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On the Resolution of Inhomogeneous Norm Form Equations
in Two Dominating Variables

By Istvdn Gaél*

Abstract. Applying Baker’s well-known method and the reduction procedure described
by Baker and Davenport, we give a numerical algorithm for finding all solutions of
inhomogeneous Thue equations of type

Ngjez+ay+i)=1

in the variables z,y € Z and A € Zx with m < (max |z|, |y|))1/2, where K = Q(a) is a
totally real cubic field.

1. Introduction. In 1966 Baker developed a new method (cf., e.g., [2]) for
solving Diophantine problems which led to effective upper bounds for the solutions
of wide classes of Diophantine equations (for a survey, see, e.g., [23] and [20]). Here
we restrict ourselves to norm form equations, and we mention only the results of
Baker [1] (cf. also [2]) and Coates [4] on Thue equations and the theorems of Gyory
and Papp [13], Gyéry [9]-[12] and Kotov [15]-[17] on norm form equations in several
variables.

In 1974 Sprindzuk [21] gave a so-called inhomogeneous generalization of Baker’s
famous result on Thue equations. Let a be an algebraic integer of degree > 3,
K = Q(a), 0 # m € Z. Consider the equation

(1) Nkjg(z+oay+ ) =m,

where the variables are z,y € Z and** A\ € Zk. To ensure the finiteness of the
number of solutions of (1) it is necessary to restrict the values of A. SprindZzuk
assumed that*** m < (max(|z|,]y]))}~¢ (0 < € < 1 is a given constant). Thus A
may be called a nondominating variable, while z and y are dominating variables.
Under the above conditions, SprindZuk derived effective upper bounds for all solu-
tions of Eq. (1). In the special case A = 0, his result implies Baker’s theorem on
Thue equations.

Later, combining the method of Gyéry and Papp [13] and Sprindzuk [21], the
author [7], [8] obtained effective upper bounds also for the solutions of certain
inhomogeneous norm form equations in several variables.
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The problem of solving the Thue equation
(11 Nkgjg(z+ay)=m inzyeZ

can be stated in the following way: Determine all elements in the Z-module {1, a}
with given norm m. On the other hand, the resolution of Eq. (1) means to find all
elements of Zx which have norm m and which are not too far from the elements
of the Z-module {1, a}. Moreover, inhomogeneous equations of type (1) have im-
portant applications in the theory of Diophantine approximations (cf. [7] and [8]).
Finally, we observe that for any fixed A, Eq. (1) is an inhomogeneous polynomial
equation in the variables z,y € Z. Previously there was no general method of
handling such inhomogeneous equations, but SprindZuk’s result, as a special case,
gives effective upper bounds for all solutions z, y of these equations.

All the results mentioned above yield only a theoretical solution of the Diophan-
tine problems, since the upper bounds derived for the solutions by using Baker’s
method are usually very high and in most cases, even with the fastest comput-
ers, it seems impossible to check all values of the variables below this bound. To
overcome this difficulty, Baker and Davenport [3] described a new computational
method, which, in numerical cases, usually allows one to reduce the large upper
bounds and to find all solutions of certain Diophantine equations. Their method
was applied for solving Thue equations and was further refined and extended by
Ellison [5], Ellison et al. [6], Steiner [22] and Pethé and Schulenberg [19]. Steiner,
Pethoé and Schulenberg utilized the observation that, with the exception of few
small values, all solutions of Thue equations (1’) correspond to partial quotients
in the continued fraction expansion of the real conjugates of . This idea enabled
Peth6 and Schulenberg to solve also Thue equations of degree higher than three.
Recently, Petho [18] gave an efficient algorithm to determine all solutions of Thue
equations up to a large bound.

In this paper we apply the method of Baker and Davenport to the resolution of
inhomogeneous Thue equations of type (1). For simplicity we restrict ourselves to
the case when K is a totally real cubic field, £ = 1/2 and m = 1. (We remark that
our method can be modified to work for any algebraic number field K with small
number of fundamental units, for any m and for any £ > 1/2.) We illustrate our
algorithm on a numerical example.

2. Effective Upper Bounds Using Baker’s Method. We consider the
equation

(2) Nkgg(z+ay+A) =1 inz,ye Zand X € Z,

where K = Q(a) is a totally real cubic field. Putting X = max(|z|,|y|), our
condition on A can be written in the form m < X'/2. In our numerical example,
« is defined by the equation

23 -322 -4z -1=0
and the approximate values of its roots are

o) = —0.69202147, o? = —0.3568958, o) = 4.0489173.
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We shall denote by +(*) the conjugates of any v € K corresponding to a(¥). Let
B =2+ oy + A6 (4 =1,2,3). Using this notation, Eq. (2) has the form
(3) Niq(B) = R EE) = 1.

