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Computing Heights on Elliptic Curves* 

By Joseph H. Silverman** 

Abstract. We describe how to compute the canonical height of points orn elliptic curves. 
Tate has given a rapidly converging series for Archimedean local heights over R. We 
describe a modified version of Tate's series which also converges over C, and give an 
efficient procedure for calculating local heights at non-Archimedean places. In this way 
we can calculate heights over number fields having complex embeddings. We also give 
explicit estimates for the tail of our series, and present several examples. 

Let E be an elliptic curve defined over a number field K, say given by a Weier- 
strass equation 

(1) y2 +alXy+a3Y = X3 +a2X2 +a4X+a6. 

The canonical height on E is a quadratic form 

h: E(K) R. 

(For the definition and basic properties of h, see [11, VIII, Section 9] or [6, Chapter 
VI].) The canonical height is an extremely important theoretical tool in the arith- 
metic theory of elliptic curves, being used for such diverse purposes as studying 
values of L-functions [5], numbers of integral points [12], and transcendence theory 
[9]. It is also important as a computational tool, such as its use in Zagier's algo- 
rithm for finding integral points up to large bounds [18]. It is thus of interest to 
have an efficient method for calculating the canonical height of a point. 

The usual definition of h as a limit h(P) = limn,0 4-nh(x(2nP)) is not practical 
for computation. Instead, one uses the fact that the canonical height can be written 
as a sum of local heights, one term for each distinct absolute value on K: 

(2) h(P) = E nA, (P). 
vEMK 

(For example, if K = Q, then MK can be identified with the set of rational primes 
together with the usual absolute value on Q. The multiplicities nv are chosen so 
that the product formula holds and so that h is independent of the choice of the field 
K.) The local height corresponding to a non-Archimedean absolute value is given 
by intersection theory in a well-known manner. (See, e.g., [2], [4] or [7, Chapter 
11, Section 5].) We will describe a quick way to compute non-Archimedean local 
heights in Section 5. 

The local height for an Archimedean absolute value is given by a transcendental 
function, and so efficient computation is somewhat more difficult. J. Tate [15] 

?1988 American Mathematical Society 
0025-5718/88 $1.00 + $.25 per page 

339 

Received August 20, 1987; revised October 21, 1987. 
1980 Mathematics Subject Classification (1985 Revision). Primary 11G05, 14K07, 11D25. 
*This work was partially supported by NSF grant #DMS-8612393. 
** Current address: Mathematics Department, Brown University, Providence, RI 02912. 



340 JOSEPH H. SILVERMAN 

has given an easily computed power series which works for real absolute values. 
Precisely, for a given curve E and point P = (x, y), he gives a sequence of easily 
computed numbers co, cl,... so that 

00 

At(P) = 2 log txt, + 8E 4-'cn; 
n=O 

and he shows that the Cn's are bounded provided that there are no points on E(Kv) 
with x-coordinate equal to 0. (Here Kv, the completion of K at v, is either R or 
C.) If Kv = R, then one can always ensure that 0 t x(E(Kv)) by making an 
initial shift of coordinates x' = x + r for some sufficiently large integer r. Thus, 
for computations over Q, Tate's series provides an efficient computational tool, 
producing an error on the order of 4-N if one takes N terms of the sum. It has 
been used in this case by a number of people (e.g., [1], [13], [16]). Unfortunately, 
if Kv = C, then the shifting trick no longer works; and it is possible for Tate's 
series to have poor convergence properties. (See the correction to [19] for a brief 

discussion.) 
In Section 2 we will present a revised version of Tate's series which converges 

in all cases. The basic idea is as follows. We start, as Tate does, computing the 

sequence of coefficients co, cl,... and the series co + 4-1c1 + * - - . However, if some 

cn+1 is going to be large, then we replace cn by a different (still bounded) quantity, 
and switch over to a new sequence c' +1, c2 ..This new sequence is essentially 
Tate's sequence for the parameter x' = x + 1. We continue with the new sequence, 
computing + 4-n-1c' +1 + 4-n-2C/ + , until some c' +1 is going to be 

large. Then we replace c' with a corrected (bounded) value and switch back to 
the unprimed sequence. In this way we obtain a series for Av(P) which converges 
regardless of whether or not 0 E x(E(Kv)). As with Tate's series, the error in using 
only N terms is on the order of 4-N. We will begin in Section 2 by proving that 
our series converges under the assumption that the local height function exists and 

has certain basic properties, since this makes the proof somewhat easier. Then in 

Sections 3 and 4 we will go back and make all of our estimates explicit, thereby 
giving an a priori proof that our series converges and obtaining practical error 

estimates. This also yields a new proof of the existence of the local height function 
for complex absolute values. (Tate's original series previously gave the existence 
for real absolute values.) 

In the final section we give several examples. 

1. Generalities on Local Heights and Tate's Series. Let K be a num- 
ber field, and let E/K be an elliptic curve given by a Weierstrass equation (1). 
Associated with (1) are the usual quantities (cf. [11, Chapter III, Section 1]) 

b2 = a 2 + 4a2, b4 = 2a4 + a1a3, b6 = a 2+ 4a6, 

b8 = a 2a6 + 4a2a6 - aja3a4 + a2a3 -a2 

C4 = b2- 24b4, c6 = -b 3 + 36b2b4 - 216b6, 

A = -b2b8 - 8b - 27b6 + 9b2b4b6. 

We also have the relation 

(4) (2y + aix + a3)2 = 4x3 + b2x2 + 2b4x + b6. 
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If P = (x, y) is a point of E, then the duplication formula [11, III.2.3d1 reads 

(5) ~ ~ ~ ~ ~~~4- b4 X2 - 2b6X - b8 
4x3 + b2x2 + 2b4x + b6' 

Let K be a nontrivial absolute value on K. Neron proved that there exists a 
unique function 

AV: E(Kv) \ {0} -* R, 

called the local height function on E associated with the absolute value v, having 
the following three properties: 

(6) Av(2P) = 4Av(P) - log 12y + a1x + a3lv 

for all P = (x, y) E E(Kv) with 2P A 0; 

lim (AV (P) - 1 log Ix(P) tv) exists, 
(7) P--+O2 

where P -+ 0 in the v-adic topology; 

(8) AV is bounded on any v-adic open subset of E(Kv) disjoint from 0. 

