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A Table of Elliptic Integrals of the Third Kind* 

By B. C. Carlson 

Abstract. As many as 72 elliptic integrals of the third kind in previous tables are unified 
by evaluation in terms of R-functions instead of Legendre's integrals. The present table 
includes only integrals having integrands with real singular points. In addition to 31 
integrals of the third kind, most of them unavailable elsewhere, 10 integrals of the first 
and second kinds from an earlier table are listed again in new notation. In contrast 
to conventional tables, the interval of integration is not required to begin or end at a 
singular point of the integrand. Fortran codes for the standard R-functions RC and Rj, 
revised to include their Cauchy principal values, are listed in a Supplement. 

1. Introduction. A table [4] of elliptic integrals of the first and second kinds 
is extended in this paper to integrals of the third kind. We choose a standard form, 

rx n 
(1.1) [PI = [P1i, *,Pn] = j J7(ai + b t)pi/2 dt, 

Yi=1 

where P1, .. . , Pn are integers and the integrand is real. The integral is assumed to 
be well defined; in particular, if pi is odd, ai + bit must be positive in the open 
interval of integration. Many integrals like 

I(1 + nsin2 q)-1(1 - k2 sin2 o)-1/2 dO 

and 

I(1 + nz2)-l[(1 _ Z2)(- k2z2)]-1/2 dz 

can be put in the form (1.1) by letting t = sin2 0 or t = z2. 
If we assume the b's are nonzero and no two of the quantities ai + bit are pro- 

portional, then [P1X... XPn] is an elliptic integral if the number of odd p's is exactly 
three (the "cubic case") or four (the "quartic case"). It is elliptic of third kind if 
at least one of the p's is even and negative or if Pi + + Pn = -2,0, 24, .. ., the 
latter condition being impossible in the cubic case. Otherwise, it is first or second 
kind, and the only integrals of first kind are [-1, -1, -1] and [-1, -1, -1, -1]. 

The conditions that the integral be of third kind are deduced by using [2,(8.1-2)] 
to express [p] as an R-function with "b-parameters" -P1/2, ... , -pn /2, 2 + E pi /2. 
The integral is of third kind if at least one of these parameters is a positive integer 

(see [2, ?8.5, ?9.2]). 
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We shall replace Legendre's integrals of the first and third kinds by 

1 00 
(1.2) RF((X Y, Z) = 2 J + X)(t + y)(t + Z)]-1/2 dt 

(1.3) Rj( y, ZP)= [(t + X)(t + y)(t + Z)]-/2(t+ p)- dt. 

Besides being symmetric in x, y, z, these R-functions are homogeneous: 

(1.4) RF(Ax, Ay, Az) = A /2RF(XiYz), 
R (Ax, Ay, Az, Ap) = A-3/2RJ(X, y, z, p), 

and they are normalized so that 

(1.5) RF((X, x, x) = X-1/2 Rj(x, x, x, x) = x-3/2 

Two special cases are denoted by 

(1.6) Rc (x, y) = RF (x, y, y), RD (x, Y, Z) = Rj (x, y, z, z). 

The function RD replaces Legendre's integral of the second kind, and RC is an 
elementary function** embracing the logarithmic, inverse circular, and inverse hy- 
perbolic functions [3, (4.9)-(4.13)]. Use of Rc allows unification of formulas for 
circular and hyperbolic cases of integrals of the third kind. 

Fortran codes [5] for RC and Rj are listed in the Supplements section of this 
issue, and codes for RF and RD are given in a Supplement to [4]. All four can be 
found also in most of the major software libraries, but the codes for RC and Rj 
in the Supplement have recently been modified to compute the Cauchy principal 
value of the integral when the last variable is negative. As shown in Sections 5 and 
6, Cauchy principal values are sometimes needed when using the formulas of this 
paper. 

As explained in [4], the present table differs from customary integral tables 
[1], [7]***, [8] in two respects: We do not require the interval of integration to 
begin or end at a branch point of the integrand, and we do not separate special 
cases according to the positions of the branch points relative to the interval of 
integration and to one another. The unification of these special cases is made 
possible by application of the addition theorem and by the use of R-functions 
instead of Legendre's integrals. The present table includes only integrands with 
real branch points; conjugate complex branch points resulting from an irreducible 
polynomial ai + bit + ct2 are deferred to a later paper. 

The table in Section 2 consists of quartic cases, since many cubic cases are 
included in these by taking ai = 1 and bi = 0 for various values of i. To select 
integrals that are relatively simple, we arbitrarily require E Ipi I < 8 and ,pi < 
0. Apart from permutation of subscripts in (1.1), there are just 37 quartic cases 
satisfying these criteria. We omit nine with p5 = +2, P6 = ?2 since they can 

**Although not in connection with elliptic integrals, the use of a function equivalent to the 
reciprocal of RC was proposed in 1897 by Fubini, while still a student at Pisa, in his first published 
paper [6]. I am obliged to Professor Luigi Gatteschi for this reference. 

