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Abstract. In a recent publication [4] the author developed an extrapolation method, 
the W-transformation, for the accurate computation of convergent oscillatory infinite 
integrals. In yet another publication [6] this method was shown to be applicable to 
divergent oscillatory infinite integrals that are defined in the sense of summability. The 
application of the W-transformation involves some asymptotic analysis of the integrand 
as the variable of integration tends to infinity. In the present work the W-transformation 
is modified so as to keep this asymptotic analysis to a minimum, involving only the 
phase of oscillations. This modified version, which turns out to be as efficient as the 
original W-transformation, can also be applied to convergent or divergent oscillatory 
infinite integrals other than those dealt with in [4] and [6]. The convergence properties 
of the modified transformation are analyzed in detail for the integrals of [4] and [6], and 
numerical examples are provided. 

1. Introduction. In [4] the author developed an extrapolation method, the W- 
transformation, by which a large class of convergent infinite oscillatory integrals can 
be computed very efficiently. The approach of [4] was later extended to divergent 
infinite oscillatory integrals in [6], and it was shown that the W-transformation, with 
no modifications, can be applied to such integrals with the same efficiency. The 
use of the W-transformation involves some asymptotic analysis of the integrand 
as the variable of integration tends to infinity. The purpose of the present work 
is to modify the W-transformation so that this asymptotic analysis is kept to a 
minimum. 

For future use and reference, we now summarize some of the notation and results 
of [4] and [6]. 

Definition 1.1. We say that a function a(x) belongs to the set A(5) if it is 
infinitely differentiable for all x > a > 0, for some a, and if, as x -) ox, it has a 
Poincare type asymptotic expansion of the form 

00 

(1.1)~~~~~~ c(X) 
x? 

E~1 ai /xi, 
i=O 

and if all its derivatives, as x -+ ox, have Poincare type asymptotic expansions 
which are obtained by differentiating the right-hand side of (1.1) term by term. 

Definition 1.2. We say that a function f(x) belongs to B if it can be expressed 
in the form 

r 

(1.2) f (x) = E uj (Oj (x)) expq(0q (x))hj (x), 
j=1 
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where 
(1) u1(z) is etz or e-iZ or any linear combination of these (like cos z or sin z). 
(2) Oj(x) and qjj(x) are real and Oj E A(m) and XX E A(k) for all j, where m is a 

positive integer and k is a nonnegative integer. If, as x -+ 00, 

00 00 

(1.3) 0j(x)-Z 0jsxm and X) 
E 

Xk-S 
s=0 s=0 

and we set 

m-1 k-1 

(1.4) 01(x) = E 0j8xm8 and q$3(x) = OjqXk8 
s=0 s=0 

then we assume that 

(1.5) j(x) _ 0(x) and q$1(x) _p (x) whenever 
' : p. 

We will denote 01(x) = 0(x) and qj(x) = X(x). Note that 0(x) and q(x) are 
the polynomial parts of 01 (x) and qj(x), respectively, and Lj (x) = 01(x) - 0(x) 
and A,(x) = (x) - 0(x) are both in A(?). We also assume that if k > 1, then 
limz O+0 q3 (x) = -00, i.e., q30 < 0. Obviously, when k = 0, O. (x)-0,1 = 1,.. . , r. 

Without loss of generality we will assume that limxz0 O1j(x) = 00, i.e., 010 > 0. 
(3) hj E A(Ij) for some arbitrary - such that y, - yp are integers for all j and 

p when r > 1. We will denote -y = max{-1, , -r }- 

The set B is the union of the two mutually exclusive subsets that were denoted 
B, and Bd in [6]. B, is the set of functions in B that are integrable at infinity, i.e., 
functions f(x) for which either k > 1 or k = 0 and -y < mr-1. Bd on the other hand 
is the set of functions in B that are not integrable at infinity, i.e., those functions 
f (x) for which k = 0 and -y > mr-1. It was shown in [6] that integrals of functions in 
Bd exist in the sense of Abel summability, and that the W-transformation that was 
developed for integrals of functions in B, can be applied to integrals of functions 
in Bd without any changes. 

Let f E B and be of the form described in Definition 1.2 with the notation 
therein. Let a > 0 and define 

00 ' r 

(1.6) I[f]V= f(t) dt and F(x)= f f(t) dt, 

where I[f] is to be taken as f? f(t) dt in the Abel summability sense when f E Bd. 

Then, as is shown in [4] and [6], 

(1.7) I[f] = F(x) + x5+' exp(q(x))[cos(0(x))bi (x) + sin(0(x))b2 (x)], 

where bl, b2 E A(M) and 

(1.8) a = min{-m + 1, -k + 1} = 1-max{m, k}. 

Now let x0 be the first zero of sin(0(x)) that is greater than a. This means that x0 
is a root of the polynomial equation 0(x) = qir for some integer q. Then determine 
xl to be the largest positive root of the polynomial equation 0(x) = (q + l)Tr, 
I = 1, 2,. .., i.e., xi, I = 0,1, .. ., are ultimately consecutive zeros of the function 
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sin(O(x)). This guarantees x0 < xl < x2 Obviously, limjDO xR = 00. The 
W-transformation is then defined by the solution of the linear system of equations 

n 

(1.9) W(3) = F(xi) + V(xi) E i/xlX, jlIj +n+1, 
i=O 

in which W'n) and the /i are unknown, Wn) is the approximation to I[f], and 

(1.10) V/(xi) = (-1)1x +'5 exp((x)), 1 = 0,1 .... 

The equations (1.9) and (1.10) are obtained as follows: Let x = xl in (1.7) so 
that the term sin(O(x))b2(x) disappears; the result is 

(1.11) I[f] = F(xi) + (-l)lx' +" exp(0-(xi))bj (xi), 

where the constant multiplicative factor (-1)q has been absorbed into b1 (xi). Recall 
that b1 E A so that b1 (x) - E J bll/xi as x -+ oc. Truncate this expansion at 
the term b1n/xn and replace bi(xi) in (1.11) by this truncated series. Now replace 
I[f] by WnTj) and b1i by /j, treat these as unknowns, and let I = j, j +,...j + n + 1 
so as to get (1.9). 

The solution of the system for WnTj) can be achieved very efficiently by the W- 
algorithm of [5]; here are the steps of this algorithm: Set 

(1.12) M(8) F(x8)/1(x8), N(8) = 1/0(x8), s = 0,1,..., 

and compute, for s = 0,1,..., p = 0,1,.... 

=, (8 M M(8?1))/x~1 p p-i p-1 iXs -Xs+p+l)X 

(1.13) N) = (Np(8-Npj1 ) -1 -1 

W(8) =M(8)IN (8) 

Now, as is shown in [3] and [5], W(J) is of the form 

n+1 

(1.14) W W = 
Z=O 

where 
n+1 

(1.15) > =i= 1 for all j and n, 
i=O 

and 

(1.16) i > X0, 0 < i < n + 1, for all j and n, 

the latter being a direct consequence of 

(1.17) 4(xl>)0(xl+) < 0, I > 0, 

which in turn holds by (1.10). Actually, (1.17) is necessary and sufficient for (1.16) 
to hold. Now (1.10), (1.11), and (1.14)--(1.16) enable us to prove that 

(1.18) I[f] -Wn) - 0 [x7+-n- exp(1(xi))] as j -- o0 (Process I) 
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and 

(1.19) I[f] - W - = o(n-l) as n -x oc, all ,u > 0 (Process II). 

More will be said in Section 3 concerning (1.14)-(1.19). 
As can be seen from (1.7)-(1.10), the W-transformation involves the asymptotic 

analysis of the integrand f(x) for x -+ ox, some of which is quantitative in nature. 
In particular, 4(xl) requires knowledge of 0(x), q(x), and -y. In the next section 
we show how the W-transformation can be modified so as to keep the asymptotic 
analysis of f(x) to a minimum (involving 0(x) only), without affecting its numerical 
efficiency very much. In fact, in all of our numerical experiments we have observed 
that both the original and the modified W-transformations have comparable ac- 
curacy when applied to integrals of functions in B. In Section 3 we analyze the 
convergence properties of the modified W-transformation for these integrals and 
show that (1.18) and (1.19) are still valid. By employing an approach different 
from the one used in [3], [4], and [6], we actually prove a significantly improved 
version of (1.18), which is valid for the (original) W-transformation as well as the 
modified one. The main results for the modified W-transformation are given in 
Theorem 3.1 (Process I), and in Lemma 3.8 and Theorem 3.2 (Process IS). Finally, 
the modified W-transformation seems to produce very accurate results also for in- 
tegrals of functions f(x) that oscillate as those in B but are not in B themselves. 
This is a surprising observation for which we have no explanation at present. More 
details on this are given in the next section. 

Before proceeding to the next section, we mention that xl, I = 0,1,..., can 
be taken to be consecutive zeros of the function cos(O(x)) instead of sin(0(x)), 
everything else, including the convergence results of Section 3, remaining the same. 

2. The Modified W-Transformation. The modification that we propose to 
make in the W-transformation consists of replacing (1.10) by 

X1+1 

(2.1.) X/(xi) = f f(t) dt = F(xl+) - F(xi), I = 0 1, 2, .... 

n is again defined through the linear system of equations in (1.9) and hence can 
be computed recursively by the W-algorithm as described in (1.12) and (1.13). 

As is shown in Lemma 3.3 of the present work, for I sufficiently large, the V)(xl) 
alternate in sign. 

Since F(xi) = At _l (xi), where we have set V/(xl) = fx f (t) dt, we see 

that the only quantities required for the determination of W44) in the modified 
W-transformation are the finite integrals )(xi), -1 < i < j + n + 1. Thus, the 
only information needed beyond f(t) is the set of first few xl, which in turn is 
obtained from the polynomial 0(x). That is to say, in order to apply the modified 
W-transformation, we need only consider the dominant polynomial part of the 
phase of oscillations and need not concern ourselves with the modulating factors 
such as h1 (x) exp q% (x)). This offers a significant advantage, as it suggests that we 
could at least attempt to apply the modified W-transformation to all oscillatory 
infinite integrals whose integrands are of the form 

r 

(2.2) f (x) = E uj (03 () H3 () 
j-1 
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where u1(z) and 01(x) are exactly as described in Definition 1.2, and the Hj(x) 
are arbitrary functions that do not oscillate for x -+ 00. We might even consider 
very slow oscillations (compared to exp(?iO(x))) in H1 (x) such as exp(?iR(x)), 
where as x -+ oo, R(x) c(log x)k, k > 0. Indeed, numerical results suggest that 
the modified W-transformation is as efficient on such integrals as on those with 
integrands in B. 

Since the modified W-transformation is ultimately based on the 4(xj) only, it 
can be viewed as a method in which one first integrates f(t) between the zeros 
of sin(0(x)) (or cos(0(x))) to obtain the integrals 0(xj), and then accelerates the 
convergence of the (ultimately alternating) infinite series Z?- /(xi), which con- 
verges to I[f] in case f E B,. In this sense, the modified W-transformation is 
akin to a method first proposed by Longman in [1], in which one integrates f(t) 
between its consecutive zeros Yi < Y2 < , Y1 > a = yo, to obtain the inte- 
grals v, = fy2+l f(t) dt, i = 0,1,..., and then accelerates the convergence of the 
alternating infinite series % E vZ by a sequence transformation, e.g., the Euler 
transformation. 

We now apply the modified W-transformation to some infinite integrals with 
integrands in B or as in (2.2). In all cases, the approximations presented are W(?) 
n = 0, 1, 2, .... The computation of the V(xj) is performed accurately by a low- 
order Gaussian quadrature formula, although other numerical quadrature methods 
can be employed. As is seen from the numerical values of F(xi) given in Tables 
2.1-2.5, the V)(xl) are alternating in sign, as expected. 

The computations reported in this section were carried out in double-precision 
arithmetic on an IBM-370 computer. 

Example 2.1. Ip = fo X2p Jo(x) dx. 
Using the original W-transformation, this integral was computed in [6] for p = 1 

and p = 2. As mentioned there, since Jo (x) = 71 (x) cosx + 72 (x) sin x, where 
71,12 E A(-1/2), the integrand f(x) = x2pJ o(x) is in Bd whenever p > 1/4, so 

that Ip is defined in the sense of Abel summiability. Of course, 0(x) = x, hence, 
x1 = (I + 1)ir, 1 = 0,1, .... We again computed Ip for p = 1 and p = 2 for which 
I, = -1 and I2 = 9. The results of the computation are given in Table 2.1. 

Example 2.2. "? ew(x)w(x)w'(x) dx - ew(O) [-1 + iw(O)]. 
Whenever w(x) is real and is in A(q) for some positive integer q, the integrand is in 

Bd. An integral of exactly this type was computed in [6] by the W-transformation. 
Actually, the integrand is in Bd also when w(x) is complex and limxO0 Imw(x) = 

C, a constant. When limx Oo Im w(x) = +ox, however, it is in B,. 
In this work we apply the modified W-transformation to the convergent integrals 

Is = I[f8] = f f8(t) dt, s = 12,3, 

where f8(x) = Re[ezw8,(X)W8(X)W4(x)], and 

Wi (x) = (x2+ 2\/ 2+ X +x4-4) + iE((x + 1)3-1), 6 > 0, 

W 2(X) = ((X+ 1)3-1) +iE(X2 +2V2 +x+4-4), 6 > 0, 
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TABLE 2. 1 

F(xn) and relative error in W(?) for the integrals Ii = -1 and 

I2 = 9 of Example 2.1, using the modified W-transformation. 

relative error in relative error in 
n F (x, ) for I W (0) for I1 F(xn) for I2 Wn() for I2 

0 -0.776D+01 0.865D+00 -0.973D+02 0.250D+01 
1 0.128D+02 0.371D-01 0.824D+03 0.540D+00 
2 -0.233D+02 0.17 1D-02 -0.271D+04 0.214D-02 
3 0.309D+02 0.101D-03 0.654D+04 0.428D-02 
4 -0.437D+02 0.443D-05 -0.131 D+05 0.918D-03 
5 0.535D+02 0.657D-07 0.234D+05 0.478D-04 
6 -0.681D+02 0.615D-08 -0.383D+05 0.206D-05 
7 0.796D+02 0.470D-09 0.590D+05 0.388D-07 
8 -0.959D+02 0.744D-11 -0.867D+05 0.446D-10 
9 0. 109D+03 0.912D-12 0.123D+06 0.473D-10 

10 -0. 127D+03 0. 143D-12 -0. 168D+06 0. 197D-1 1 
11 0.141 D+03 0.742D-13 0.224D+06 0.754D- 12 
12 -0. 160D+03 0.895D-13 -0.293D+06 0.181 D- 11 
13 0.176D+03 0.104D-12 0.375D+06 0.270D- 11 
14 -0. 197D+03 0.1 18D-12 -0.472D+06 0.323D-1 1 
15 0.213D+03 0.128D-12 0.587D+06 0.317D- Il 
16 -0.235D+03 0.135D- 12 -0.719D+06 0.239D- 11 
17 0.253D+03 0.135D- 12 0.872D+06 0.120D- 11 
18 -0.276D+03 0.123D-12 -0. 105D+07 0.425D-12 
19 0.295D+03 0.968D-13 0.125D+07 0.122D- 11 

and 

w3(X) = W1 (x) + 1 log(1 + x). 

As mentioned above, f8(x), s = 1, 2, are in Bc, but f3(x) is not, although fo7w f3(t) dt 
converges. In fact, f3(x) is not even in B. Now if E is chosen to be very close to 
zero, then the integrals fo' f, (t) dt converge very slowly. Indeed, their convergence 
is not noticeable in practice. 

We note that for fi(x) we have m = 2 and k = 3, while for f2(x), m = 3 
and k =2. For fi(x), 0(x) = x2 + 2x, so that x1 =-1 + /1 + (I + 1)7r, and for 
f2(x), 0t(x) = (x + 1) 3- 1, so that xi = -1 + (1 + (I + 1)7r)1/3. The treatment 
of f3(x) is identical to that of fi(x). The reason for this is that the dominant 
polynomial part of the phase of oscillations is 0(x) = x2 + 2x. We include the 
factors exp(?Zi/lOlog(1 + x)) in the amplitude, as they oscillate at a much slower 
rate than exp(?iO(x)). The results of the computation for E = iO-4 are given in 
Table 2.2. 

Example 2.3. 

00? sin ax sinh,3x 3 l7r a7rX 
I x sinh fx dx = arctan tan 21 tanh 2 JO x sinhtyx 2-y 2^y/ 

For 0 < 13< -y this integral converges, but its integrand is not in B. In fact, 
the integrand is of the form (2.2) with 0(x) = ax. Therefore, we could apply the 
modified W-transformation with xi = (I + 1)w7r/a. The results of the computation 
for a = 1, f = 0.1, and - = 0.2 are given in Table 2.3. 
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TABLE 2.2 

F(xn) and relative error in W(0) for the integral I, = -1, s = 1, 2, 3, 

of Example 2.2, using the modified W-transformation. 

relative error in relative error in relative error in 
n F(x,,) for!1 W,0) forI1 F(x,,) forI2 V,0) forI2 F(x^) forI3 I V,,) forI3 