For a proof of the existence of AV, see [6, Chapter I, Section 7, Chapter III, Section 
4]; and for a proof that the canonical height h is the sum of the local heights (i.e., 
a proof of Eq. (2)), see [6, Chapter IV, Section 6]. The explicit estimates we derive 
in Section 4 will provide an alternative proof of the existence of A. 

Remark. We remark that the local height is sometimes normalized slightly dif- 
ferently. Specifically, the duplication formula is often given with 1 log JAzv added 
onto the right-hand side. As the reader will easily verify, if we use A'v to denote 
this new local height, then Av = A, + 1 log tALv Thus there is little practical 
difference in which one we compute. Further, when adding up the local heights (2) 
to get the canonical height, the product formula will ensure that the extra term 
vanishes. From a computational viewpoint, we have found it slightly less cumber- 
some to compute AV, although it seems that for theoretical purposes, A' is often 
more useful. 

Tate's idea [15] is to use 1/x as a parameter and to apply the relation (6) re- 
peatedly to derive a series for A. More precisely, let 

t = 1/x, 

(9) w = 4t + b2t2 + 2b4t3 + b6t4, 

z = 1 - b4t2 - 2b6t3 - b8t4. 

Substituting (9) and (4) into the duplication formula (5) yields formulas for x(2P) 
and t(2P), 

x(2P)= (10) ( ) (2y + aix + a3)2 wI 

( x(2P) z 

The former allows us to rewrite (6) as 

{A(2P) - 2 log tx(2P)tv} = {A(P) - 2 log tx(P)tiV} + 2 log tz(P)tV. 



342 JOSEPH H. SILVERMAN 

Following Tate, we define a new function ,u by the formula 

(11) 1 8(P) = A(P) - 2 log Ix(P) 1i. 

(If x(P) = 0, we will formally set ,s(P) = 0x; while we can define ,u(O) to equal 
limQ Do ,u(Q), which exists by (7).) From above, ,u satisfies the duplication formula 

(12) ,u(2P) = 4,u(P) - 4logtz(P)t, for P EE(K,) with x(P),x(2P) $0. 

Now rewriting (12) as ,u = log tIzt + 4-1k o [2] and substituting it into itself 
repeatedly gives the formula 

N 

(13) u(P) = E 4fl log tz(2'P)t, + 4-N,1M(2Np), 
n=O 

valid provided that x(2np) :$ 0 for n = 0, 1, ... , N. It is natural to let N tend to 

oc, thereby obtaining a series for ,u(P), provided that the remainder 4-Nu(2Np) 
goes to 0. Tate describes conditions under which this limiting procedure is valid. 
(Notice that the sequence z(2np), n = 1, 2,..., is easily computed using (10) and 

(9).) 

LEMMA 1.1. For any E > O, let 

Vo = {Q E E(Kv): tx(Q)tv > E} = {Q E E(Kv): tt(Q)tv < - 
1} 

(a) ,u is bounded on V. 

(b) log tztv is bounded on {Q E Vo: 2Q E Ve}. 

Proof (under the assumption that A exists). (a) From (7) and (11), ,u(P) ap- 

proaches a limit as P -. 0; so there is a constant c such that y is bounded on V,. 
(Note that nf>o v, = {o} ) On the other hand, (8) says that A is bounded on 

{Q: c > tx(Q)Iv}, while log Ixv is clearly bounded on {Q: c > tx(Q)Iv > E}. It 

follows that p is bounded on V1. 

(b) This is immediate from (a) and the duplication formula (12). 0 

THEOREM 1.2 (TATE). Suppose that there is an E > 0 so that every point Q 
in E(Kv) satisfies tx(Q)tV > E. Then for all P E E(Kv) \ {O}, 

A(P) = 1 log tx(P)tV + E 4fl log tz(2 F)tV. 
n=O 

Further, the error in taking only N terms of the sum is 0(4-N). 

Proof. By assumption, there is an e > 0 so that in the notation of Lemma 1.1, 

E(Kv) = V,. In particular, Lemma 1.1(a) says that ,M(2Np) is bounded indepen- 

dently of N. From (13) we obtain the estimate 

N 

,u(P) = E 4- log iz(2np)tv + 0(4-N) 

n=O 

This and the definition of ,u (11) give both parts of Theorem 1.2. 0L 

Remark. Tate actually proceeds somewhat differently. He proves directly that 

the series in Theorem 1.2 converges and has the properties (6), (7), (8), thereby 

proving simultaneously that A exists and is given by his series. (Always, of course, 
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under the conditions of Theorem 1.2.) In the next section we will give a modification 
of Tate's series which converges to A with no conditions being imposed on E(KV). 
Then in Section 3 we will give explicit estimates for the boundedness in Lemma 
1.1(b) and for some similar quantities used in our modified series. Using these, the 
reader may construct an a priori proof of the existence of A, valid for any local field 

Kv. 

2. A Universally Convergent Series for the Local Height. Tate's series 
(Theorem 1.2) converges provided that E(Kv) has no points with x = 0. More 
precisely, Tate's series behaves well for P unless some multiple 2nP has small x- 
coordinate. Our idea is to use Tate's series until hitting some multiple with x(2nP) 
small. At that time, we make the substitution x' = x + 1. Then x'(2nP) is not 
small, so we start using Tate's series associated with the parameter t' = 1/x'. (This 
requires a little juggling of the nth term in Tate's series.) We proceed using the t' 
series until x'(2mP) is small, at which time we switch back to the t series. 