***Tables 3 and 4 in [7] use Legendre's H as defined by [1, (110.04)] and are inconsistent with 
[7, 8.111(4)], which differs in the sign of the parameter. The same is true of the 1965 edition. 
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easily be reduced to the others by (2.51)-(2.53), but we add three with Zpi > 
0: [1, 1,1, -1], [1, 1,1,1], and [1, 1,1,1, -2]. Thus we list 31 quartic cases, most 
of which are not available in previous tables. The formulas for [1, -1, -1, -1], 
[1, 1,-1,-3], [1, 1,-1,-1], and [1, 1,1,-1] respectively unify 32, 72, 48, and 32 
special cases in Byrd and Friedman's table [1]. 

All cubic cases of third kind with E Imp I < 7 are contained in the quartic cases of 
Section 2 with three exceptions: [1, ,1 ,1 -2], [3,1, -1, -2], and [3,1,1, -2]. Cubic 
cases of all three kinds will be discussed in a later paper. 

Because some of the formulas are cumbersome when written out in the style of 
[4], we have introduced abbreviations to save space. For uniformity of style, the 
quartic cases of first and second kinds listed in [4] are listed again in Section 3 in 
the new notation. Derivation of formulas by recurrence relations is discussed in 
Section 4. The fundamental formula for [1, -1, -1, -1, -2] is proved in Section 5, 
and Cauchy principal values are discussed in Section 6. All integral formulas have 
been checked by numerical integration; some details of the checks are given in the 
Supplement. 

2. Table of Quartic Cases. We assume x > y and ai + bit > 0, y < t < x, for 
i = 1 ... , 4. Assumptions about a5 + b5t will be stated where necessary. We define 

(2.1) dij= aibj - a.b, ri3 = dib_ -i ;_ aj 
t t3 

-bib 
- bi bj 

(2.2) Xi= (a. + b X)1/2X Yi = (ai + b y)1/2; 

(2.3) Ui3 = (XiX YkYm + YiYJXkXm)/(X -Y) 

where i, j, k, m is any permutation of 1, 2, 3, 4; 

(2.4) W2 = U22 -dl3dl4d25/dl5; 

(2.5) Q2 = (X5Y5W/X1Y1 )2, p2 = Q2 + d25d35d45/dl5; 

(2.6) A(pi, . .P, n) = X1 .xnV' pn 

These definitions imply, if P is chosen positive, 

(2.7) U2-U2 = dimdjk, 

(2.8) P = (Xi'X2X3X4Y5 + Y7'Y2Y3Y4X5)/(c- 

and hence, with the help of [4, (5.22)], 

= ~22 d14d23, Uj2 = U2- dA 

(2.9) U1= 1 uj -414 1 
(2~ ~ ~ ~~~w =9 W2U12- d,3dlk d'5 dl 5, 

where i, j, k is any permutation of 2, 3, 4. When a5 = 1 and b5 = 0, the quantities 
W,P,Q become W1,Pi,Qj: 

(2.10) ~~~W12 = U12 -b2dl3dl4/bl , 
Q2( = (W1 /X1 Y1)2, p?2 = Q2 + b2b3b4/bi 

If one limit of integration is infinite, (2.3) simplifies to 

Ui = (bibj)/2Yk m + YiYj(bkbm)'/2, = +0o, 

(.J1 = XiXj(bkbm) 1/2 + (bi bj) 1/2XkXm, Y = -0 0, 
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all square roots being nonnegative, while 

(2.12) Q= (b5/b1) (YW/Y1)2, x = +0o, 
(2) Q2 = (b5/b1)(X5W/X1)2, y = -oc. 

All quartic cases will be expressed in terms of the quantities 

(2.13) I, = 2RF(U12, U13, U14), 

(2.14) 12 = -dl2dl3RD(U12, U2 I U2 ) + X Y ' (2.14) I2 3 ~ 12'13' 14 + 44U4 

d15 12 13 1 (2.15) 13 = 
ldl RJ(Uj22, U1?3,U14,W) )+2R0(P, ,Q2)X 

3d15 

(2.16) = 
-2dl2dl3dl4 Rj(U?2, U23, U24, W2) + 2Rc(P?,X Q2). 

It will be seen from the tables that 

(2.17) I, = [1 -1, -1, -1], I2 = [1, -1, -1, -3], 
* I3= [1,-1,-_1 1,-1-2], I3 = 1, -1, -1,-'I- 

Thus, I3 reduces to II if a5 = 1 and b5 = 0, and I3 reduces to I2 if a5 = a4 and 
b5 = b4 

If one limit of integration is a branch point of the integrand, then Xi or Yj is 0 
for some value of i < 4, and one of the two terms on the right-hand side of (2.3) 
vanishes. If X1 Yi = 0 then P, Q, P1, and Qi are infinite, and the RC-functions 
in (2.15) and (2.16) vanish by (1.6) and (1.4). If both limits of integration are 
branch points, the elliptic integral is called complete, and U12U13U14 = 0. It is not 
assumed that b, $ 0 nor that d -3 $ 0, unless one of these quantities occurs in a 
denominator. The relation d,, = 0 is equivalent to proportionality of a, + bt and 

a. + bit. 
We are now ready to list 31 cases of 

(2.18) [P',.. ,Ps] = j/(a, + bit)P'/2 ... (a5 + b5t)P5/2 dt, 

15 with p5 = 0,2, or 4 and 16 with p5 = -2 or -4. The first 10 have p5 = 0 and 
involve I3 but not I3. 

(2.19) [1,1,-1, 11-1] = I3. 

(2.20) [1, 1, -1, -3] = (b2I3 + d24I2)/b4. 

(2.21) [3,-1, -1, -3] = (biI3 + dl4I2)/b4. 

(2.22) [1, 1 - 1, -1] = [b2(rl3 + r24)I3 + d24r34I2 -dl2rl3Il]/2 

+ A(1, 1,1, -1)/b3. 

- 4 

[3,-1, -1, -1] = (b1/2) E rliJ3 + b4r24r34I2 

(2.23) i=2 

- birl2rM3I1 + 2A(1, 1 ,1,-l)/b2b3|. 
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(2.24) [1, 1, 1, -3] = (b2b3/2b4) [ E riI3 + 3b4r24r34I2 - biri2ri3l] 

+ A(1, 1,1, -1)/b4. 

[3,1, -1, -3] = (bib2/2b4)[(rl3 + 2rl4 + r24)I3 

(2.25) + b4r24(2r14 + r34)1I2- birl2r13I1] 

+ (b1/b3b4)A(1, 1,1, -1). 

3 

(2.26) [1, 1,1,-5] = (b2b3/b4)I3 + (d24d34/3b4) 4 tr4I2 

- (dl2d13/3b4dl4)Il - (2/3b4)A(1, 1, 1, -3). 

[1,1,1,-i] = (b2b3/8)(ri 4- ri2- ri3 + 2r24r34)I3 

(2.27) + ( r'4/8) [b3d24r34I2 + 2A(1, 1, 1,-)] 

+ (b3dl2rl3/8)(rl 2- r34)Il + A(1, 1,1, 1)/2b4. 

[1, 1,1,1] = 
(b2b3b4/-6)(r 2-r34)(r24-r2 
- [(r12 -r34)2 + 2(r24 +r3)] 

* [d24d34I2 + 2b4A(l, 1,1 - 1)]/48 

(2.28) + (b3b4d12r13/48)(4r24r34- 3r24 + 3r23)Ii 

- ( r~i /12) A(1, 1, 1, 1) + A(3,1,1,1 1)/3b, . 

The next five integrals, with p5 = 2 or 4, involve I3 but not I3. No restriction is 

placed on a5 or b5. 

(2.29) [-1,-1,-1,-1, 2] = (b5I3-d15I1)/bj. 

(2.30) [1, -1, -1, -1, 2] = (b5/2)[(r12- r35 - r45)I3 + b4r24r34I2 

-bl r12r13I1 + (2/b2b3)A(1, 1, 1, -1)]. 

(2.31) [1, -1, -1, -3, 2] = (b5I3- d45I2)/b4 

[1, 1, -1, -3, 2] = (b2b5/2b4)[(rl3 + r24 -2r45)I3 

(2.32) + b4r24(r34- 2r45)I2- b1r12r1311] 

+ (b5/b3b4)A(1, 1,1, -1). 

[-1, -1, -1, -1, 4] 
4 

= (b2/2b,) - 3 r,5I3 + b4r24r34I2 + bl(2r25 -r2r13)I 

(2.33) 1+ A 

+ (2/b2b3)A(1, 1,1,1-1) 
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The next 11 integrals have p5 = -2, and we assume a5 + b5t either is positive on 
the closed interval of integration or changes sign in the open interval of integration. 
In the latter case the integral is interpreted as a Cauchy principal value; see Section 
6. All 11 integrals involve I3, and the six with Epi > -2 involve I3/b5 also. 

(2.34) [1, -1, -1, -1, -2] = I3. 

(2.35) [-1, -1, -1, -1, -2] = (b5I3 - bjI)/d15. 
(2.36) [1, 1, -1, -1, -2] = (d25I3 + b2I3)/b5. 
(2.37) [1, -1, -1, -3, -2] = (b53 - b4I2)/d45. 

(2.38) [1, 1, -1, -3, -2] = (d25I3 - d24I2)/d45. 

(2.39) [-1, -1,-1,-3,-2] = (b1/d5d45)I3 - (b4/dl4d45)I2 

+ (b2/dl4dl5)Il. 

(2.40) [1, 1,1, -3, -2] = (d25d35/b5d45)I3 + (b2b3/b4b5)I3 

- (d24d34/b4d45)I2. 

(2.41) [3, -1, -1, -1, -2] = (d15I3 + bI3I)/b5. 

[3, 1, -1,-1, -2] = (d5d25/b)I3 + (bi b2/2b5) 
(2.42) [(r13 + 2r15 + r24)I3 + b4r24r34I2 - b1r12r1311] 

+ (b1/b3b5)A(1, 1,1, -1). 