In our example, a pair of fundamental units of K with norm +1 is n; = a,
n2 = —a® + 3a + 2. In view of (3), 8 = n2'n5? with some by, by € Z.

In this section our main purpose is to give an upper bound for H = max(|by ], |b2]).
We shall apply the method of SprindZuk [21] and some ideas of Steiner [22] as well.
For 1 < k,1 <3, k# 1 we have

log |8%)] = by log [n{*)] + bz log [n{"],

log 8] = by log [n{"’| + bz log In{"),
whence
(4) H < Nmax(log| )], log|s"]),
where NV is the row-norm of the inverse matrix of

(log InY;) | log Iné'l“)l)
logInt"| log |}

that is, the maximum sum of the absolute values of the elements in its rows.

Choosing appropriate values of k, | which minimize N, we get in our example
N = 2.6614048. Further, (4) implies

H < Nlog [<2+m%|a(i)|) X] ,
1=K,

that is,
(5) logX Z ClH — C2,
where ¢; = 1/N and c3 = log(2 + max;—x; |a(¥|). In our example, we have

c1 = 0.3757414, c2 = 0.9902923. Applying the method described in Section 5,
we searched over the range H < Hj (in our example, Hy = 35) to find solutions.
Thus we must deal here only with those pairs by, by for which H > Hj, whence, in
view of the last estimate, we may assume that

(6) X > exp(c1Ho — c2) = Xo,
where in our example Xg > 191119. Let

0| = (k) G = min |8®)].
6] = max |6°%] and |G| = min |5

Obviously |8U)| < 1 (cf. (3)), and thus
(7) 189 > 18 — Y| - |ﬂ(j)| > o — o9 ly| — 2x1/2 — 1.
Further, since

ol — o6 = (o) — ¢z 4 oI A6 — oD \G)
we get

lal) — o] 0O+ 09| o]

® _ _ o]
(®) B2 —amr el = =, EGlk
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Combining (7) and (8) yields

9) 180 > e3(i, )X — ca(d, 5) X2 - e5(4, ),
where
(7) — o)
. j) = min | [a® — g0, 127 =l
63(23.7) min {la a |a |a(:,)| s
Con la®] + |a)]
ca(?,7) = max {2, WI— )

. ||
¢5(1,5) = max {1, l—a(]—)l} .

By (6), X is large enough, and thus the expressions on the right side of (9) can
be estimated from below by co(7, 5)X. Here we may usually put, say, co(i,5) =
¢3(7,7)/2, but for our purposes it is useful to make cy(3, ) as large as possible by
taking co (2, 5) = c3(¢, 7) — € with, say, e = 1072 or 10~2, which can be done in view
of (6). Finally, letting co = miny<k,i<3,k co(k, 1), we get
(10) 18] > coX.
(In our example, ¢o = 0.3251256.)

For simplicity, let oy = a®) —aV for any k,1 € {1,2,3}. Let k = {1,2,3}\{7,5}
and consider the following identity:

(11) oy (B) — ).,.a k(ﬂ(’) —2AD) 4y, (BO) — AU =o.
Let A= a“/\( ) + a]k/\ + g, AU); then (11) implies

az]ﬂ(k) —1_ akzﬂ(:,) —-A —1_

g, B ay B )
We recall that 8 = 771 7722 From the above equation we obtain

77 (k) 77(k) o

= |b; log | =~ +b210g "ol + log —‘ =|log |1 — z|].
1 Up)

From (10) we get

lagi| + (larz| + |o2s] + |z ) X1/2
lakJICOX

with cg = (1+€) - (1 <j<m<s @iml)/(comini<i<m<3s |oim|), where we may put,

for example, & = 1072 or 2- 1072 if (6) ensures max;<i<m<3 |om| < € X1/2. In
our example, cg = 87.206869. Using (6) agam we can see that |z| < 1/4 and thus

2| < <cgX /2

|2| 4 -1/2
12 L=|log|l-2z||= +—+—+ Zeg X2,
(5

Since we need an upper bound for L in terms of H, we apply
(13) L < exp(—cyH + cg),
where ¢7 = ¢1/2, cg = log(4ce/3) + ¢2/2; in our example, ¢; = 0.1878707, cg =
5.2511113.

To give a lower bound for L, we use Baker’s method, more precisely, the following
sharp estimate of Waldschmidt [24] for linear forms in the logarithms of algebraic

numbers. We formulate this result in the special case when b; € Q (cf. Theorem 3
of [22]).

) to (12) to get
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LEMMA 1 (Waldschmidt [24]). Let ay,...,an be nonzero algebraic numbers
and let by, ...,b, be rational integers. Let D = [@Q(au1,...,an): Q], and suppose
that o; has defining equation agz® + -+ + ag = 0 where (ao,-..,aq) = 1. Define
the measure of a; by

M(a;) = aOHmax(l, loasl),
o4

where o runs through all embeddings of Q(a;) — C, and let the absolute logarithmic
height of a; be defined by

h(o;) = log(M(a;))/D.
Further, let Vo = 1/D and V; > max(h(o;),|loga;|/D,V;-1) for 1 < 7 < n.

Finally, let E be any number satisfying

ISESmin{eDV‘ 4DV; }

, m
1<5<n | log aj|

and let Vj'" = max(V;,1) forj =nandn—1, withVgt =1ifn=1 IfA=
bo + b1logag + - - - + by log a,, does not vanish, then

|A| > exp[—W (log H + C)],

where
W = C(n)D"*?V; -- -V, (log EDV,} |)(log E) ™!,
— . — +
H= Orsnjagtn b5, C =1og(EDV,T)
and

C(1)<2%, C(2)<2%, C(3)<2™, C(n)<28nt5ipin,

We shall apply this deep result for n = 3 and for the algebraic numbers §; =
|n§k)/n§i)|, by = |n2(,k)/n§i)|, 83 = |a;/ 0| instead of oy, ag, a3. According to the
possible choices of 7, 7, k we have 6 cases, but if we consider L, we can easily see
that if 7 is fixed and we interchange the values of k and ¢, then the value of L does
not vary. So it is sufficient to consider separately the following cases:

Oi=Lk=2,1=23,

@7j=2,k=1,1=23,

®i1=3k=11:=2.

For the application of Lemma 1 we note that in our case n = 3 and D = 6. The
leading coefficients of the defining polynomials of 8;, 62 are 1, since they are units
in Q(61, 82, 63). Further, in our example, the defining polynomial of 83 is

2% — 3z% — 183z* + 3712% — 18327 - 3z + 1
with leading coefficient 1. Moreover, we calculated
h(61) = 0.8095869, h(é2) = 0.46615, h(d63) = 0.8831616,

In cases @, @), @ of our example we obtained the following results:
© C = 3.8992605, logW = 56.004312,
@ C = 5.1708105, logW = 54.39818,
® C = 3.8712005, log W = 56.050706.
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We conclude that in any case
(14) L 2 exp(~Wo(log H + Cy)),

where Wy and Cj are the maxima of the values of W and C, respectively, obtained
in cases @, @), ®. In our example, Wy = exp(56.050706), Cp = 5.1708105.
Combining (13) and (14), we infer

~Wo(log H + Co) < —c7H + cs,

whence e W
H< 224 OogH + 6—8
Cc7
Let cg = Wy/c7 + cg/cr and ¢19 = maX{W()Co/C7, 09}. Then we obtain
H
T V< )
(15) log (logH n 1) <logeig

In our example, logcig = 59.365737. We checked inequality (15) for some powers
of 10 and we found that it holds for H = 10?7 but fails for H = 1028, which implies
H < 10?8 in our example.

3. Reduction with the Method of Baker and Davenport. In this section
we shall reduce the large upper bound obtained for H by Baker’s method.
Dividing L by log |n§k) /né’)l and applying (13) we have

(16) L' =|by9+by— 3| < AK~H,
where (k .
_ log[n{®|/1n{"| _ _loglag; /o
log [n$¥|/In$”|’ log [n$"1/1n$"|
ecs
A=

min<tmea log |z I/1n™ |
and K = e°7. In our example, log A = 6.2504055 and log K = 0.1878707.
We shall use the Baker-Davenport lemma in the following modified form:

LEMMA 2. Suppose that 9, § are given real numbers, A is a given real constant,
‘M and B (B > 6) are rational integers. If there exist rational integers p, q satisfying
1< q< MB, |9q—p| <2/MB and ||qB|| > 3/B, then there is no solution of the
inequality

by + by — 5| < AK™H

in rational integers by, by with

2
log(MB*A) <H<M,
log K -~
where H = max(|b1], |b2|) and || - || denotes the distance from the nearest integer.

Proof. The proof involves standard arguments (cf., e.g., [5]).
Put w =9 — p/q, so that |w| < 2/gM B. We have

|b1g® + baq — Bq| < gAK~H < MBAK™H.
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Since ¥q = qw + p, the above inequality implies
|b1p + biqw + bag — Bg| < MBAK™H.

By the assumptions

2
llgBl| > 3/B and |biqw| < qu =2/B,

there follows
|lb1qw — ