the weight w(a,(l+y)/2). 

1. Introduction. A Gauss-Kronrod quadrature formula for the (nonnegative) 
weight function w on [a, b] is a quadrature formula of the form 

b n n+1 

(1.1) b (t)w(t) dt = E ovf (,) + E of(T +RnMI 
V=1 /=1 

where rv = T(n) are the Gaussian nodes (i.e., the zeros of irn(; w dt), the nth degree 
(monic) orthogonal polynomial relative to the measure da(t) = w(t) dt on [a, b]) and 
the nodes = * (the "Kronrod nodes") and weights ov = a An) XZ = 0Jn)* are 
determined such that (1.1) has maximum degree of exactness 3n + 1, i.e., 

(1.2) Rn(f) = O. all f E P3n+ 1 

It is well known that must be the zeros of the (monic) polynomial 7r*+1 of degree 
n+ 1 orthogonal to all polynomials of degree n with respect to the "weight function" 

(1.3) w*(t) = inr(t;wdt)w(t) on [a,b]. 

Even though 7rn, and hence w*, changes sign on [a, b], it is known that 7r*+, exists 
uniquely (see, e.g., Gautschi [3, Section 3.1.2]). There is no guarantee, however, 
that the zeros of Xr+1 are inside the interval [a, b], or real, for that matter. 
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Our interest here is indeed in obtaining precise information about the reality and 
location of these zeros, as well as the positivity of all weights. We are studying 
these questions in the case where w is the Jacobi weight function, 

(1.4) w( ")(t) = (1 - t)I(1 + t)0, -1 < t < 1, a > -1,13 > -1, 

or its special case, the Gegenbauer weight 

(1.5) w,\(t) = W(,\-1/2,X-1/2)(t -1 < t < 1 > >-2 

We say that the nodes of (1.1) interlace if they are all real and, when ordered 
decreasingly, satisfy 

(1.6) -00 <Tn~? <T< < *< < T1 < T < 00. 

Our objective is, for each fixed n = 1, 2, 3,..., to determine domains of the param- 
eters a, 3 and A, respectively, in which either of the following properties holds: 

(a) The nodes Tv, TZ interlace. 
(b) All nodes Tv, TZ, in addition to satisfying (1.6), are contained in (-1,1), 

i.e.,-1 < Tn*+? and Tj < 1. 
(c) The nodes interlace and each weight oa, is positive. (The positivity of UZ 

is equivalent to the interlacing property; see Monegato [5, Theorem 1].) 
(d) All nodes, without necessarily satisfying (a) and/or (b), are real. 

To answer these questions, we start from the known fact (see, e.g., Gautschi 
[3, Section 2.1.2]) that all properties (a)-(d) hold for the Gegenbauer weight (1.5), 
or the Jacobi weight (1.4) with a = 3 = A - 1, when 0 < A < 1. Moving the 
parameters a, 3, or A, continuously away from this segment induces a continuous 
motion of the nodes Tv, TZ, which, initially, are constrained to move on the real 
line. The interlacing property breaks down the first time a node r, collides with 
a node Tv. The polynomials rrn and xr*+ then have a common zero, a fact that 
can be detected by determining when the resultant R(wrnn,7r+?) of 7rn and lr*L 
vanishes (for the first time). When a collision occurs, the nodes Tv, TZ involved most 
likely cross each other, so that there are now two Kronrod nodes captured between 
two Gauss nodes. Only now is it possible that two Kronrod nodes may collide, 
giving rise to a pair of complex Kronrod nodes. The occurrence of this event can 
be detected by determining the appropriate zero of the resultant R(7r*+1,7r~) 
This allows us to settle property (d). Properties (b) and (c) are easily dealt with 
by examining when (for the first time) (Tn+1 + 1)(T* - 1) = 0, and oa, = 0 for some 
v, respectively. 

In Section 2 we carry out this program for the Gegenbauer weight (1.5). The 
success of the calculations, particularly when n is large, depends crucially on the 
resultants involved being computed in a stable manner. This is discussed in Section 
3. In Section 4 we report on limited explorations for the case of the Jacobi weight 
(1.4). Section 5 presents analytic treatments of Gauss-Kronrod formulae for Jacobi 
weights with parameter 1 =1 and for the weight function w(t) = Itl5(1 -t2)a 
a> -1, y > -1, on (-1,1). 

2. Gegenbauer Weights. We consider here the weight function (1.5), that is, 

(2.1) wit) = (1-t2)>-l/2 -1 < t < LA > 0a. 
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Using 

f t2m ( - t2)A-1/2 dt = xm-1/2(l - x)A-1/2 dx 

= B~m 2"\ 2) = (m + )r(,\+ 1) 2, m=01 ,.. =B m+ A+'2 2FMm+01)F(2A+..) 
21 2 r(m+A+l) 

it is straightforward (though tedious, at times) to compute -ra, 7rn+l explicitly for 
the first few values of n. One obtains, for n = 1, 2,3 and 4, 

(2.21) 7ri(t) =t, r2(t)= -2(A+2)' 

(2.22) ir2(t) =t- 2(A+1)) _rt(t)=t3 3_t 

(2.23) ir3(t)=t3- 3( 2 irt(t)=t4- 5t2+5 16-A 

22 (t) = t4- _3 t2 + 3 

(2.24) A +3 4(A +2) (A +3)' 
7r* (t) =t5 - 15 t3+i15? A +20 t * (t) t5 2(A + 5) 4 (A + 5)2(A + 6) 

Likewise, using the formula (Monegato [5, Eq. (2.5)]) 

(2.3) (n) - A(n) + IrIn) 

where A(n) are the Christoffel numbers (i.e., the weights in the Gaussian quadrature 
rule) and 11 Klw the L2-norm for the weight function (2.1), one obtains 

(2.41) 0(1)= 2flrFF(A+3/2) 1 3 F(A +2) 

(24) (2) (2) =3vF F/7- (A + 1) (A + 1)2 
(2.42) 1 =02 = 2 r(A\ +1)(A + 2)(5A + 3)' 

(2.43) a(3) = (3) = 5 V'7 r(A + ')(A + 2)4(2A + 3) 
*2 3) U1 

r 
3 r(A + 2)(A + 3)(26A3 + 153A2 + 336A + 160)' 

(3) 8fr F(A + 5/2)(40 + 7) - 2A2) 
2 15 F(A + 4)(16 - A) 

(2.44) ) = 
a1 04 2 

r( + 3/2)(A + 2)(A + 3)4[( + 5)(A + 6)(2A + 3) + w(A + 2)(A2 - 15)] 
r(A + 5)w(w + 3)(2A - w + 3)[5A4 + 11A3 - 109A2 - 465A - 450 + w(A + 2)(A + 5)(A + 6)(3A + 5)]' 

a24) = a34) = same expression with w replaced by -w, 

where w = [3(2A + 3)/(A + 2)]1/2 in (2.44). 

For n = 1, the Gauss-Kronrod rule is the 3-point Gauss rule and therefore 

satisfies properties (a)-(d) for all A > - . If n = 2, EQc (2.22) shows that (a) 

[hence also (d)] holds for all A > - and (b) for all A > 0, while Eq. (2.42) shows 

that (c) holds for all A > - We now discuss in detail the two cases n = 3 and 
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n = 4 for which we have analytic expressions for all the quantities of interest. They 
are representative for the cases n odd and n even, respectively, to be discussed 
subsequently. 

If n = 3, the polynomials er3 and era have common zeros if and only if either 
r* (0) = 0 (in which case 0 is a common zero) or the polynomials 

1 
7 X)=X 3 

3W gTX (a) = x-2(A + 2) =: P 

2 5 5 16- A 7 * 
WY) = x2 

_A + 4 4 (A+ +4)2(A + 5) :P4(x) 

have a common zero. The former, by (2.23), is true exactly for A = 16, whereas the 
latter is true precisely if the resultant of p3 and p* vanishes, 

1 -2(A + 2) 0 

3 
(2.5) R(p3, P4) = 0 1 -2(A+2) =0. 

1 - 5 5 16-A 
1 A+4 4(A+4)2(A+5) 

An easy calculation shows that 

(2.63) R(p3,p4) = - (A + 2)-2(A + 4)-2(A + 5)-1(26A3 + 153A2 + 336A + 160). 

The cubic polynomial on the right has one real zero at -.6447375 ... and a pair of 
conjugate complex zeros, hence is positive for all A > - I 

Therefore, R(p3,p*) < 0 24 
for all A > - It follows that (a) is true precisely for < A < 16, there 
occurring a collision of nodes at the origin when A = 16, but no other collisions. 
Since the zeros of xr are symmetric with respect to the origin, era has a double zero 
at the origin when A = 16, which splits into a pair of conjugate complex zeros as 
A increases beyond 16. Indeed, the constant term of p*, hence at least one of the 
zeros of p*, becomes (and remains) negative, giving rise to a pair of complex zeros 
of irs. Therefore, (d) is true exactly for - < A < 16. Property (b) is discussed 4 ~~~~~~~~~~~~~2 
most easily by noting that it is equivalent to 7r* (1) > 0. Indeed, Tj < 1 clearly 
implies 7r* (1) > 0, while, conversely, 7r* (1) > 0 implies T* < 1 since otherwise, by 
the interlacing property, Ti < 1 < T*, meaning that 7r*(1) < 0. Since, by (2.23), 

(2.73) 7r*(1) =A( + 4)-2(A + 5)-1(2A + 3)(2A + 13), 

we have property (b) precisely if A > 0. The cubic polynomial in the denominator 
of a(3) [cf. (2.43)] being the same as the one in (2.63), hence positive for all A > X 1 ~~~~~~~~~~~~~~~~~~~~~~2' 
it follows that a(3) > 0 for all A > -. Assuming 2< A < 16, we have, on the 1 ~~~~~~22 
other hand, a 3) > 0 if and only if 40+7A-2A2 > 0, i.e.,- < A < 4(7+33vi)= 
6.552343.... This settles property (c). 

Now consider n = 4. Since ir4(0) $ 0, the origin is never a common zero of 
7r4 and ir*, and ir4, Irk have a common zero if and only if the same is true for 
the polynomials w4 (\fi) =: p4(x) and (Vx)-1ir*(dx) =: p*(x). Using (2.24), a 
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somewhat lengthy computation gives 

R(p4, P*) = (A + 2)-2(A + 3)-2(A + 5)_4(A + 6)_2 
(2.64) x [29A6 + 1273A5 + 11904A4 + 48385A3 

+ 91925A2 + 78000A + 22500]. 

The polynomial in brackets has two real zeros at - .580667... and -32.863977... 
and two pairs of conjugate complex zeros. Consequently, R(p4, p) < 0 for all 
A > -1 and property (a) [hence also (d)] holds for all A > -. From (2.24) we 
find 

(2.74) i* (1) = (A+ 5)-2(A + 6)-1A(4A2 + 34A + 25), 

where the quadratic has the two negative zeros - .813068... and - 7.686931 
hence remains positive for A > - 2. Property (b), i.e., xr (1) > 0, therefore holds 
precisely for A > 0. Another lengthy (but elementary) computation, based on 

(2.44), shows that (4) is positive for all A > - 1, but 24) > 0 only if A < 

51.7868606883 ... X the unique positive root of A3 - 47A2 - 245A - 150 = 0. Thus, 
property (c) holds precisely if this last condition is satisfied. 

The results for 1 < n < 4 are summarized in Table 2.1, which shows the interval 
AP < A < AP in which property (p) holds, p = a, b, c, d. An extended table for 
n = 5(1)20(4)40 is given as Table A.1 in the appendix.** The reasonings used to 
compute Table A.1 were similar to the ones explained in the cases n = 3 and n = 4, 
and are now briefly described. 

TABLE 2.1 
Property (p) (p = a, b, c, d) for 1 < n < 4. 

n A a Aa Ab A b Ac Ac Ad Ad 

1 1 ~~~1 1 1 -i 2 0 2 2 2 - 0 

2 00 0 00 -1 00 -1 00 2 2 -2 

3 - 1 16 0 16 - (7 + 3V'i')/4 - 1 16 2 2 ~ "2 

4 -2 00 0 00 - 51.786 ... 2 00 

It is convenient to distinguish between n = 2m even, in which case we write 

W2m(V/\/) = X + a2mlxm 1 + . + a2m,m = P2mr(X), 

(2.8even) i-w +1(V/i) = Xm + b2rn+l lr- 
n + ... + b2r+1,rn PriX 

and n = 2m - 1 odd, in which case we write 

- r2m - 1(V/I)= x + a2mrnl,lxmr2 + . + a2m-1,mr-1 

(2.8odd) = P2m- l(X) 

2*m ( v~= xm + b2m, 1 Xm- + + b2mm = P2m (X) 

**Professor I. P. Mysovskih informed the first-named author by letter of October 28, 1987, that 
L. N. Puolokalnen [7], in a 1964 diploma paper prepared under his guidance, obtained )A4 =-2 
for n = 1(1)7 and the same values of Aa, n = 1(1)4, as shown in Table 2.1. She furthermore 
calculated 6D values of Aa, n = 5(1)7, which agree with ours in Table A.1 to 4-5 significant 
digits. 
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(Computational details for generating the coefficients in (2.8) and for the procedures 
to be described will be discussed in Section 3.) 

To examine property (a), note that in the case n = 2m, since a2mrn : 0, the 
polynomials 7r2m and lrm+1 have a common zero if and only if P2.. and P*rn+i do, 
i.e., precisely if the resultant R(p2rn, P2*M+) vanishes. This resultant, of course, 
has a constant sign on the interval 0 < A < 1; in all cases computed, it was found 
that the sign on-2 < A < 0 remained the same. Consequently, An =-2 . The 22 
quantity An is the first value of A for which the resultant vanishes. This value 
was determined by a preliminary search, followed by the bisection method. The 
case n = 2m - 1 is handled similarly, except for the additional possibility that the 
origin is a common zero of 7r2m-1 and 7r*m. This was detected (if the case indeed 
occurs) by the coefficient b2m,m changing its sign. Our numerical work suggests 
the following 

CONJECTURE 2.1. The Kronrod nodes T (n) and Gauss nodes (n) for the weight 
function wA in (2.1) interlace if -2 < A < An where An are certain constants > 1. 