In order to derive the formulas describing this switching procedure, we start 
with the well-known description of how the various quantities associated with a 
Weierstrass equation (1) change under the substitution x' = x + 1 (cf. [11, Chapter 
III, Section 1] or [14]): 

x'= x + 1, x = x'-1, 
t' =t/(1 + 0, t = t'( - t 

b'2 = b2-12, bl = b6-2b4 + b2-4, 
(14) bl =b4-b2 + 6 b8 = b8-3b6 + 3b4-b2 + 3 

W= 4t' + b' t'2 + 2bYt'3 + blt'4, z' = 1 - t2- 2b4t'3 -blt/4 

2P 4t' + bYt'2 + 2b't'3 + b t'4 w' 
1 -b'4t'2- 2b't'3 - bl 4 Z/ 

As with the original equation, we define ,u' by 

(15) = A- -log x'v; 

so ,u' satisfies the duplication formula 

(16) ,A'(2P) = 4ys'(P) - 4log Iz'(P)Iv. 

Since A is independent of any shifting of x, we see that 

8(Y 
)= 1 log 1x'/xjv = log It/t'jv. 

Using (14), this yields 

(17) Y = A' + 4log 11 + tl, I' =p + 4log 11 - t'v. 

As indicated above, our idea is to switch back and forth between , and p'. To 
do this, we derive the following "mixed" duplication formula involving both , and 
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(Q) = log tz(Q)tv + ',u(2Q) from (12) 

= log Iz(Q) {v + {,u'(2Q) + 4 log I 1 + t(2Q){v } from (17) 

= log tz(Q)tv + log Il + w(Q)/z(Q)tl + yu'(2Q) from (10) 
= log Iz(Q) + w(Q)tV + 41 '(2Q). 

A similar calculation expresses ,t'(Q) in terms of ,u(2Q), giving us the two formulas 

,u(Q) = log tz(Q) + w(Q)tV + 41 '(2Q), 

(18) ,ts'(Q) = log Iz'(Q) - w'(Q)tv + 41I(2Q) 

Now repeated application of these mixed duplication formulas, together with the 
usual ones (10) and (14), will give a convergent series for A. We start with an 
estimate, analogous to Lemma 1.1, for the quantities log Iz + wjIv and log tz' -w'v 
appearing in (18). 

LEMMA 2. 1. With notation as above, define two subsets U and U' of E(Kv) 
by 

U = {Q E E(Kv): tt(Q)tv < 2}, U' = {Q E E(Kv): tt'(Q)tV < 2}. 

(a) E(Kv) = UUU'. 
(b) There exists a constant c so that for all Q E E(Kv), 

(i) Q, 2Q E U I log Iz(Q)IVt < c; 

(i) Q E U. 2Q E U' I log Iz(Q) + w(Q)IV I < c; 
(iii) Q,2Q E U' I logWz'(Q)tVI < c; 

(iv) Q E U', 2Q E U I I log Iz'(Q) - w'(Q)IVI < c. 

Proof. (a) Suppose that Q E E(K,) is not in U. Then t(Q) > 2, so 

Itt(Q)tV = t(Q) < 1 <2 

Therefore Q E U'. 
(b) First we note that (i) and (iii) are special cases of Lemma 1.1(b). Next, to 

prove (ii), we apply Lemma 1.1(a), which says that ,u(Q) and ,u'(2Q) are bounded 
independently of Q (subject to Q E U and 2Q E U'.) Now (18) shows that 

log jz(Q) + w(Q)tV = ,u(Q) - 41 '(2Q) 

is similarly bounded. This proves (ii). We leave the analogous proof of (iv) to the 
reader. O 

We are now ready to define a sequence of real numbers co, c1 ..., depending on 

a given point P E E(Kv), so that ,u(P) = 4-nCn In order to decide which of 

the duplication formulae (12), (16), (18) to use, we will assign to each real number 

cn a Boolean value, which we denote by 3n. Thus /3n will -be 0 if cn was computed 
using the series for ,u', and it will be 1 if cn comes from the series for ,u. (To assist 
in the implementation of this theorem, we also provide a pseudocode subroutine.) 
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SUBROUTINE to Calculate Local Height of P at an Archimedean Absolute 
Value 

PARAMETERS needed by the subroutine 
__________oeficints 

b2, b4, b6, b8 I~~~~~ Weierstrass coefficients | b2l b4 b6i b8 

x x-coordinate of point P 

N # of terms of sum to compute 
Calculate b', bl, b', bl 

IF lxi > 4 6 formulas given below 

t =1/x PEUl 

ELSE PE U',P?Uj 
t= 1/(x + 1) 

0 =O0 

END IF 

LOOP WHILE n < N 
IF = 1 

Compute w and z |formulas given below 
IF IwI < 2z1 2nP, 2n+1P E U 

II = + 4-n log |Z| 

t= w/z 

ELSE 2nP E U, 2n+lP U| 
= y + 4-n log Iz + wI 

t =w/(z + w) 

END IF 

ELSE = 

Compute w' and z' formulas given below 

IF Iw't < 21z't 2nP 2n+lP E U 
=y + 4-n log|z|I 

t = w'/Z' 

ELSE 2n PE U,2 +n+lPU| 

= y + 4-n log |z -w't 

t = w'/(z' - w') 

3= 1-f3 

END IF 

END IF 

n n + 1 

END LOOP 

R () = l + o 

RETURN (A) |=local height with error 0(4-)| 
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b' 
= b2 -12 

bl 
= b6-2b4 + b2 -4 

bl = b4-b2 + 6 bl = b8-3b6 + 3b4-b2 + 3 

w =4t + b2t2 + 2b4t3 + b6t4 w =4t + b t2 + 2b t3 + b t4 
z= 1-b4t2-2b6t3-b8t4 z= 1-b t2-2b t3-b t4 

THEOREM 2.2. Define a sequence of real numbers c1, co,... and a sequence 
of Boolean values i-1,30,... as follows: 

f-log t(P)IVI1 if PEU, 
C = - log It'(P)IV, 0if P t U; 

(log Iz(2nP)tv, 1 if 3n-l1 = 1 and 2n+lP E U, 

- 
log Iz(2nP) + w(2np) IV, 0 if 13n- = 1 and 2n+lp P U, 
log 

Iz'(2nP)+ ( t 
1 if 

fn-l 
= 0 and 2n+1 P E U', 

log Iz'(2nP) - w'(2nP)Iv, 0 if 3n-l = 0 and 2n+1P t U'. 