0 -0.570D+01 0.618D+O0 -0.145D-07 0.163D-08 -0.566D+01 0.618D+OO 
1 0.668D+01 0.391D-01 -0.200D+O 1 0.535D-09 0.681D+O1 0.389D-01 
2 -0.113D+02 0.783D-02 -0.552D-07 0.127D-09 -0.117D+02 0.753D-02 
3 0.1 17D+02 0.287D-03 -0.200D+01 0.245D-10 0.124D+02 0.254D-03 
4 -0.158D+02 0.578D-04 -0.115D-06 0.419D-11 -0.169D+02 0.635D-04 
5 0.158D+02 0.101D-04 -0.200D+01 0.705D-12 0.173D+02 0.106D-04 
6 -0.196D+02 0.601D-06 -0.189D-06 0.870D-13 -0.216D+02 0.51OD-06 
7 0.193D+02 O.134D-07 -0.200D+01 0.480D-13 0.218D-+02 0.483D-07 
8 -0.230D+02 0.963D-09 -0.275D-06 0.298D-13 -0.259D+02 0.731 D-08 
9 0.225D+02 0.147D-08 -0.200D+01 0.331D-13 0.260D+02 0.648D-09 

10 -0.260D+02 0.481D-09 -0.371D-06 0.264D-13 -0.300D+02 0.402D-09 
11 0.254D+02 0.105D-09 -0.200D+01 0.107D-13 0.300D-+02 0.103D-09 
12 -0.287D+02 0.209D-10 -0.477D-06 0.145D-13 -0.339D+02 0.222D-10 
13 0.280D+02 0.403D-1 1 -0.200D+01 0.431D-13 0.338D+02 0.456D-11 
14 -0.312D+02 0.843D-12 -0.591D-06 0.653D-13 -0.376D+02 0.968D-12 
15 0.304D+02 0.102D-12 -0.200D+01 0.738D-13 0.374D+02 0.136D-12 
16 -0.336D+02 0.810D-13 -0.712D-06 0.693D-13 -0.412D+02 0.870D-13 
17 0.327D+02 0.413D-13 -0.200D+01 0.601D-13 0.409D+02 0.457D-13 
18 -0.358D+02 0.391D-13 -0.841D-06 0.547D-13 -0.446D+02 0.50OD-13 
19 0.348D+02 0.275D-13 -0.200D+01 0.579D-13 0.442D+01 0.409D-13 

TABLE 2.3 

F(xn) and relative error in W(0) for the integral of Example 2.3 with 

a = 1, = 0.1, and -y = 0.2, using the modified W-transformation. 

Note that the exact value of the integral is 0.785398012695720765 and 

that F(x20) is correct to four decimal digits. 

relative error in 
n F (x, ) W (0) 
0 0.723D+00 0.296D-02 
1 0.820D+00 0.788D-04 
2 0.765D+00 0.791D-05 
3 0.798D+00 0.501D-05 
4 0.778D+00 0.744D-06 
5 0.790D+00 0.275D-07 
6 0.782D+00 0.221D-07 
7 0.787D+00 0.215D-08 
8 0.784D+00 0.245D-09 
9 0.786D+00 0.840D- 10 

10 0.785D+00 0.618D- 11 
11 0.786D+00 0.1 14D- 11 
12 0.785D+00 0.337D- 12 
13 0.786D+00 0.231D-13 
14 0.785D+00 0.516D- 14 
15 0.785D+00 0.221D- 14 
16 0.785D+00 0.565D- 15 
17 0.785D+00 0.442D- 15 
18 0.785D+00 0.565D- 15 
19 0.785D+00 0.618D-15 
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TABLE 2.4 

F(xn) and relative error in W(0) for the integral of Example 2.4, 

using the modified W-transformation. The exact value of the 

integral is 0.421024438240708343. 

relative error in 
n F (x, ) Wn(?) 

0 -0.264D-01 0.554D-03 
1 0.850D+00 0.550D-03 
2 0.805D-02 0.183D-03 
3 0.820D+OO 0.307D-04 
4 0.345D-01 0.352D-05 
5 0.797D+00 0.388D-06 
6 0.552D-01 0.524D-07 
7 0.778D+00 0.879D-08 
8 0.720D-01 0.163D-08 
9 0.763D+00 0.319D-09 

10 0.861D-01 0.643D-10 
11 0.750D+00 0.134D-10 
12 0.980D-01 0.284D-11 
13 0.739D+00 0.619D-12 
14 0.108D+00 0.136D-12 
15 0.729D+00 0.313D-13 
16 0.118D+00 0.686D-14 
17 0.720D+00 0.181D-14 
18 0.126D+00 0.264D- 15 
19 0.713D+00 0.198D-15 

Example 2.4. f7 2 log(1 + x2)J, (x) dx = Ko (1). 
Because of log(1 + x2) = 2 log x + 0(1) as x -) oo, the integrand is not in B. In 

view of J1 (x) = 71 (x) cosx + 772 (x) sin x, where r71, 72 E A(-1/2), however, it is of 
the form (2.2) with 0(x) = x. Thus, xi = (I + 1)ir. The results of the computation 
are given in Table 2.4. 

Example 2.5. f7(x3Jl(x)-3cos(w(x))w(x)w'(x)) dx = O where w(x) is real and 
contained in A(q) for some positive integer q with w(0) = 0. 

We note that, even though both f'(x) = x3J1(x) and f2(x) = cos(w(x))w(x)w'(x) 
are in Bd, hence in B, their linear combination is not. This is so because the -y's 
(see Definition 1.2) associated with f1(x) and f2(x) are 5/2 and 2q- 1, respectively, 
so that their difference is not an integer. Nevertheless, provided w(x) = x + 0(1) as 
x _ 00o, the integrand is of the form (2.2) with 9(x) = x, so that x = (I+ 1) 7r. Table 
2.5 gives the results of the computation for the case in which w(x) = x+x/(1O+x). 

We note that the lack of improvement in the results towards the end of Tables 
2.1, 2.2, and 2.5 is strictly due to the finite-precision arithmetic being used and the 
considerable difference between the orders of magnitude of the F(xj) and I[f]. A 
semiquantitative explanation of this is given below. 