(For numerical values of Aa, n = 1(1)20(4)40, see Tables 2.1 and A.1.) 
Property (b), as in the cases n = 3, 4, is settled by determining the subinterval of 

(-2 , An) in which ir*+ (1) > 0, and property (c) by determining the subinterval of 

(- , A) in which $(7n) > 0 for all v = 1, 2,... , n. The results can be summarized 
as 

CONJECTURE 2.2. The Kronrod nodes (n) * and Gauss nodes (n) for the weight 
function wA in (2.1), in addition to interlacing, are all contained in (-1, 1) if 0 < 
A < An, where An are the constants in Conjecture 2.1; some Kronrod nodes are 
outside of [-1,1] if A < 0. 

CONJECTURE 2.3. The Kronrod nodes and Gauss nodes for the weight function 
wA in (2.1) interlace, and all weights o(7(n) are positive, if -2 < A < Al, where A' V ~ ~~~2 nl, 

are certain constants 1 < An < A. (For numerical values of Ac, n = 1(1)20(4)40, 

see Tables 2.1 and A.1.) 
Property (d), finally, needs to be considered only for A > Aa' and requires the 

examination of discriminants. Complex zeros (of wn+1) indeed can only arise from 
multiple zeros, i.e., after R(7r* X 7t, 1) has vanished. The discussion of this again 
depends, in part, on the parity of n. If n = 2m, we write 

/i~r2m+1(\ = zrn + b2r+lixn1 + .. + b2m+1,m =: Pm+i(X) 

(2.9even) i2m+ (Va) = (2m + 1)xm + (2m - 1)b2m+1,1Xm- + + b2m+lm 

=:q2m+1 (X, 

and if n =2m- 1, 

7r m (V/) = xm + b2m, 1 XM-r + + + b2mm =r Pn m(X)i 

(2.9odd) -i7r'm (V) = 2mxmr1 + (2m - 2)b2miXrm2 + ... + 2b2m,m-1 

TX~~= 2m(X 

There are two possibilities: Either the common zero of.7r*+, and 7r*1 is also 
a zero of 7rn, or it is not. The first case can only occur if two Kronrod nodes 
collide with one another and simultaneously with a Gauss node. If n is even, this 
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is unlikely to occur and, in fact, was never observed. It is also unlikely, and was 
not observed, when n is odd, unless the collision takes place at the origin, 

(2.10) inr(0) =.r n+1(0) = wn+1(0) (n = 2m -1 odd), 

in which case since A > Al, we must have A = Al. The event (2.10) indeed seems to 
occur whenever m in (2.10) is even; then, moreover, b2mm in (2.9odd) was observed 
to change sign from positive to negative (cf. the discussion of property (a) above). 
This means that for A immediately beyond Al, the polynomial P*m has at least 
one negative zero (since m is even!), hence r*m a pair of conjugate complex zeros. 
Consequently, Ad = Al in this case. 

If the common zero of 7r+, and 7r*4' is not a zero of Urn, then necessarily 
Ad > A'. It was found, then, that b2mi+,m and b2m,m in (2.9) do not vanish, so 
that the zero in question cannot be the origin. It then follows that iN+r and ir*+ 
have a common zero if and only if p*+1 and q*+1 do, i.e., if R(p+1,X q*+l) = 0. This 
event again can be determined by a search and bisection procedure. It transpired 
that the resultant R(p +11 q+ 1) not only vanishes for some A = A* > A', but also 
changes sign there. Since 

R(p* +1 q*+,) = pI P+1(p 

where by are the zeros of q*+1 (cf. [10, Section 5.9]), a pair of positive zeros of Pn?i 
(and hence a pair of real zeros of xr*?) coalesce and then disappear as A passes 
through A*, i.e., P*+i (and hence 7r*?i) has a pair of conjugate complex zeros for 
A immediately beyond A*. There follows A* = An. Thus we form the 

CONJECTURE 2.4. All Kronrod nodes (n)T for the weight function wA in (2.1) 
are real if-2 < A < Ad, where Ad (n :A 1, 2, 4) are certain constants either slightly 
larger than An, or equal to An, the latter precisely if n = 4r -1, r = 1, 2, 3,. 
(For numerical values of Ad, n = 1(1)20(4)40, see Tables 2.1 and A.1.) 

3. Computational Considerations. All computations were performed on the 
CDC 6500 computer in single or double precision (machine precision 3.55 x 10-15 
and 1.26 x 10-29, respectively). 

Two different methods were used to compute the various resultants involved. One 
is an obvious extension of the method exemplified in Section 2. The coefficients 
ank of the polynomial Pn (cf. (2.8)) are first computed by a recurrence relation 
that results from the linear relation connecting three consecutive ark of the same 
parity. The coefficients bn,k of P*+1 (cf. (2.8)) then satisfy a system of linear 
algebraic equations expressing orthogonality of ir*+, (with respect to the weight 
function w* = wa\rn) to the first [(n + 1)/2] odd powers. This system has been 
solved using the LINPACK [2] routines SGECO, SGESL (and their double-precision 
companions), whereupon the resultants of Pn and Pn+i and of Pn+i and qn+1 can 
be computed in determinant form (cf. [10, Section 5.8, Eq. (5.20)]), using again the 
factoring routine SGECO and its double-precision version. The major weakness 
of this approach is the severe ill-conditioning of the determinants involved. Their 
condition numbers (as estimated by SGECO) range from about 105 for n = 6 to 
about 1016 for n = 20, precluding the safe use of our procedure in single precision, 
and also its use in double precision much beyond n = 20. 
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To avoid (or at least alleviate) this problem of ill-conditioning, we express the 
polynomial irn in terms of Gegenbauer polynomials and compute the expansion 
coefficients from a triangular system of equations as described in [1, Section 4], 
using Gauss-Jacobi quadrature to generate the matrix elements. If n = 2m is even, 
we then have [10, Section 5.9] 

m m 
(3.Seven) R(p2mnp2m+j) 171 P 7r+i(Tj;) = 17 [ 2r M+1(Tl3)J 

and, if n =2m - 1, 
m-1 m-1 

(3 1 odd) R(P2m-1,P~m) = l 2m,)=I T2mln 

where rs, = TSz are the zeros of irn in decreasing order, rT > r2 > > T7n. Each 
factor in (3.1) is evaluated by Clenshaw's algorithm. 

Similarly, the resultant of P*+i and q*+, required to analyze property (d), is 
computed for even n = 2m by 

(3 2even) R(P2m l~q2m+1) = 
I1 P2rm+i(Ti) = [2irirm+1 

and for odd n = 2m - 1 by 
m-1 m-1 

(3.2odd) R(p~mq~m) = 17 Prm(T2) 1 
' I r r(m(TA) 

1,1=1 A=1 

where Tf > T2 > > 
Tn 

are the zeros of 7r*' . To compute these zeros, we 
used, for the initial value A A' of A, a simple search procedure followed by 
Newton's method. Then, as A was incremented by small amounts, and during the 
bisection procedure for determining Ant the zeros found for one A were used as 
initial approximations for computing the zeros for the next A by Newton's method. 
The factors in (3.2) again were evaluated by Clenshaw's algorithm. 

The computations based on (3.1), (3.2) appear to produce rather accurate re- 
sults, even for relatively large values of n. For example, when n = 40, we still 
obtained 10 correct decimal digits in single precision, as was confirmed by recom- 
putation in double precision. 

4. Jacobi Weights. We now consider property (p), p = a, b, c, for the general 
Jacobi weight 0('-) in (1.4). (Property (d) was not investigated, except for n = 1, 
since the effort involved seemed to us excessive, given the chance that the curve d 
could be indistinguishable from the curve a; cf. Table A.1 and Figure 4.1.) Noting 
that (a-3) (-t) = w(Ia)(t) and recalling the well-known fact that 7rn$')(t) = 

(-nrn() (-t), it is easy to show that 

(4.1) 7rn~ *,a(t) = (_1) ln+17r(a0) n+i1 n+i 
_ 

and 

(4.2) = n+i-v' V ,2,..., X 
a( ) - an +2-i,' pu = 1,2,..., n+ 1. 
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Interchanging a and /, therefore, has no effect on the validity of property (p), 
p = a, b, c. It thus suffices to consider / > a. 

The case n = 1 can be handled analytically. One finds 

(4.3) R = - 4 { (a + 1)(/ + 1) + 2(a + 2)(/ + 2)(a + + 2) < 0 
R 

2r~~ a +/ + 3 (a +/ + 2)2 +(a +/ + 4)2(a?/30+ 5)f 

so that property (a), hence also property (d), holds for all a > -1, 3 > -1. The 
same is true for property (c), since 

2a+O+1F(a + 2)F(o + 2) 
1 F(a+/3+2) 

(4.4) 1 ->0 

(a + 1)(/ + 1) (a + 1)(/ + 1) + 2(a++2)(4 +2) (a J 
For property (b) we must show 7r*(1) > 0 and 7r*(-1) > 0. A simple calculation 

gives 

(4 ) 4(1= ( + 2)(a2 + a/3 + 7a -/3+4) 
=(a?,3 + 4)2 (a?,3 + 5) 

which is positive (for a > -1, 3 > -1) precisely if 

3(a - 1) > -(a2 + 7a + 4). 

For a > 1, this inequality is true (since 3 > -1), while for -1 < a < 1 it is true 
when 

(4.6) /3< ~~a2 + 7a + 4 
(4.6) d < a1-a -1 < a <1. 

This defines a curve in the (a, /3)-plane that starts at the point (-1, -1) and in- 
creases monotonically until it reaches a vertical asymptote at a = 1. By (4.1), 
one has the same expression as in (4.5) for 7r*(-1), except that a and 3 are inter- 
changed. 

We summarize as follows: For n = 1, the Gauss-Kronrod formula (1.1) for the 
Jacobi weight W( d) satisfies properties (a), (c) and (d) for all a > -1, /3 > -1, 
and property (b) precisely in the region 

(4.7) < 3 < a 7a4 < a <1, 

and in its symmetric image with respect to the diagonal a = 3. (In particular, 
property (b) holds for all a > 1, / > 1.) 

In order to delineate the regions of validity of property (p) for values of n larger 
than 1, we used procedures similar to those described in Section 2. Letting a move 
through the interval (-1, AP - 2), for each a we started with /3 = a and increased 
/3 in fixed (sufficiently small!) steps to determine the first change in the truth 
value of property (p). Thereupon, the bisection method was used to narrow down 
the changeover point more accurately. The procedure had to be slightly modified 
for property (b), when n is even, since there are two critical values of / to be 
determined for a near and > - 2. The smaller of the two was determined as before, 
the other by starting with 3 = 0 (instead of 3 = a). 



240 WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS 

The validity of property (a) depends on the sign of the resultant R(rn, 7r~n+ 1) 
which was computed as in (3.1), except that symmetry could no longer be assumed; 
thus, 

n 

(4.8) R(rnwi1) = f w+1(r,). 
v==1 

Property (b) holds exactly if both of the inequalities 

(4-9) 7r*+ 1(1) > 0, (_ l)n+l,,*+1 -) 

hold, while property (c) amounts to the positivity of all a(n) in (2.3). 
The results of our calculations are depicted graphically in Figure 4.1 for n = 

2(1)10. The region of validity for property (p) is always located below the curve 
labeled p, except for the case p = b, n even, -1 < a < 0, where property (b) holds 
above (or to the right) of curve b. 

Figure 4.1 suggests the validity of the following conjectures. 
CONJECTURE 4.1. If n is even, property (a) implies property (b) whenever a > 

an, where -2 < n <-.470, an -+ -2 as n -+ oo. 
CONJECTURE 4.2. If n is odd, property (b) is false for -1 < a < 
The fact that property (b) is false for n even, ar = - 2 -2 < /3 < 2 and for n 

11~~~~~~~~~~~~~2 odd, ar = -2 ' < /3 < 3, is proved by Rabinowitz in [8, p. 75].*** 
Verification of properties (a) and (c), when Oa > 0, was found to be delicate at 

times, because of the resultant (for fixed Oa and varying 3) exhibiting near double 
zeros, i.e., changing sign for two d-values very close together. For example, when 
n = 5 and Oa = 3.75, a first change of sign of the resultant (4.8) from negative to 
positive was observed between 3 = 7.520 and 3 = 7.521, which was followed by a 
change from positive to negative between 3 = 7.540 and 3 = 7.541. The increment 
in 3, therefore, had to be chosen sufficiently small to detect this change of sign. 
Such difficulties were observed typically near points where the slope of the curve a 
or c undergoes a rapid change (the "kinks" in the graphs for a and c of Figure 4.1). 

5. Special Weights. Simple transformations allow us to reduce special Jacobi 
weights with 3 = 2 to Gegenbauer weights and Gegenbauer weights multiplied by 
a power of Itl to Jacobi weights. Some consequences of this for Gauss-Kronrod 
formulae will now be explored. 

5.1. The Jacobi weight w(,,1/2) . It is well known (see, e.g., [9, Eq. (4.1.5)]), and 
easily verified, that 

(5.1) tw$~'1/2)(2t2 - 1) = 2 nr(', )(t), a > -1. 

We depart from the Gauss-Kronrod formula (assumed to exist) 
1 2n+ 1 2n+2 

(5.2) ] f(t)w(')(t)dt = A ahf(T>) + A afQ7), all f EP6n+4 
-1 A~ A= 

with 2n + 1 Gauss nodes a,} = (') and 2n + 2 Kronrod nodes T*, ordered 
decreasingly as in (1.6); in particular, 

(5.3) < T+1 < Tn < ... < Ti < T* < 1 

***The superscript M + 2 in Eq. (68) of [8] should read M - 
4 (twice). The same change is 

required in the discussion immediately following Eq. (69). 
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FIGURE 4.1 

Property (p), p, = a, b, c, for the Jacobi weight wC('I0). 
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By (5.1), the Gauss nodes Ta = T>v1/2) for n are given by 

(5.4) T,, = 2T,-1 I v = 1, 2, ... ., n. 