[1, 1,1, -1, -2] = (d25d35/b5)I3 + (b2b3/2b5) 
(2.43) [(r15 + r35 + r24)I3 + b4r24r34I2 - bir12r13I1] 

+ A(1, 1,1, -1)/b5. 

[1, 1, 1,1, -2] = (d25d35d45/b 3)I3 + (b2b3b4/8b5)(a2 - 2fr)I3 

(2.44) + (a/8b5)[d24d34I2 + 2b4A(1, 1,1,-1)] 
+ (b4d12d13/8bib5)(r12 - r35 - 3r45)I1 

+ A(1, 1,1, 1)/2b5, 

where 
4 4 

(2.45) or=Zris, T =Z 25. 
ri5 ri=l 

The final five integrals have p5 = -4. All five involve I3, and the two with 

E Pi > -2 involve I3/b5 also. We assume a5 + b5t is positive on the closed interval 
of integration. 

1 Id23 d24 d21 _______ 

(2.46) [11,-1,-1,-4] = d + d24 - 3) 13+ 2d d I2 

-_ d_____ I, 1 A(1, 1,1, -1, -2). 
2d,5d35 d35 
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1 (bi A bi b5d24d34 -I I --4-II + 2 
(2.47) [1,-1,-1, -1, -4] = 2 d15 di5 I3 + 2d25d35d45 

_b5d12d13 b5 

2d,5d25d35 I-d25d3 A(1, 1,1,-,-2). 

[1, 1,1, -1, -4] = (b2b3/2b2)[b5(r25 + r25r35/r,5 - r24r35/r45)I3 

(2.48) + 2I3 + (b4r24r34/r45)I2 - (bir12r13/ri5)Ii] 

- A(1, 1,1,-i, -2)/b5. 

- 1 4_____________ 

[-1,-1, -1, -1, -41 = 2dI5 _ 3 + 2d- : 5 d2d35 I2 

(2.49) + db (1-213 

d b5 dA(1, 1,1,-1, -2). 
dj5d25d35 

4 

[1, 1,1, 1,-4] = (d2sd35d45/2b4) r4'I3 
i=l1 

4 

(2.50) + (b2b3b4/2b5) ZrisI3 + (d24d34/bs)I2 
i=l1 

- (b4d12d13/2b5dj5)(rj5 + r45)Il 

- A(1, 1,1,1, -2)/b5 + (2b4/b2)A(1, 1,1, -1). 

The nine integrals with p5 = ?2, P6 = ?2, Z Ipi I < 8, and E pi < 0 can be 
reduced to those listed above by using the identities 

(2.51) (a5 + bst)-1(a6 + b6t)- = [bs(as + b5t)' - bb6(a6 + b6t)-]/d65, 

(2.52) (a5 + b5t)'- (a6 + b6t) = [b6 + d6rs(as + b5t)-1]/b5, 

(2.53) (a5 + b5t)(a6 + b6t) = [d65(as + b5t) + b6(a5 + b5t)2]/b. 

3. Quartic Cases of First or Second Kind. In [4] the nine quartic integrals 
of first or second kind with E pi I < 8 were evaluated in terms of RF and RD. 
Since RD is symmetric in only its first two variables, the third was chosen vari- 
ously as U22, U23, or Uj24 to simplify the formulas. In (2.14) and hence throughout 
Section 2, Uj24 is the choice. For uniformity of notation and for use in deriving the 
formulas of Section 2, we list again the nine integrals in present notation and add 
for convenience [-1, -1, -1, -3], which is a special case of [-1, -1, -1, -3, 2]. 

(3.1) [-1,-1, -1,-1] = I,. 

(3.2) [1, -1, -1,-3] = I2. 

(3.3) [-1, -1, -1,-3] = (b4I2 - bjI1)/d14. 

(3.4) [-1, -1, -1, -3, 2] = (d54I2 + dl5I1)/dl4. 

(3.5) [1, 1, -3, -3] = [2d24I2 + d1211 + 2A(1, 1, -1, -1)]/d34. 
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(3.6) [1,-1, -3, -3] = [(b3d24 + b4d23)I2 + b3d12I1 
+ 2b3A(1, 1, -1, -1)]/d23d34. 

[-1,-1, -3, -3] = (-/d13)(r --rj4 + 2r-')I2 

(3.7) + ()/d34)(r-i -r-I1 

+ (2b2/dl3d23d34)A(1, 1, -1, -1). 

(3.8) [1, 1, -1, -5] = [(dl3d24 + d14d23)I2 + d12d13I1 
+ 2d14A(1, 1,1, -3)]/3dl4d43. 

[1,-1, -1, -5] = (1/3b4)(rj' - 2r-1 - 2r-')I2 
(3.9) -(b4d12d13/3d14d24d34)I1 

-(2b4/3d24d34)A(1, 1,1, -3). 

4 

[-1, -1, -1, -5] = (2/3d4l) Er4I2 
(3.10) i=2 

+ (b1/d14)2 (1 -r2r13/3r24r34)I 

-(2b2/3d14d24d34)A(1, 1,1, -3). 

4. Reduction by Recurrence Relations. The integrals in Sections 2 and 3 
are expressed in terms of I,, I2, I3, and I3 by using recurrence relations, most of 
which were proved in [4]. Let ei denote an n-tuple with 1 in the ith place and O's 
elsewhere (for example, [p + 2e1] = [pi + 2,P2,. . i Pn]). We denote [4, (5.4)] by 

(Ai): 

(Ai) (P1 + +Pn+ 2)bi[p] = ,pjdj3[p- 2ej] + 2A(p + 2ei). 
isii 

For concise reference we write [4, (5.1)] in two forms: 

(Bij) dij [p] = bj [p + 2ei]-bi [p + 2ej], 

(Cij) bj [p] = bi [p - 2ei + 2ej] + dij [p - 2ei]. 

Equation (Cij) is (Bij) with p replaced by p - 2ei. Finally, [4, (5.22)] implies 

Z(ai + bit) djk = 0 and hence 

(4.1) >[p + 2ei] djk = 0, 

where E denotes summation over cyclic permutations of i, j, k. Replacing p by 
p - 2ek, we see that 

(Dijk) di [p] = dkj [p + 2e -2ek] + dik[p + 2ej - 2ek]. 

We discuss first the reduction of the integrals in Section 3, because they will be 
used to reduce those in Section 2 and because the procedure differs at some points 
from that used in [4]. Equations (3.1) and (3.2) were proved in [4, ?4]. Equation 
(3.3) obviously comes from (B14) and (3.4) from (D145). For (3.5) we first use 
(D342) to get 

(4.2) d34[1, 1, -3, -3] = d24I2 + d32[1, -1, -3, -1]. 
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To reduce the last term, we put [p] = [1, -1, -1, -1] in (Al) and in [4, (5.3)] to 
find, respectively, 

0 = d12[l, -3, -1, -1] + d13[l, -1, -3, -1] + d14I2 

+ 2A(3, -1, -1, -1), 

b11I - b2[l, -3,-1, -1] - b3[1, -1, -3,-1] - b4I2 

= 2A(1, -1, -1, -1). 

Elimination of [1, -3, -1, -1] yields 

(4.5) d32[1, -1, -3, -1] = d24I2 + d12I1 + 2A(1, 1, -1, -1), 

which we have simplified by using (4.8) and [4, (5.22)]. 
Equation (3.6) follows from (B23) and (3.7) from (B13). Equation (3.8) comes 

from putting [p] = [1, 1, -1, -3] in (Al); (3.9) then follows from (B24) and (3.10) 
from (B14). 

Equation (2.19) is a special case of (2.34). Equations (2.20) and (2.21) come 
from (C24) and (C14), respectively. To get (2.22) we use (A3) and evaluate 
[-1,1, -1, -1] by (C21). Equations (2.23), (2.24), (2.25), and (2.26) come from 
(C12), (C34), (C14), and (C34), respectively. For (2.27) we use (A4) and evalu- 
ate [-1,1,1, -1] by (C31) and [1, -1,1, -1] by (C32). For (2.28) we use (Al) and 
evaluate [1, -1,1,1] by (C42) and [1, 1, -1,1] by (C43). Equations (2.29) to (2.33) 
follow in order from (C51), (C52), (C54), (C54), and (C51). 

We shall prove (2.34) in Section 5. Equations (2.35) to (2.44) follow in order 
from (B15), (C25), (B15), (B45), (D452), (C35), (C15), (C15), (C35), and (C45). 
To get (2.46) we put [p3 = [1, 1, -1, -1, -2] in (A3) and evaluate [-1,1, -1, -1, -2] 
by (C21). Equations (2.47) to (2.50) then follow in order from (B25), (C35), (B15), 
and (C45). 

The formulas resulting from this procedure have often been simplified with the 
help of various identities. Besides [4, (5.22)] we note 

(4.6) rik + rkj = ri =-rji, 

(4.7) r 2 + r 2k- = 2rikrjk, 

(4.8) di A(p) = b3A(p + 2e )-biA(p + 2ej), 

(4.9) E A(p + 2ei)djk = 0, 

where E denotes summation over cyclic permutations of i, j, k. Equation (4.6) is 
obvious from (2.1), and (4.7) comes from squaring (4.6). Equation (4.8) follows 
from (2.6) and [4, (5.7)], and the proof of (4.9) is like that of (4.1). 