We recall that, if the computed value of F(xj) is F(xl) + El and the ( in 

(1.14) are assumed exact, then the computed value of is + E, where 
E = iEn-y'+1 i. Now, as is shown in Lemma 3.8 of this work, for fixed j, 

EZn=+ 1intj I - 1 as n -) ox. Thus, E (1 + 71) maxo<i<n + 1 E+i , where 71 = o(1) 
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TABLE 2.5 

F(xn) and W(?) for the integral of Example 2.5. The exact value 

of the integral is zero. 

n F (x, ) Wn() 
0 -0.852D+02 -0.808D+01 
1 0.210D+03 0.197D+O1 
2 -0.403D+03 -0.255D+00 
3 0.674D+03 0.256D-01 
4 -0.103D+04 -0.328D-02 
5 0.148D+04 0.399D-03 
6 -0.203D+04 -0.191 D-04 
7 0.269D+04 -0.523D-05 
8 -0.346D+04 0.177D-05 
9 0.435D+04 -0.341D-06 

10 -0.537D+04 0.549D-07 
11 0.651D+04 -0.865D-08 
12 -0.780D+04 0.149D-08 
13 0.922D+04 -0.278D-09 
14 -0.108D+05 0.682D-10 
15 0.125D+05 -0.319D-11 
16 -0.144D+05 0.138D-10 
17 0.164D+05 0.115D-10 
18 -0.186D+05 0.136D-10 
19 0.210D+05 0.149D-10 

as n - oo. If maxo<i<n+l IF(xj+,)l is of the order of 10', and if it has been 
computed to machine accuracy, e.g., to p decimal digits, then maxo<i<n+l lKj+il 
is of the order of 10-P+'. If, furthermore, I[f] is of the order of 100, then the 
relative error IE/I[f]l will be of the order of 10-P+1-0, i.e., the number of correct 

significant figures in the computed value of W(3) will be approximately p + 'f - a. 
Finally, if 3f < a, as is the case in Examples 2.1, 2.2, and 2.5, then this number 
is less than p. This suggests that, in case the sequence F(xl), 1 = 0,1, ...,is not 
bounded, which is the case for integrals with integrands in Bd, then after a certain 
point the accuracy of the computed values of W(") will diminish with increasing n. 

Finally, we note that we can also take 

(2.1/) 4'(xi) = j f(t) dt, 1 = 0 1, 2 ... ., x- = a. 

The advantage of this choice is that W(i) is now determined by j + n + 2 integrals 

O(Xo),... , /(xj+n+l), one less than required by the choice of 0(xj) given in (2.1). 
In many cases, however, the new choice (2.1') results in less accuracy for the first few 

W?, n=O,1,2 .... Eventually, however, the convergence rate improves quickly. 

3. Convergence Analysis. As is mentioned in Section 1, a sufficient con- 
dition for the convergence results in (1.18) and (1.19) is (1.16), which in turn is 
satisfied, since (1.17) holds for the original W-transformation. For the modified 
W-transformation, however, (1.16) need not hold in general. Nevertheless, as will 
be shown in Lemmas 3.3 and 3.8, for the modified W-transformation weaker forms 
of (1.16) and (1.17) exist, and these can be used to prove that (1.18) and (1.19) 
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hold in some cases. Without making direct use of these weaker forms of (1.16) and 
(1.17), we shall prove that (1.18) (in fact, a much stronger version of it) and (1.19) 
hold in any case. It is important to note that these weaker forms are sufficient to 
guarantee the stability of the approximations W(4), both for Process I and Process 
II. The main results for Process I and Process II are given in Theorem 3.1 and 
Theorem 3.2, respectively. 

Before we begin the analyses of convergence for WnI) we give closed-form ex- 
pressions for U) and I[f] - W('). In addition, we provide a thorough analysis of 

k(xl) and xl as functions of 1. Throughout, we assume that k(xl) 0 0, 1 = 0,1, .... 

LEMMA 3.1. Let 0 = 1/x, 0, = 1/xi, i = 0,1,.... Define G(S) -- F(x), 
p(s) _k(x), and let D($) and E(i) denote the divided difference operators over 
the sets of points f j, j+,,..., 3+n+1} and {x;,xj+3,. . .,x+n+l} respectively. 
Then 

(3.1) W -) D$() {Gn(__ )/p(')} 

and also 

(3.2) W~~~~~~~i~ E(3) f xn F(x) /O(x)} (3.2) = U _ _ /_ (X 

Proof. The proof of (3.1) has been given in [5]. The proof of (3.2) can be 
accomplished by multiplying (1.9) on both sides by xl, and then using the technique 
by which (3.1) is obtained. E 

Note that the W-algorithm described in (1.12) and (1.13) of the present work is 
based on (3.1). Equation (3.2), however, is new. 

LEMMA 3.2. The error in W(3) can be expressed as 

(3.3) I[f] -W ) - __Dj f(I[f]-G( _))Ip(_) 

and also as 

(3.4) I[f]- ) E {x(I[f]-F(x)) (x) 

Proof (3.3) and (3.4) follow from Lemma 3.1 and the linearity of the operators 
D(j) and E j 

LEMMA 3.3. For the modified W-transformation a weak form of (1.17), namely 

(3.5) V/(x4)/(x1+1) < 0 1 > L, some integer L > 0. 

is valid. Consequently, a weak form of (1.16), namely 

(3.6) (3n) > ?1 O< i< n+l1, j >L, all n, 

holds. 