Now (5.2) implies (but is not necessarily implied by) 

1l 2n+1 2n+2 

I t g(t2)w(t' )(t) dt= E Tg(r)+ E c 2g(2), all g E P3n+, 
-1 LJ=1 A=1 

from which, by symmetry, 

1 n n+1 

(55) J t g(t2)w )(t) dt = E Th9(T) + E 2g(;2) all g E P3n+l. 
? LJ~~~~~=1 . ,=l 

Changing variables, t [(r + 1)/2]1/2, so that dt = 4(T + 1)/2V1/2dT and 
w (, a -) (t) 2- (1 - T), yields 

| g(T) W(ce / 2) (T) dT 

-1.6) 
n n+1 

(5.6) - 

2a+5/2 {I7r 2(2 - 1) + E *Y*2g(2 *2 - 

LJ=1 = 

all g E P3n+l. 

Since, by (5.4), 2, - 1 = Tv are the Gauss nodes of , Eq. (5.6) is precisely 
the (unique) Gauss-Kronrod formula for W(a,1/2) with n Gauss and n + 1 Kronrod 
nodes. We have shown: 

THEOREM 5. 1. The Gauss-Kronrod formula (1.1) for the weight function 
w (a 1/2) is given by 

(5.7) Tv = 2,-1, = 2 T+5/2vo, v = 1,2,..., n; 

(5.8) TA = 2T2 _1, a = 2c+5/2 *2TA A u=1,2,...,n+1, 

where a,,, T are the positive nodes in the Gauss-Kronrod formula (5.2) for the 
weight function w(" a) and aT,, as the corresponding weights. 

Clearly, if the formula (5.2) has property (p), p = a, b, c, d, so does formula (5.6). 
(For property (a), this has previously been observed by Monegato [6, p. 147].) From 
the discussion in Section 2, we expect this to be true for 

(5.9) P 1 A (5.9)>2n+1 2~ "< ( " 
2n+1 2' 

so that the Gauss-Kronrod formula (5.6) for the weight W(G,1/2), and hence, by 
the remark at the beginning of Section 4, also the one for the weight W(1/2,c), has 
property (p) if (5.9) holds. This means, in particular, that the point 

(5.10) QP = (I AP n+ 

must lie on or below the curve labeled p in Figure 4.1(n). More precisely, it was 
observed that for p = a the point Qa lies strictly below the curve if n is odd, and 
on the curve if n is even. The reason for this is the phenomenon (2.10) (where m is 
to be replaced by m + 1) which was observed to hold precisely if m + 1 (our current 
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n) is odd. Property (a) for (5.2) then ceases to hold because of the collision of a 
Kronrod node with the Gauss node Tn+1 = 0 at the origin. Since the latter node has 
no equivalent in the formula (5.6), property (a) continues to hold for (5.6) beyond 
the critical value a = Aa+- 1. If n is even, on the other hand, the collision in 
(5.2) is between a Kronrod node and a nonzero Gauss node, which gives rise to a 
collision also in (5.6). For the same reason, the point Qb in (5.10) for property (b) 
is on the curve labeled b in Figure 4.1(n), when n is odd, because of the Kronrod 
node rn+1 becoming equal to -1, and on the curve labeled a, b, when n is even, by 
virtue of property (a) ceasing to hold. For property (c), Qn was observed to lie on 
the curve labeled c in Figure 4.1(n) when n is even, and below the curve otherwise. 

5.2. The weight ItV'(1j- t2),. We now construct the Gauss-Kronrod formula 
with 2n + 1 Gauss nodes and 2n + 2 Kronrod nodes for the weight function 

(5.11) twa)t= t(1t) on- < t < 11ae > _1, > _1. 

It is known that the associated (monic) orthogonal polynomials are expressible in 
terms of Jacobi polynomials [4, p. 173]. In particular, 

2n * 17 (Tce) (t) = t~n7r,(-j+1)/2 )(2t2 _-1). 

Therefore, if a, V = 1, 2,.. ., n, are the zeros of the Jacobi polynomial 1rnc'(5+1)/2) 

the nodes in the (2n + 1)-point Gauss formula for the weight (5.11) are 

(5.12) r = 2/< v = 1, 2, . . ., n; rn+l = O; 

Tv =-T2n+2-v, V = n + 2,...,2n + 1. 