5. The Fundamental Integral. Equations (2.13) and (2.14), with left sides 
identified in (2.17), were proved in [4, Section 4], initially with a restriction on the 
a's and b's that was later removed by using the analyticity of the R -function when 
each of its variables lies in the complex plane cut along the'nonpositive real axis. 
The proof of (2.15) is similar except for a complication: The variables W2 and Q2 
are sometimes real and negative. 
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In this section we assume x > y and ai + bit > 0, y < t < x, for 1 < i < 5. From 
[4, (4.1), (4.3)] and (1.3) we find the companion of [4, (4.5), (4.6)]: 

(5.1) I3 = [1, -1, -1, -1, -2]= (2/3dl5)(dl2dl3dl4=)1/ 

* [RJ (Z2, Z5) -RJ (Z2 +Ai .. ,Z5 +A)], 

where, for i 2, ... 5, 

(5.2) 
Zt 

= Y2/Y2d1i, A= 
(x_-y)/X2Y2, 

+ A = Xi2/Xj2d 

As in [4], this result depends on the temporary assumption that -a1 /bi is the first 
singularity of the integrand to the right of the interval of integration, which implies 
dpi > 0, i > 1, and thus guarantees that all variables of Rj are positive. We now 
apply the addition theorem [9, (8.11)], 

(5.3) RRJ(Z2,..., Z5) = RJ(Z2 + A, .. ., Z5 + A) + Rj(Z2 + ,,Z5 +) 

+3Rc('y+6, Y), 

(5.4) zi + y = A2{[(Zi + A)Z3Zk] /2 + [Zi(Z3 + A)(Zk + A)]1/212 

(5.5) y=Z5 (Z5 + A)(Z5+), 6= (Z2-Z5)(Z3-Z5)(Z4-Z5) 

In (5.4), i, j, k is any permutation of 2, 3, 4. Equation (5.1) becomes 

(5.6) I3 = (2/3dl5)(dl2dl3dl4)-1/2[R (z2 +..... , Z5 + M) + 3Rc(' + 6, y)]. 
From (5.4) and (5.2) we find, for i = 2, 3, 4, 

Zi ? . 
= U2 

(5.7) Z5 + =(Zi + ) + (Z5-Z,), 

Z5-Zi = (dizY52- d15Y2)/d15ditY12 = -di5/d15d1i, 

where [4, (5.23)] is used in the last step. It follows that 

(5.8) Z5 + /, = W2/dl2dl3dl4, 

(5.9) -y = Q2/d12d13d14d25, 'y + 6 = P2/dl2dl3dl4d25, 

where W2, p2, and Q2 are defined by (2.4) and (2.5). Homogeneity of RJ and Rc 
[see (1.4) and (1.6)] now yields (2.15) from (5.6). 

Since Z2, Z3, Z4, A are positive by (5.2), expansion of the right-hand side of (5.4) 
shows that ,u > 0. Since Z5 > 0 by (5.2), it follows by (5.8) that W2 > 0 and by 
(2.5) that Q2 > 0. Equation (2.8) shows that p2 > 0. Thus the R-functions in 
(5.6) and (2.15) are well defined when the temporary assumption about -ai/b, is 
satisfied. When it is not, the functions in (2.15) remain well defined if W2 and Q2, 
which have the same signs by (2.5), are positive. 

To examine the sign of W2, we let w = X2 = a1 +b1jx and allow w to vary while 
fixing x and y and X, > 0, 2 < i < 5, and Yi > 0, 1 < i < 5. If we define 

(5.10) Wi = i Z I 

then W2, ... , W5 are fixed positive quantities, w = w1 is a-positive variable, and d1i 
is a linear function of w because 

(5.11) (x - y)d1i = XiY2- = Yi2(w -w). 
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We shall want also, for i = 2, 3,4, 

(5.12) (x- y)di = 
` 

- = (Yi Y5/Yi)2(w5 - wi). 

Since Q2 and W2 are positive by (2.5) if d25d35d45 = 0, we may assume that W5 is 
not equal to W2, W3, or W4. 

The graph of a, + b1t has the fixed positive ordinate Y12 at t = y, the variable 
positive ordinate w at t = x, and the intercept -a1/b, on the t-axis. As w runs 
through all positive real values, this intercept takes all values outside the fixed 
interval [y, x] of integration. When w = wi for some i > 1, the intercept coincides 
with the fixed intercept -ai/bi of the graph of ai + bit. The temporary assumption 
about -ai/b, means that 0 < W < wi, 2 < i < 5. 

We find from (2.4) and (2.3) that 

(5.13) w2 = [Y2Y34 / Y (x (W) 

f(w) = [(WW2)1/2 + (W3W4)1/2]2 -(W3 - W)(W4 - W)(W5 - W2)/(W5 - W). 

This is positive when w equals W2, W3, or W4, but it changes sign as w goes through 
the singularity at W5. Writing ' for the positive square root w1/2 = X1, we find 

(W - W5)f(W) = W5 4 + 2(W2W3W4)1/2?3 

(5.14) + [W2W3 + W2W4 + W3W4 - W5(W2 + W3 + W4)kf2 

- 2W5(W2W3W4)1/2 - W2W3W4. 

By Descartes' rule of signs the polynomial in ' has exactly one positive zero, say 
0 = w1/2 Thus f(w) changes sign exactly twice, at wo and W5, as w goes through 
all positive values. Since f is positive at 0 and oo, it must be negative in the 
open interval with endpoints wo and W5, either of which may be the greater. This 
interval cannot contain W2, W3, or W4 since f is positive at those points. 