Proof By (2.1) and (1.11), 

(3.7) ? (xl) = (-1)' [x+ exp(0(xj))bi (xi) + xl'4+' exp( (xi+1))bi (xi +)]. 
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Since b, E AM, b, (x) is of one sign for all sufficiently large x. This, combined with 
the fact that limli+ xl = oc, implies that there exists a nonnegative integer L for 
which b, (xi), i > L, are all of the same sign. Consequently, the expression inside 
the square brackets on the right-hand side of (3.7) is of the same sign for all I > L. 
The result now follows. E 

Throughout the remainder of this section, T(l) will denote generically any func- 
tion of I that has a convergent expansion of the form Z?0 Tili/m for all sufficiently 
large l. Note that since I is equal to a polynomial in xi of degree exactly m, T(l) 
is equal to a (generic) function T(xi) that has a convergent expansion of the form 

0 
. 

j='% Tix- for all sufficiently large I (or xi). Similarly, U(l) will denote generically 
any function of I that has. an asymptotic expansion of the form 000 Uli/m as 
l --o* o. Again, U(l) is equal to a (generic) function U(x1) that has an asymptotic 
expansion of the form Ei= U&x- as I (or xi) -+ oo. Needless to say, T(x) is in 
AM. All the functions U(x) that we encounter in the remainder of this section can 
also be shown to be in AM, although we omit the proofs. 

LEMMA 3.4. As a function of 1, and for all sufficiently large 1, 
(a) xi has the convergent expansion 

(3.8) xI = ,l/M EI 6i-i/m, 60 > 0; 
Z=0 

(b) xi+, has the convergent expansion 

(3.9) xi+1 = li/m rail-i/m 
i=O 

where 

(3.10) 6i= , 0 < i < m-1, m= + 6o/m; 

(c) for any nonzero p, 

(3.11) x _ x1P = l(P-M)/M mP +I-1/ 

Proof. Since xi is the largest positive solution of the polynomial equation 0(x) - 
(q+1)7r = 0, we can easily see that xi - Q(li/m) as I -+ oo. If we now let E = l-l/m 
and xl - e-y(E), and write 0(x) = xZa lbtJxm1- then the polynomial equation 
above becomes 

m%= [jtj ym- (1 + q~m)7, = 0. Note that the coefficient of ym 
is independent of ?, and the rest of the coefficients are polynomials in C. Therefore, 
y(E) is an analytic function of E at E = 0. Consequently, for all E sufficiently 
close to zero, a convergent expansion of the form y(E) = E'- 6is exists. The 
6i can be determined by substituting this expansion for y(E) in the polynomial 
equation and equating the coefficients of each Ei to zero, and solving the resulting 
equations for 60, 61,62,..., in this order. Actually, 60 = (r/o0)i1/m > 0, since 
,ao > 0 by assumption. This proves part (a). Part (b) follows directly from part 
(a) by replacing I by I + 1 in (3.8). 

To prove part (c), we first observe that 

xi( -+ xi+- ill1 [- Xi (3.12) xi x=i + [m +/mT(l)] 
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the second equality following from (3.8)-(3.10). Raising both sides of the equality 
in (3.12) to the power p, we obtain 

(3.13) (Xl~i ) = 1 + 1-1 [P + l1/mT(l)1 

which in turn results in (3.11). E 

LEMMA 3.5. As a function of xi, 

(3.14) (xl) = (-l)lx +-' exp(o(xi))bl (xi)[1 + w(xi)], 

where 
00 

(3.15a) w(x) Z o/xt as x - o, wo > 0, if k < m, 
E- o 

and w E A() , and 

(3.15b) w(x) = eP(X)U(x), lim P(x) = -0o, if k > m, 
X-4 00 

where P(x) is a polynomial in x of degree k - m whose construction is explained 
through (3.18)--(3.21) in the proof below. 

Proof. (3.14) follows from (3.7), once we identify 

(3.16) ____x1+ r+-' bl(x1?i) 
(3.16) W (xl ) = i (bl+l ) / (xit+) ) exp[O(zl+ l ) - O(Z()]( 

By Lemma 3.4, after some tedious manipulations, it can be shown that 

(3.17) xl )+ bi (xl+) = 1 + IlU(l). 

If k = 0 (< m), exp[O(x1+1) - /(x1)] = 1, thus w(x1) = 2 + I-1U(l) for this 
case. By the remark preceding Lemma 3.4, (3.15a) now follows. If k > 1, writing 

X(x) = E>L7 Vxki, vo < 0, and invoking Lemma 3.4, it follows that 

00 

(3.18) $(xiI+) - q(xi) - (k-m)/m d I- do = vo8o/m <0, 
Z=0 

for all sufficiently large 1. Again by the remark preceding Lemma 3.4, (3.18) can 
be expressed as 

00 

(3.19) q(x+1)-q(x ) = Xk-M A d x-E, do < 0 
Z=o 

for all sufficiently large 1. Now if k < m, then q(x1+1) - q(x1) = O(xi -m) = O(1) 
as I -+ oo, hence w(x) is as in (3.15a). If k > m, however, (3.19) can be expressed 
in the form 

(3.20) q(xl?+) - q(xi) = P(xi) + Q(xi), 

where 
k-m-1 00 

(3.21) P(X) = E dikm I, Q(x) = , d 
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Obviously, P(x) is a polynomial in x of degree k - m with leading coefficient neg- 
ative, and Q(x) = 0(1) as x --* oc. Combining all the above in (3.16) yields 

(3.15b). a 
Note that, in any case, 1 + w(x) - K as x -- o, where K is a fixed positive 

constant. 
3.1. Analysis of Process I. 

LEMMA 3.6. Using the notation of Lemma 3.1, we have that 

(3.22) IEn){Xn (X) Ci exp-(x3+n+1))Xmn-or as j - 00, 

where C1 is a positive constant independent of j. 