(a) A(P) = 1C- 1 + 8 4-n Cn 
(b) More precisely, 

A(P) = -c-1 + - E 4-nCn + 0(4 N) 
8n=0 

for a big-O constant independent of both N and P. 

Remark. An explicit expression for the 0(4-N) error term is given below in 
Theorem 4.2. 

Proof. Using either (11) or (15), depending on whether or not P E U, we see 
that 1 

A(P)= .c + { j(P) if PEU, 
A(P) 2C-l+{ l1(P) if P t U. 

We then repeatedly apply the duplication formulas (12), (16) and (18), following 
the instructions provided above for producing the Cn's. After N steps, this leads 
to the equation 

A()= 1 N-i 
4-N 4~ (2 Np) if /3N = 1, 2 +8 E 4c c 4+ { N,(2 Np) if /3N = 0. 

Further, one easily checks that 

ON = 1 P E U, 

ON =0 P PE U'. 

(Remember that U U U' = E(Kv) from Lemma 2.1(a).) But Lemma 1.1(a) says 
that ,u(Q) (respectively ,u'(Q)) is bounded for Q E U (respectively Q E U'). Hence 
in both cases we obtain the desired estimate, thereby proving (b). Then (a) follows 
immediately on letting N tend to oo. O 

3. Some Resultant Results. In this section we prove two results concerning 
resultants which will be used in the next section to derive explicit error estimates for 
our local height series. We start by computing the resultant of the two polynomials 
(9) which are used in Tate's series. We will sketch three quite different proofs. 
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PROPOSITION 3. 1. Let z(T) and w(T) be the usual polynomials (9), 

z(T) = 1 - b4T2 - 2b6T3 - b8T4, w(T) = 4T + b2T2 + 2b4T3 + b6T4; 

and let /\ be the discriminant of the Weierstrass equation (1), given by formula (3). 
Then 

Res(z(T),w(T)) = A\2, 

where Res(z(T), w(T)) denotes the resultant of z(T) and w(T). 

Proof (version 1, quick and dirty). Compute the resultant directly from the 
definition as an 8 x 8 determinant, either by hand (ugh!) or using a symbolic 
processor like MACSYMA. 

Proof (version 2, elegant but a lot of machinery). Consider the projective scheme 
X given by the equation 

y2Z + a1XYZ + a3yZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 

over the ring M = Z[a1, a2, a3, a4, a6, A --1], where b2, b4, b6, b8 and /\ are given by 
(3). Then X is a group scheme over M (see, for example, [3, ?7]), and the doubling 
map [2]: X - is a finite morphism which descends to a finite morphism 0: P1 

P1 (i.e., q o [X, Z] = [X, Z] o [2]). The map 0 is given by [1, T] -+ [z(T), w(T)]. 
Since q is finite, the resultant of z(T) and w(T) must be a unit in M. Therefore, 

Res(z(T), w(T)) = A r 

for some integer r. To find r and the proper sign, one can explicitly calculate the 
special case a1 = a2 = a3 = a4 = 0, a6 = A, which gives a very sparse 8 x 8 
matrix to compute. (Alternatively, assigning weights wt(ai) = i, it is easy to see 
that /\ and Res(z, w) are homogeneous of weights 12 and 24, respectively; so r = 2 
is immediate.) 

Proof (version 3, straightforward calculation). Let f (x) = 4x3 + b2X2 + b4X + b6. 
Then the doubling formula (5) can be written as 

x o [2] - (4 f(x))2 - (a2 + 2x)f (x) z4z(1/z) 

(This is easily derived from the geometric definition of the group law [11, Chapter 
III, Section 2].) If we factor f (x) as 4(x - a) (x - f)(x - -y), then the roots of w(T) 
are 0, ce-1, 3-1 and '-<. A standard formula for the resultant ([17, Section 5.9]) 
gives 

Res(w(T), z(T)) = b4 z(0) z(a-1) . z(lB-) Z(_7-1) 

= b4 1 -4(1 fI(Ce))2 fl-4( :1 f(l))2 
. 

_-4(1 f 2 

= 4 -6 (b6 / a',) 4 (f 
I 
(a) f '(p) f, '(t>)) 2. 

Note that b6 = -4afl'-y. Further, 

f'(ce)f'(f3)f'({y) = 'Disc(f) = -4ZA. 

(The first equality is [17, Section 5.9], the second follows from [17, Section 5.7] and 
(3).) Substituting these in above gives the desired result. O 

It is clear that if two polynomials have distinct roots, then they cannot be si- 
multaneously small. The following standard sort of result quantifies this observa- 
tion. For lack of a suitable reference, we sketch a proof. 

Notation. For F(X) = EAiXZ E C[X], let |Fl = max{IAil}. 
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LEMMA 3.2. Let F(X),G(X) E C[X], deg(F) = m, deg(G) = n. Then for all 
x E C, 

IF(x)I IG(x)l l > IRes(F, G)+ minn1 1 l 
max { IFI XIGI }- 2mnlFInIGIm {2m(m + l)n-X2n(n+ 1)m- 

Proof. By homogeneity, it suffices to prove the lemma for monic polynomials. 
(Note that Res(ciF, c2G) = cnccmjRes(F, G).) Write 

F(X) =Z AiXZ = (X-ocj), G(X) = E BiXZ = (X-flj). 

Let x E C. Switching F and G and relabeling the roots if necessary, we may assume 
that 

(19) mi Ix-al |I > mi-n IxI-,j| = Ix-/1I. 
1<j<m 1<j~n 

There is a formula for the resultant [17, Section 5.9] of the form 
n 

(20) Res(F, G) = J7 F(f3j). 
j=1 

For any z E C, let Iz, 11 denote the maximum of IzI and 1. We have the trivial 
bound 

(21) IF(x)I <(m + 1)IFI Ix, 1Im for all x E C; 

and in [7, Chapter 3, Lemma 2.1] we find the estimate 
n 

(22) 17I/,3j, 11 < 2nIGI. 
j=1 

Using these, we calculate 
n 

IF(/h1)1 = IRes(F, G) I11 I F(3j) I using (20) 
j=2 

(23) ?n~sFGI 
(23 lRes(F, G)IfJ(m+l)IFII1j,lIm using(21) 

j=2 

> IRes(F, G)I/((m + 1)IFI)n-l2mnIGIm using (22). 
Finally, 

m 

IF(x)I > H1 Ix - QiI + 0{I1- - - Ix - flI} triangle inequality 
j=1 
m 

> 171 .1/1 - cI from (19) 
j=1 

= 2-mlF(L1)1. 

Combining this with (23) gives the desired result. O 

4. Explicit Error Estimates. We now use the estimates from the last section 
to give an explicit bound for the tail of the series in Theorem 2.2. Although this 
bound will not be sharp, we will see below that from a computational viewpoint 
there is little reason to search for a sharp bound. (See the remark following the 
statement of Theorem 4.2.) We begin by reproving Lemma 2.1 with specific values 
in place of the undetermined constants. As usual, let b2,b4,b6,b8 and /\ be the 
quantities (3) associated with the Weierstrass equation (1). 
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LEMMA 4.1. Let U and U' be the sets described in Lemma 2.1 and define the 
quantity H by 

H = max{4, Ib2I,2Ib4I,2Ib6I, IbsI}. 
Let Q E E(K,). Then 

(i) Q, 2Q E U =t, Iz12/228H8 < Iz(Q)Iv < 26H; 

(ii) Q E U, 2Q E U' =t Iz12/228H8 < Iz(Q) + w(Q)lv < 27H; 

(iii) Q, 2Q E U' =, IzAI2/260H8 < Iz'(Q)Ik < 210H; 
(iv) Q E U', 2Q E U =, IzAI2/260H8 < Iz'(Q) - w'(Q)IV < 211H. 

Proof. First we apply Lemma 3.2 to the polynomials w(t) and z(t), using Propo- 
sition 3.1 for the value of their resultant. Since IwI > 1 and IzI > 1, it follows that 
for all t E C, 

_ _ _ _ _ _ _ 11 _ _ _ _ _ (24) max{Iw(t)Iv, Iz(t)Iv} > ill > mm 2 
-216H4H4 

m 
2453' 2453 - 227H8 

(i) Let t = t(Q). By assumption, Q E U, so Itkv < 2. This gives the trivial 
estimate 

(25) Iz(Q)Iv = 11 - b4t2 - 2b6 t3 - bst4Iv < 4HIt, 114 < 26H. 

On the other hand, since 2Q E U, we have It(2Q)Iv < Iw(Q)/z(Q)lv < 2. Now 
using (24) gives 

IZ(Q)IV > ? max{IZ(Q)IV, IW(Q)IV} > IL12I/228H8 
(ii) Since Q E U, we again get the estimate (25), and by a similar calculation, 

Iw(Q)lv < 26H. This gives the upper bound 

Iz(Q) + w(Q)lv < Iz(Q)Iv + Iw(Q)lv < 27H. 

Next, since 2Q E U', we have 

2 > It'(2Q)Iv t(2Q) + w(Q) 
1 +t(2Q) Z(Q)+ W(Q) i, 

so 

Iz(Q) + w(Q)Iv > 'Iw(Q) Iv 
Now using this, a trivial estimate and (24), we obtain 

Iz(Q) + w(Q)lv > max{Iz(Q) + w(Q)Iv, 
1 
Iw(Q)Iv} 

> ? max{Iz(Q)Iv, Iw(Q)Iv} 
? IAi2/228H8. 

(iii) and (iv). These are proven in exactly the same manner as (i) and (ii), but 
with H replaced by 

H' = max{4, IbI IV, 2Ib/ IV, 2Ib/IV, Ib8I } 
< max{4, Ib2IV + 12, Ib4IV + Ib2IV + 6, Ib6IV + 2Ib4IV + Ib2Iv + 4, 

Ib8Iv + 3Ib6Iv + 3Ib4Iv + Ib2Iv + 3} 
< 16H. 

Substituting 24H for H in the bounds for (i) and (ii) gives (iii) and (iv). O 
We are now ready for our main error analysis. 
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THEOREM 4.2. Let {Cn} be the sequence described in Theorem 2.2. 
(a) For all n > 0O 

log I IL/12/260H81 < Cn < log(211H). 

(b) Define the error term R(N) by 

N-1 

AV(P) = 1C-1 + 8 E 4-ncn + R(N). 
n=O 

Then 
1 4-N log I IA12/260H81 < R(N) < 6 .4 -N log(211H). 

(c) In order to make IR(N)l less than I 10-d (i.e., to calculate A to d decimal 2 
places), it suffices to take 

N > 5d+ 1 + 3 log(7 + 4 logH + 1 
logmaxfl, JAI-11). 

Example 4.3. Suppose that we wish to calculate Av(P) to 50 decimal places 
for a curve whose coefficients satisfy H < 10100 and zAIv > 10-100. Then part 
(c) of the theorem says that it suffices to take 89 terms in the series 4 -nCn 
Suppose now that by a more careful analysis we were able to replace the bounds 
z\2/260H8 and 211H in Lemma 4.1 by just H. (It seems very unlikely that this 
large an improvement is even possible.) Then the estimate in Theorem 4.2(c) could 
be replaced by 

N > 3d+ 2 + 3 log 8 logH; 

and this means that in the problem just posed we would only need to use 87 terms 
to compute A, (P) to 50 decimal places. Thus, for the purpose of giving error 
estimates for our series, there seems little point in bothering to improve the coarse 
bounds in Lemma 4.1. (Of course, for other applications, such as giving explicit 
estimates for the difference of the canonical and Weil heights, more accurate bounds 
are important. See, for example, [16, Section 3].) 