We now start from the Gauss-Kronrod formula (assumed to exist) for the Jacobi 
weight w(G,(,+1)/2), 

f1 n n+1 

(5.13) ] f(t)w(c (-+l)/2)(t)dt = -Tvf(Tv,) + ,a:*f(r(), all f E P3n+ 
-1 LV=1 

Substituting t = 2r2 _ 1 in the integral on the left yields 
1 

f f(2r2 - 1)r2 r1(1 - r2) dr 

r n n+1 
-2 -(1+5)/2 [ f(r,) + E f(T;s)J, all f EP3n+ 

- V=1~ ~ 1= 

Letting f(u) = [(u + 1)/2]k, k 01, ..., 3n + 1, gives 
1 

f r2k+2 . i-2(1 - 2)c d- 

(5.14) = 2- (+5+)/ [ E (Tv + 1)/2 +l)2k+2 

n+1 -* 1 - *l 2k+2v 

k = 0, 1,.. . ,3n + 1. 
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Defining, in analogy to (5.12), 

(5.12X) , 2 , 1 k==1,2,...,n+1; Tr. Tr2n+3-, 

(. = n+2,...,2n+2; 

and letting 

(5.15) a -= 2 --(T?+V)/2' 1 V = 1,2, ... n; o7~1=A; 

aV = U2n+2-v, v = n + 2, ... I,2n + 1; 

(5.15*) U* 2-c- (-+5)/2 A it = 1, 2, ... ., n + 1 
(5.15*) - 21)+)/2(7; 

up = a2n+3-pz' kt = n+2, ...,2n+2, 

where A will be determined shortly, we can write (5.14) equivalently in the form 

2n+1 2n+2 

(5.16) ]t. t w(a)(t)dt= U avr1 + E &iri, 1= 1,2,...,6nr+4, 
-1 LJ=1 A=1 

where both sides are zero if I is odd. If we require (5.16) to hold also for I = 0 
(with r???+ =00 = 1), i.e., if A is chosen so that 

n n+1 1 

(5.17) 2 +A+ 2 =] | w() (t) dt, 
LJ=1 L=l 1 

then 

2n+1 2n+2 

(5.18) ] f(t) -w(a) (t) dt= , anf(rv) + E a* f(r>*), all f EP6n+4 
-1 LJ~ ~ ~~=1 A=1 

is the desired Gauss-Kronrod formula for the weight "0(a). We have shown: 

THEOREM 5.2. The Gauss-Kronrod formula for the weight wW(a) (t) - 

Itf(1 - t2)a on (-1, 1), with 2n + 1 Gauss nodes and 2n + 2 Kronrod nodes, is 
given by (5.18), where the nodes r,, r* are expressible in terms of the nodes Tv, T* 

in the Gauss-Kronrod formula (5.13) for the Jacobi weight w(a,(f+1)/2) by means 

of (5.12), (5.12*), and similarly, the weights a,,, a* are expressible in terms of the 
weights a,,, a7 in (5.13) by means of (5.15), (5.15*), Un+1 = A being determined 
by (5.17). 

Clearly, if property (p), p = a, b, d, holds for the Gauss-Jacobi-Kronrod formula 
(5.13), it also holds for formula (5.18). Property (c) for (5.13), on the other hand, 
does not necessarily imply property (c) for (5.18), since thfe positivity of a-,, a7, 
while implying the positivity of all a,,, a* other than Un+1, may or may not imply 
Un+1 > 0, depending on whether A, as obtained from (5.17), is positive or not. 
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Appendix. Property (p) (p = a, b, c, d) for n = 5(1)20(4)40. 

TABLE A.1 

Property (p) for the Gegenbauer weight w(A-1/2,-l1/2) (A >-_) 
holds if AP < A < AP. This table shows Aa, Ac and Ad, as 
computed by the methods of Section 2. By Conjectures 2.1-2.4, 

= An= 2Ad A' = ? Al = An for all n > 5 and Ad Aa 
whenever n = 4r - 1, r = 1,2,3, .... 

n Aa Xc Ad 

5 8.1494082801 5.2388459015 8.1830000561 
6 13.1085950564 7.6571453588 13.1107896727 
7 5.8401376887 4.4759114573 Aq 
8 8.7386889750 5.9524378395 8.7555343902 
9 5.2935342610 4.2497937619 5.2945466651 

10 7.3992715320 5.3753659922 7.4237962746 
11 4.8531386151 4.0481558230 Aq 

12 6.1920646523 5.0379559112 6.1934889120 
13 4.6542480033 3.9519324055 4.6543912620 
14 5.6700664070 4.6801034243 5.6700700822 
15 4.4686100363 3.8582584626 Aq5 
16 5.3822674428 4.4807122988 5.3826940246 
17 4.3630476637 3.8036436813 4.3630833901 
18 5.1865732169 4.3552498234 5.1873227488 
19 4.2595630405 3.7488473165 Aq 
20 4.9631599397 4.2700177278 4.9632639191 
24 4.7114083943 4.1057723823 4.7114508725 
28 4.5422887809 4.0009291994 4.5423182352 
32 4.4137444535 3.9286038916 4.4137495863 
36 4.3224901583 3.8624938923 4.3225046157 
40 4.2417789470 3.8175327957 4.2417792595 
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