Proof. From the theory of divided differences it is known that 
n+1 

(3.23) E4l){g(x)} = E 

s=O 

where 
n+1 

(3.24) c l) = (X3 -x3 )1 0 < < n +1. 
Z=o 

Obviously, cn3) CW +1 < 0, 0 < s < n. Since also O(x,+,)?O(xj+,+i) < 0 for I > L 
by Lemma 3.3, we can write 

n+1 

(3.25) IE(1){Xn/ = E lenC?) In1I0(Xj+,) > L. 
s=O 

Therefore, the asymptotic behavior of IEn)f {xn/(x)}l is determined as the sum 
of the asymptotic behaviors of the (positive) terms in the summation on the right- 
hand side of (3.25). First, 

(3.26) IC(') I 
- Cn (m-1)n as - 00, 

where cn,, are some fixed positive constants. To show (3.26), we observe that 

(3.27) x -3+ :+ = (xj+ - xj) - (xj+ - xj) 

and that 

(3.28) + - = Z(x3+i -x3+?1) , (86o/m)j(1-m)/m as j -- 00, 
i=1 

by Lemma 3.4. Combining (3.27) and (3.28) in (3.24), and invoking the remark 
preceding Lemma 3.4, (3.26) follows. Substituting (3.14) and (3.26) in (3.25), we 
obtain 

n+?1 c (m-1)nzn 

IE(3)fn10(Xj c-' 3f,~ j+8 

(3.29) |E4 n){xn/ (x)}I E3+ exp (b(X3+ 8))I b1(x, +,,)I[I +w(xj+)] 

as j -D o0 

Using now the facts that x,+? - x1 as j -) 00, bi E AM, and 1 + w(x) K as 
j .- 00, where K is a fixed positive constant, (3.29) can be expressed as 

(3.30) IE ns) f 
zn1(X)} l (max exp(-O(Z,+i)) C1 mn-o- f as 0c 

Finally using the fact that limb+o /(x) = -oo, (3.22) follows from (3.30). E 
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LEMMA 3.7. Denote 

(3.31) N(3) = EO) f{xn(I[f] -F(x))/,O (x) 

Then, for some positive constant C2, 

(3.32a) INnj) C2x 2 asjoo, if k < m, some integer i > n, 

and 

(3.32b) Nn(.) -0 (X(n+l)(k-m)-leP(x3)) as j -+ 00, if k > m, 

with P(x) as given in Lemma 3.5. 

Proof. By (1.11) and (3.14), 

(3-33) I[f] - F(xi) 1 
= O. 1, ..1 . 

4 (xi) - ?w(xi)' 

Expanding now the right-hand side of (3.31) according to (3.23), and using (3.33), 

we obtain 

.3-34) Nnj) = E4?) { 1 +CA(x } 

Consider now the case k < m. Then by (3.15a), 

(3.35) _ 0 0 W'x as x oo. 

It is known that, for any function g(x) that has n + 1 continuous derivatives over 

[Xj 1 Xj+n+ 1 ] X 

(3.36) E4j){g(X)} = (? + )!< z < Xj+n+l, 

as a consequence of which we also have 

(3.37) Ej) {xi} =O < i < n. 

Substituting (3.35) in (3.34), and using (3.37), we obtain 

00A 

(3.38) N3) , E Y) {ZwOXn-i} as j -oo. 
ion+l1 

(3.32a) now follows by employing (3.36) and using the fact that xj+i x1 as 

j -o. Note that h = n if wn+1 7& 0; otherwise i > n. 

Next, consider the case k > m. Then by (3.15b), 

n an ?? 
(3.39) 1 X a: 006(X~ 1 + W(x) + eP(x)L(a) - 

Z(01)8e8P(x)[U(x)]8 

for all sufficiently large x, since limx+DO P(x) = -0o. Thus, for all sufficiently large 

3.40) N = | A E )00 

(3.40) N()= Eji X J E(_1)-gE ~j) {Xn[U(x)]se8p(x) } 
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The s = 0 term vanishes by (3.37). The s = 1 term is the dominant one in the rest 
of the summation. Hence (3.40) becomes 

(3.41) ANd) --E(i){xnU(x)eP(x)} as j oo. 

Invoking (3.36), after some lengthy manipulations, (3.32b) can be shown to hold. 0 
We now state the main convergence result for Process I, in which n is held fixed 

andj -o 00. 

THEOREM 3. 1. As j -? o, the error in W(3) satisfies 

(3.42a) 1I[f] -W(3 C) +mn- -2exp(q(x3+n+l)) as j -o 00, if k <m, 

where C is a positive constant, and ft is as in (3.32a), and 

(3.42b) I[f] -W(i) = O(X7+Y+(k-2m)n+k-m-1 exp(q$(Xj+nz ) + P(Xj))) 

as j -- o, if k >m. 

Proof. The proof is achieved by combining Lemmas 3.6 and 3.7 in (3.4). It 
should be mentioned that (3.42a) and (3.42b) are made possible by the fact that 
(3.22) is an asymptotic equivalence. 0 

Note that the result stated in Theorem 3.1 is better than that stated in (1.18) 
for all k and m. First, when k < m, the right-hand side of (3.42a) is smaller than 
the right-hand side of (1.18) by a factor of x1tmn- exp(q(xj+n+l) -(Xz)) which 
tends to zero as j -- oc both for k = 0 and k > 0, since lim O O$(x) = -oo and 

X+n+?1 > X3. Next, when k > m, the right-hand side of (3.42b) 3 smaller than the 

right-hand side of (1.18) by a factor of x(k2m+)n+kmexp((xj+ni) - qx) + 

P(xj)) which also tends to zero as j -- 0o because of lim,+, q(x) = -oo and 
limber P(x) = -00. 

Comparing (3.42a) and (3.42b), one might conclude that (3.42b) is inferior to 
(3.42a), since the power of x; in (3.42b) is greater than that in (3.42a) by S = 

(k-m+1)(n+1) > 0 for k > m, n > 0. Actually, (3.42b) is as good as (3.42a), the 
loss through xs being compensated for by the factor exp(P(xj)), since, practically 

speaking, exp(P(x)) exp(doxk-m) for x -- oo, do < 0 (see (3.18) and (3.21) in 
the proof of Lemma 3.5). 

Finally, we mention that the result in (3.42a) holds for the original W-transforma- 
tion, both when k < m and k > m. The proof of this can be achieved exactly as 
that of (3.42a). 

3.2. Analysis of Process II. The following lemma gives a weak form of (1.16) for 
the modified W-transformation in conjunction with Process II. 

LEMMA 3.8. For fixed j, 

(3.43) lim a = 0 for finite s, 
n--+oons 

and also 
n+1 

(3.44) lim E = 1. 
s=O 

Proof. We begin by noting that 

.() = Cn,_/P(3+j8 ) 
(3.45) "Ys-D j) f llp(__ 
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where this time, 

n+1 

(3.46) C(i)= -I (dj+8- j+i) 
z=0 
its 

This can be shown by making use of (3.1) and (3.23) and (3.24), with E(i) in (3.23) 
and xi in (3.24) replaced by D(g) and (l, respectively. 

Denote now 6pq = l+p - (j+qj for all p and q (with j fixed), and consider 

(3.47) -) =|n, > [ 8n+li P|/(j+nSl) n 
fn n+1 8s,9i P(~'j+8) 

Using p('i) = y5(xi), Lemma 3.5, and Lemma 3.4, it follows that 

(3.48) P((j+n+l)/P(&j+s) = O(x'+-') = Q(n(7+-')/m) as n -+ oo. 

Since limit + ( = 0, given E > 0, there exists a positive integer M for which 8pq < E 

if p, q > M. Without loss of generality we take E < 88,8+1 and M > s. Also, since 
(i decreases monotonically, the sequence Is,? increases monotonically for i > s + 1. 
Combining all this, we have for all n > M 

< 
n~ 

fl 6n+1, n___ 
(3.49) n 68, M< ? 8,% Z 68s+1 )flM 

Was its 

Combining (3.48) and (3.49) in (3.47), and letting n -- 0o, we obtain 

(3.50) urn mPoj = O. 

By Lemma 3.3 and the fact that c(W)C(i)+1 < 0 0 < s < n, we have that ( are n,s8 n,s+1N' 
of the same sign for I > L - j. This, combined with (3.50) and (1.15), is sufficient 

to prove (3.43) and (') > 0, 1 > L - j, from which (3.44) follows easily. We omit 
the details. n 

Note that (3.43) is valid for the original W-transformation too, the proof of this 
being exactly as above. We leave the details to the reader. 

THEOREM 3.2. AS n -? oc, the error in W(j) satisfies 

n+1 

(3.51) <I[f - I| < t Y(1) t()+ s) o(n-I), any p > O. 
8=O 

When f e Bc, i.e., I[f] exists in the ordinary sense, the summation on the right- 
hand side of (3.51) is bounded; otherwise, it grows at most like a fixed power of n. 
Consequently, in any case, (1.19) holds. 

Proof. Consider the error expression given in (3.3). In analogy with the proof of 
Lemma 3.7, this expression can be shown to be equivalent to 

_2[- ) {( + w(')) } (3.52) Dn] 
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Now it follows from Lemma 3.5 that the function c (() = 1/(1?w(&')) is infinitely 
differentiable for ( e [0, 4o]. Let rn (E) be the best polynomial approximation of 
degree at most n to c(4) on [0, fj] in the Chebyshev norm. Using the fact that 

(3.53) D ){t} = 0, 0 < i < n, 

(3.52) can now be written as 

(3 54) IJ[f] D- {Wj(A ) - 

which, by (3.45), can be expanded as 

n+1 

(3.55) I[f] -Wn) = E tn-sO (Xj+s)(C( +s)- rn((j+s)) 
8=O 

By a standard result in the theory of polynomial approximation, the fact that (D(() 
is infinitely differentiable on [0, (j] implies that 

(3.56) max ICO(() - Wn(E)I = o(n-"), as n -x X), any pu > 0. 

Using (3.56) in (3.55), (3.51) now follows. The rest of the theorem follows by noting 

n+1 n+1 
(3.57) S K441 KJ'(xm+)I ? ( aJ)s) x I/)(xj+8)I, 

Lemma 3.5, and (3.44). El 
Finally, we note that both for Process I and Process II, Wn() can easily be 

shown to be a regular summability method, in that all conditions of the Silverman- 
Toeplitz theorem [2, pp. 23-27] are satisfied. This implies that if the sequence 

F(xl), I = 0,1, 2,..., converges, then so do the sequences Wn()I j = 0,1,2,..., 
and Wn(j), n = 0, 1, 2, ... Of course, this approach to the convergence analysis is 
too simplistic and crude, since no information concerning rates of convergence is 
obtained. Furthermore, if the sequence F(xl), I = 0,1, 2,..., does not converge, 
which is the case when I[f] is defined in the summability sense but not in the 
ordinary sense, then no information on the convergence of W(j) is obtained. 

4. Concluding Remarks. In this work we have proposed and analyzed in de- 
tail a modification of the W-transformation. The W-transformation was designed 
for efficient evaluation of oscillatory infinite integrals with integrands f(x) in the 
class B and involves some amount of asymptotic analysis of the integrand f(x) for 
x -- oo. In fact, both the phase of oscillations and the amplitude have to be ana- 
lyzed so as to extract information that is used as input for the W-transformation. 
The modification that we have proposed for the W-transformation requires asymp- 
totic knowledge of only the phase of oscillations and requires no information on 
the amplitude. Furthermore, it requires no extra computational work and is as 
effective as the original W-transformation. It can be implemented very efficiently 
by the W-algorithm. 

As suggested by ample numerical evidence, this modification can also be suc- 
cessfully applied to oscillatory infinite integrals with integrands not necessarily in 
B. From this observation one might conclude that the choice of the xl is the crucial 
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ingredient for the success of both the original and the modified W-transformations. 
It is important to note that for both methods the choice of the xl is also very sim- 
ple, as it involves the determination of the largest positive zero of a polynomial of 
degree m. This problem has immediate solution when m = 1 or 2, and is a simple 
numerical problem for m > 3. 
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