Proof of Theorem 4.2. (a) Comparing the description of the sequence {cn } in 
Theorem 2.2 with the conditions (i)-(iv) in Lemma 4.1 above, we see that exp(cn) 
satisfies one of the inequalities (i)-(iv). Taking logarithms gives the desired result. 

(b) From the definition of R(N), 

00 00 \ 

R(N) = E4 Cn < 8 E4-J sup {cn}= . 4-N SUp {cn}- 
n=N kn=N I > > 

Similarly, R(N) > 6 4-N inf{cn}. Substituting in the estimate for cn obtained 
in (a) yields something stronger than (b). 

(c) Using (b), we see that it suffices to take N satisfying 

N > (log4 10)d+ 9 + log4 v 

An elementary calculation shows that this is weaker than the condition imposed by 
(c). O 
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5. Local Height for Non-Archimedean Valuations. Suppose now that 
v E MK is a non-Archimedean absolute value, and let 

ordv: K* onto) Z 

be the corresponding normalized valuation. Thus, if the residue field at v has order 
qv, then 

log Ix - ordv (x1) log (qv1) for all x E KV*. 
[Kv: Qv]rdzlo() 

(See, e.g., [7, Chapter 1, Section 2].) 
Let E/K be an elliptic curve given by a Weierstrass equation (1), and let P = 

(X, Y) E E(K). We wish to compute Av(P), the local height of P at v. The first 
step is to replace (1) by an equation which is minimal at v (cf. [11, Chapter VII, 
Section 1]). An efficient way to do this is given by an algorithm of Laska [8]. (As 
formulated in [8], Laska's algorithm gives a global minimal Weierstrass equation, 
provided that K has class number 1. However, it is not hard to modify Laska's 
routine so as to produce an equation which is minimal for all v ? S, where S is 
any set of places such that the ring of S-integers in K is a PID.) An alternative 
method for finding a minimal equation is to use the algorithm of Tate [14], but this 
is somewhat more complicated. (In fairness, it should be pointed out that Tate's 
algorithm also gives the reduction type and conductor of E at v, so it is in no way 
superseded by Laska's algorithm.) For the remainder of this section we will assume 
without further comment that the Weierstrass equation (1) is minimal at v. 

If the reduction E of E at v is nonsingular, then the local height is given by the 
simple formula 

(26) Av(P) = max{0, -2 log Ixlv}; 

and more generally, this formula holds provided P is a nonsingular point of E. (See 
[6, Chapter III, Theorem 4.3] for the proof when E is smooth. However, the proof 
given in [6] works whenever P is nonsingular. For general facts about the reduction 
of elliptic curves, see [11, Chapter VII].) P will be nonsingular if and only if one of 
the partial derivatives of (1) at P does not vanish modulo v. Thus, 

ordv(3z2 + 2a2z + a4 - aly) < 0 or ordv(2y + aiz + a3) < 0 

=v Av(P) = max{0, -2 log IjxIv} 

Next suppose that E has multiplicative reduction at v. Referring to Tate's 
algorithm [14], this occurs if ordv(A) > 1 and ordv(c4) = 0. Let N = ordv(\). 
Then E(KV)/Eo(KV) is cyclic of order N; and if P lies in the nth component (with 
0 < n < N), then 

(28) AV(P) = n(N - n) log 'Av. 2N2 

(Here, EO(KV) is the subset of E(KV) consisting of those points whose reduction is 
nonsingular. For a proof of (28), see [6, Chapter III, Theorem 5.1].) Our problem 
now is to compute n. Notice that (28) is invariant under the substitution n -+ N-n, 
which corresponds to P -+ -P. Further, we already know Av(P) from (26) if n = 0. 
We may thus assume that 0 < n < 1N. An easy way to compute n is provided by 
the following lemma, which first appeared in the author's thesis [10]. 
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LEMMA 5. 1. With notation as above, 

n = min{ord,(2y + az + a3), 1ord,(A\)}. 

Proof. We substitute the formula (28) for P and 2P into the duplication formula 
for the local height (6). If 0 < n < 1N, then A,(2P) is given by (28) with 2n in 
place of n, so we obtain 

2n(N - 2n) log JAI, = 4 n(N - n) log JAI, -log 12y + aiz + a3lIv 2N2 2N2 
A little bit of algebra now yields 

log 12y + alx + a3IV N = ordv(2y + alx + a3). 

log zAIV 

Similarly, if n = 2N, then 2P E Eo(Kv), so (26) says that Av(2P) > 0. Using this 
and (28) in (6) gives 

_ < 4 (N/2)(N - (N/2)) log JAIv - log 12y + alx + a3lv 0<4 2N2 

=2log IzAv -log 12y+alx+a3Iv. 

Hence, 

ordv(2y + ai+ a3) logI2y 
+ alz + a3IV od (A) > 1 

ordv (A)=n 
log JAIV 

(Note that log IzAIv < 0.) This completes the proof of Lemma 5.1. D1 
It remains to deal with the case that E has additive reduction at v and P is 

singular. One approach is to compute successively nP for n = 1,2,3,4, one of 
which is guaranteed to lie in EO(Kv). Then one can use (26) to compute Av(nP), 
and thence (6) and similar formulas to recover Av(P). This approach (with the 
relevant formulas) is given in [16]. For variety, we will describe a somewhat different 
approach which we feel is slightly more efficient. (Of course, if one has already 
implemented the group law on E, then it is probably just as easy to use [16]. 
However, we note that in the case of multiplicative reduction, this method may 
necessitate computing a large multiple of P; so for multiplicative reduction it is 
certainly preferable to use (28) in conjunction with Lemma 5.1.) 