We shall now establish (2.15) for all w > 0 by analytic continuation. We cut 
the w-plane along the nonpositive real axis and make a second cut between wo 
and W5 on the positive real axis. The corresponding region of the c-plane is the 
open right half-plane with a cut between w1/2 and w1/2 on the positive real axis. 
The coefficient of Rj in (2.15) and the variables of both RJ and Rc are analytic 
functions of w in the cut w-plane by (2.3), (2.4), (2.5), (5.11), and (5.12). We recall 
that an R-function is analytic when each of its variables lies in the complex plane 
cut along the nonpositive real axis [2, (6.8-6), Theorem 6.8-1]. Therefore, if we can 
show that none of the variables can be real and nonpositive when w is in the cut 
w-plane, it will follow that RJ, Rc, and the right-hand side of (2.15) are analytic. 

Since U12, U13, and U14 are linear functions of ' with positive coefficients by 
(2.3), they have positive real parts when ' does, and their squares cannot be real 
and nonpositive. A similar remark, with ' replaced by 1/s, applies to p2 by (2.8). 
It remains to consider W2 and Q2. 

Now W2 is real and nonpositive if and only if f(w) + r = 0 for some r > 0. The 
quantity 

(5.15) (w - WO [f(W)+ r] = (w - W5)f (W) + r2 - rw5 

is a quartic polynomial in ' whose coefficients, like those of (5.14), have the signs 

(5.16) +, +, +, 
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By Descartes' rule of signs there is exactly one positive zero, which must lie on the 
cut between w1/2 and w1/2 where f(w) takes every nonpositive real value. Either 
the other three zeros are real and negative or else one is negative and the other two 
are conjugate complex. In the latter case the polynomial must have the form 

(5.17) W5( - ()( + )( - a - i)( - a + i:) 

= W5 [f2 + (r, _ () _ (7] [(2 
- 2af + a2 + 02], 

where ( and 7 are positive and a and 13 are real. The coefficients of 3 and ' have 
the signs required by (5.16) if and only if 

(5.18) r - I - 2a > 0, (a2 + f32) (7_ + 2a(7g < 0, 

which imply 2a(a2 + 32 + &n) < 0 and hence a < 0. Thus the conjugate complex 
roots have negative real part. We conclude that a quartic polynomial whose coef- 
ficients have the signs (5.16) has one real positive zero and three zeros in the open 
left half-plane. Thus no zero of (5.15) lies in the cut right-half b-plane, and W2 
cannot be real and nonpositive at any point in the cut w-plane. 

By (2.5) and (5.13), Q2 is a positive multiple of f(w)/w. Since w 0 0 in the cut 
plane, Q2 is real and nonpositive if and only if f (w) + rw = 0 for some r > 0. The 
quantity 

(5.19) (W-W5)[f- + rw] = (w -W5)f(W) + r4 - W5r2 

is a quartic polynomial in ' whose coefficients, like those of (5.14), have the signs 
(5.16). Thus Q2, like W2, cannot be real and nonpositive at any point of the cut 
plane. This completes the proof that the right-hand side of (2.15) is analytic in w 
on the cut w-plane. 

The left side of (2.15) is defined by (1.3), which can be rewritten in the form of 

[4, (4.12)]: 

I3 = [1, -1, -1, -1, -2] = (x - y)(Y1/Y2Y3Y4Y5) 

(5.20) 1 1 1 2 2 

V2 2 2' 22' '1 Y2' 'Y5 

This is analytic in the w-plane cut along the nonpositive real axis, even without the 
second cut from wo to W5. Since (2.15) is known to hold if 0 < w < wi, 2 < i < 5, it 
holds throughout the twice-cut w-plane by the permanence of functional relations. 
Each of the two terms on the right-hand side of (2.15) is discontinuous across 
the second cut, but the discontinuities must cancel (as can be verified explicitly) 
because the left side is continuous. Hence the second cut is unnecessary and can 
be removed after defining Rj and RC on the cut so as to make the right-hand side 
continuous. A suitable definition for each is its Cauchy principal value, which is 
the arithmetic average of its values on the upper and lower edges of the cut. With 
this definition, (2.15) holds on the w-plane cut only along the nonpositive real axis. 
In particular it holds for all positive values of w, which was to be proved. 

At each endpoint of the second cut the Cauchy principal value is to be interpreted 
as a limit of values off the cut or of principal values on the cut. The limit is 
easy to evaluate at the end where w = w5, since this implies by (5.11) that d15 

vanishes, a5 + b5t is proportional to a, + b1t, and [1, -1,-1, -1, -2] reduces to 

(al/a5)[-1, -1, -1, -1]. 
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6. Cauchy Principal Values. According to Section 5, the evaluation of I3 

may involve Cauchy principal values of both Rj and RC, even though a5 + b5t is 
positive on the closed interval of integration. We shall prove now that formulas 
(2.34) to (2.44) are still valid if a5 + b5t changes sign in the open interval of integra- 
tion. If the left side of each formula is taken to be a Cauchy principal value, then 
I3 as defined by (2.15) involves the Cauchy principal value of either Rj or RC but 
not both, since W2 and Q2 have opposite signs by (2.5) when X52Y52 < 0. 