The algorithm we devise will depend on the duplication formula (6) and the 
corresponding triplication formula. To ease notation, we let 

(29) 
2 = 2y+aix+a3, 

( = 3-x4 + b2X3 + 3b4X2 + 3b6X + b8. 

Thus, /2 vanishes at the 2-torsion points of E, and k3 vanishes at the 3-torsion 
points. The local height then satisfies the following two relations: 

(30) Av (2P) = 4Av (P) - log Ik2 (P) Iv, 

(31) Av(3P) = 9Av(P) - log Ib3(P)Iv- 

Suppose now that E has additive reduction at v and that P ? Eo (Kv). Referring 
to a table of reduction types such as given in [11, Table 15.1] or [14], we see that E is 
one of the types III, IV, I*, IV* or III*. From general theory (cf. [7] or [4]) one finds 
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that AV (P) is determined by the image of P in the finite group b d-f E(Kv)/Eo(KV); 
and further, Av (-P) = Av (P). We now consider three cases. 

Case 1. 3P E Eo(Kv). We must have type IV or IV* reduction, with ' = Z/3Z. 
Since P and -2P have the same images in 4D, it follows that AV(2P) = AV(P). 
Further, since 3P E Eo(Kv), (26) says that Av(3P) > 0. Substituting these facts 
into (30) and (31) and solving for Av(P) yields 

(32) Av (P) = 3 log9 12 (P) IV > 9 log9 13 (P) IV 

Case 2. 2P E Eo(Kv). In this case we have one of the reduction types III, III*, 
I*; and P and 3P have the same image in (D. Therefore, Av (3P) = Av (P) and, 
since 2P E Eo(Kv), Av(2P) > 0. Substituting into (30) and (31) and solving gives 

(33) At (P) = 8 log9 13 (P) IV > 4 109 1X2 (P) IV X 

We now note that the inequalities in (32) and (33) cannot both hold. (x(P) is 
v-integral since P ? Eo(Kv), and ?2(P) is not a v-adic unit (27), so KV2(P)Iv < 1 
and 1k3(P)lv < 1.) Hence we can use these inequalities to distinguish between the 
two cases. 

Case 3. 2P, 3P V Eo(Kv). The only possibility is reduction type IM with M 
odd, (D = Z/4Z, and the image of P generating (D. Then P and -3P have the same 
image in (D, so Av(3P) = Av(P). Substituting into (31) gives the same value for 
AV(P) as in Case 2, 

AV(P) = 8 log 1k3 (P) IV. 

Unfortunately, the inequality in (33) is no longer true. However, one can verify in 
this case (e.g., by using Tate's algorithm [14]) that 

ordv 02(P) = 2 (M + 3) and ordv 3(P) = M + 4. 

Hence the inequality in (32) does not hold; so in all cases we can use the inequality 
in (32) to decide whether Av(P) is given by (32) or (33). 

Combining all of the above discussion, we obtain the following algorithm for com- 
puting the local height at a non-Archimedean place. (We also include pseudocode 
implementing this algorithm.) 

THEOREM 5.2 (Local Height at Non-Archimedean Valuations). Let E/K be 
an elliptic curve given by a Weierstrass equation (1) which is minimal at v, and let 
P E E(Kv). Also let /2 and 03 be the functions on E defined by (29). 

(a) If 

ordv(3X2 +2a2X+a4 -aly) < 0 or ordv(2y+alx+a3) < 0, 

then (P E Eo(Kv)) 
Av(P) = max{0, -2 log Ix(P)I }. 

(b) Otherwise, if 
ordv(c4) = 0, 

then (multiplicative reduction) 

N = ordv A, n = min{ordv 2 (P), ofdv/A}, 
- n(N - n) log jlI. 

Av (P) 2N2 
lo A. 
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(c) Otherwise, if 
ord, 03(P) > 3ord, k2(P), 

then (additive reduction of type IV or IV*) 

AV (P) = v 

(d) Otherwise (additive reduction of type III,III*, or I*) 

AV (P) = log I 3 (P) I v 

SUBROUTINE to Calculate Local Height of P at a Non-Archimedean Absolute 
Value v 

PARAMETERS needed by the subroutine 

al, a2, a3, a4, a6 | Minimal Weierstrass coefficients | 
x, y x, y-coordinates of point P 

Calculate b2, b4, b6, b8, c4, A se formulas( 
N = ordv(A\) 

A = ordv(3x2 + 2a2x + a4 - aly) 
B =ordv(2y+alx+a3) 
C = ordv(3x4 + b2X3 + 3b4x2 + 3b6X + b8) 

IF A < O OR B < P EEo(K= ) 
A = max{O, - ordv (X)} 

ELSE IF ordv(c4) = 0 | Type IN 
n = min{B, 'N} 

A = -n(N - n)/2N 

ELSE IF C > 3B Types IV, IV* 
A =- B 

ELSE Types III, III*, I 
A =-C 

END IF 

RETURN (Alog(qv )/[Kv: Qv]) | ,(P) 

6. Computing the Canonical Height: Examples. The canonical height h 
on an elliptic curve E defined over a number field K can be computed as the sum 
of local heights as described by Eq. (2), which we repeat here for reference: 

h(P) = E nv ~V (P). 
VEMK 

To make this formula precise, we must specify the multiplicities nv and the nor- 
malization of the absolute values in MK (which affect the definition of A2 via the 
duplication formula (7)). Let MQ be the usual set of absolute values on 

IPIP = l/p, Izxlo = max{x, -x}, 

and let MK be the set of all possible extensions to K of elements of MQ. This 
defines MK; and then for v E MK, we set 

nv = [Kv: Qv2]/[K: Q]. 
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We now use the algorithms given earlier (Theorems 2.2 and 5.2) to compute the 
canonical height for several specific examples. 