It suffices to consider (2.34), since the proofs of (2.35) to (2.44) by recurrence 
relations (Bij), (Cij), and (Dijk) do not depend on the sign of a5 + b5t. We shall 
assume a5 + b5x < 0 < a5 + b5y, but the proof with x and y interchanged is similar. 
The method is much like that in Section 5. 

We fix x and y and Xi > 0, 1 < i < 4 and Y, > 0, 1 < i < 5, while allowing 
= a5 +b5x to vary in the complex plane. By (5.10), w1, .. ., W4 are fixed positive 

quantities while w5 = X52Y2/Y52 is variable. Since w is an abbreviation for w1, we 
see from (5.11) that the coefficient of RJ in (2.15) is analytic except for a pole at 
w1. The first three arguments of Rj are fixed and positive, but it follows from 
(5.13) that the fourth argument has the form 

(6.1) W2=A+ 
W5 - W1 

where A and B are real and independent of w5. A little algebra shows that A > 0 
if B = 0, and hence W2 cannot be real and nonpositive unless 7'i5 is real. We cut 
the w5-plane along the nonpositive real axis and also along every interval of the 
positive real axis where W2 < 0. Unless B = 0, one of these intervals will have the 
pole at w1 as one endpoint, and so the cut plane will in all cases include an open 
interval of the positive real axis, where X2 > 0 and (2.15) is valid by Section 5. In 
the cut plane, W2 is analytic in w5 and cannot be real and nonpositive. Hence, the 
first term on the right-hand side of (2.15) is analytic in w5 on the cut plane. 

We rewrite the second term, using the homogeneity of RC, as 

(6.2) 2w 1/2RC ((Pw -1/2)2, Q2 

Equation (2.8) shows that 

(6.3) PW5-1/2_MW5-1/2 + Nw1/2 

where M and N are positive and independent of w5. If w5 is in the cut plane, 
both terms on the right-hand side of (6.3) lie in the open right half-plane, and 
hence (Pw5 1/2)2 cannot be real and nonpositive. Neither can Q2/w5, since it is a 
positive multiple of W2 by (2.5). Thus, the second term on the right-hand side of 
(2.15) also is analytic in w5 on the cut plane. 

Finally, the left side of (2.15) is analytic in w5 on the cut plane because the first 
four arguments of R-1 in (5.20) are fixed and positive while the last argument is a 
positive multiple of w5. Since the cut plane contains an open interval of the positive 
real axis and (2.15) holds on that interval, it holds everywhere in the cut plane by 
the permanence of functional relations. The equality clearly persists if each term 
in the equation is replaced by the arithmetic average of its values on the upper and 
lower edges of the cut along the negative real axis. On the left side this average is 
the Cauchy principal value of I3. On the right-hand side, either Rj or RC takes 
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its Cauchy principal value, but since Q2 and W2 have opposite signs when W5 is 

negative, one of the two functions will be continuous across the cut. 
A numerical example in which I3 and RC take their principal values is given at 

the end of the Supplement. 

Ames Laboratory and Department of Mathematics 
Iowa State University 
Ames, Iowa 50011 

1. P. F. BYRD & M. D. FRIEDMAN, Handbook of Elliptic Integrals for Engineers and Scientists, 
2nd ed., Springer-Verlag, New York, 1971. 

2. B. C. CARLSON, Special Functions of Applied Mathematics, Academic Press, New York, 1977. 
3. B. C. CARLSON, "Computing elliptic integrals by duplication," Numer. Math., v. 33, 1979, 

pp. 1-16. 
4. B. C. CARLSON, "A table of elliptic integrals of the second kind," Math. Comp., v. 49, 1987, 

pp. 595-606. (Supplement, ibid., S13-S17.) 
5. B. C. CARLSON & ELAINE M. NOTIS, "ALGORITHM 577, Algorithms for incomplete 

elliptic integrals," ACM Trans. Math. Software, v. 7, 1981, pp. 398-403. 
6. G. FUBINI, "Nuovo metodo per lo studio e per il calcolo delle funzioni trascendenti elemen- 

tari," Period. Mat., v. 12, 1897, pp. 169-178. 
7. I. S. GRADSHTEYN & I. M. RYZHIK, Table of Integrals, Series, and Products, Academic Press, 

New York, 1980. 
8. A. P. PRUDNIKOV, Yu. A. BRYCHKOV & 0. I. MARICHEV, Integrals and Series, Vol. 1, 

Gordon and Breach, New York, 1986. 
9. D. G. ZILL & B. C. CARLSON, "Symmetric elliptic integrals of the third kind," Math. Comp., 

v. 24, 1970, pp. 199-214. 


	Cit r226_c232: 
	Cit r224_c229: 