Example 1. Let E be the elliptic curve 

E:y2 +y= X3- 

As is well known, E(Q) Z/5Z. (The reader may recognize that E is the modular 
curve X1(11).) We now look at E over the field K = Q(V/ZI) and note that E(K) 
contains the point 

P= (2 + v/VZ ,1 + 2 v/Z ) E E(K) 

We also compute 

= -11 = -(3 + ?/2)(3 - /=2), C4 = 16= (A/_2)8. 

Since 
(2y + 1)(P) = 3 + 4/ 

_ 
# 0 (mod3+j=), 

and x(P) is integral (i.e., in Z[g/Z2]), we see from Theorem 5.2 that A,(P) = 0 for 
all non-Archimedean v E MK. 

It remains to compute 4O (P), where oo is the (unique) Archimedean absolute 
value in MK. We have done this by implementing the algorithm described in 
Theorem 2.2. In order to obtain 50 decimals of accuracy, Theorem 4.2 says to take 
H = 4 (as specified in Lemma 4.1) and use N terms of the series, with 

N > - 50 + 1 + 3 log(7 + 4 logH) = 85.46.... 

Since we need less than 100 terms of the series, it suffices to calculate each term to 
(say) 55 decimals to avoid round-off errors in the final answer. Having done this 
calculation, we obtain the value 

A0o(P) = 0.45754773287523276736211210741423654346576029814695.... 

(As an aside, we remark that the algorithm started with 3 = 1, switched to 3 = 0 
after 11 terms, and stayed there for the remainder of the computation.) 

Finally we note that 

noo = [Koo: Qoo]/[K: Q] = [C: R]/[K: Q] = 1, 

so 

h(P) = ASO(P) = 0.45754773287523276736211210741423654346576029814695.... 

Example 2. Let E be the elliptic curve 

E: y2 + 4y = x3 + 6ix, 

which we consider over the field K = Q(i), where i = \/ZT. We compute for E the 
usual quantities (3), 

b2 = 0, b4 =-i(1 + i)43, b6 = (1 + i)8, b8 =-(1 + i)432, 

C4 = -(1 + i)1032, A = _(1 + i)1633(1 - 2i). 

It is clear that the equation for E is minimal at all primes except possibly (1 + i), 
since A has order less than 12 except at (1 + i). But b8 only has order 4 at (1 + i), 
so the equation is minimal at (1 + i) also. 
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We will compute the canonical height of the point 

P = (0, 0) E E(K). 

First we note that (2y + 4)(P) = 4 is not divisible by 3 or 1 - 2i, so Theorem 5.2 
gives 

A(3) (P) = A(1-2i) (P) = 0. 

Next, 

(2y + 4)(P) = 4 _ 0 (mod 1 + i) and (3X2 + 6i) = 6i - 0 (mod 1 + i), 

so we continue the algorithm specified by Theorem 5.2. Since C4 0 (mod 1 + i), 
the reduction type is additive. We compute 

'b2(P) = a3 = 4 = -(1 + i)4, 'b3(P) = b8 = -(1 + i)432, 

ord (+j) (X3(P)) = 4 < 12 = 3ord(i+j) (X2(P)). 

Therefore 

>(1+) = 8 logI1k3(P)1(l+91 = 8 log - (1 +i)4321(l+i) = -3 log2. 

Next we use the series in Theorem 2.2 to compute A~ (P) for the Archimedean 
place oo of K, obtaining 

A>(P) = 0.5101849952... 

accurate to 10 decimals. 
Finally, we note that nro = 1 and n(i+i) = 1. Now putting everything together 

gives the estimate 

h(P) = A (P) + A(1+j)(P) = 0.3368982000.... 

Example 3. Let E and K be as in Example 2, and let 

= ( 9 -32+ 27i) E E(K) 

Then 
(2y + 4)(Q) -16 + 27i (1 - 2i)(14 + i) 

4 ~(1?i )4 

(3x + 6i)(Q) = 243 +96i = 3(1 + 2i)(6 + i)(4 - 5i) 
16 (1 +i)8 

Thus, 

(2y + 4)(Q) * 0 (mod 3) and (3X2 + 6i) (Q) 0 0 (mod 1 - 2i), 

so 

A(3)(Q) = A(l-2i)(Q) = 0 and A(ji?)(Q) = 2 log - 9(+)= log 2. 

Using the series from Theorem 2.2, we compute 

A,(Q) = 0.6544456195..., 

and so 

h(Q) = A (Q) + A(1+2)(Q) = 1.3475928001.... 
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Notice that h(Q) 4h(P); and sure enough, one can easily check that Q = 2P. 
(Of course, if we had noticed this originally, then there would have been no need 
to compute h(Q) separately!) 

Example 4. We conclude by computing the canonical height of the point over 
Q with the smallest known h(P)/ log A I ratio. (This ratio figures prominently in 
a conjecture of S. Lang [6, p. 92] and occurs naturally in the counting arguments 
of [12].) This example illustrates how the algorithm in Theorem 5.2 works for 
multiplicative reduction. (Compare with the procedure used in [16], which requires 
computing the denominator of the x-coordinate of 13P.) 

Let E/Q be the elliptic curve 

E: y2+21xy+494y = x3+26x2, 

and let P = (0,0) E E(Q). Using Theorem 2.2, we compute 

A00(P) = 1.921499008.... 

Next, we have 

A = -6497214464 = 213133192, C4 = 48049. 

Further, 

(3x2 +2a2x+a4-aiy)(P)=0 and (2y+a1x+a3)(P)=494=2 13 19; 

while C4 is prime to 2 13 19. Examining Theorem 5.2, we see that E has multi- 
plicative reduction at 2, 13 and 19; and P is not in Eo(Qp) for these three primes. 
Using the formulas in Theorem 5.2(b), we calculate 

n = Ap (P)= 
p N = ord i\ min{ord a3, 1 N} (n(N - n)/2N2) log l AlP 

2 13 1 _63 log 2 = -0.319914083 ... 
13 3 1 - log 13 = -0.854983119 ... 
19 2 1 - log 19 = -0.736109745 ... 
00 - - = 1.921499008... 

h(P) = 0.010492061... 
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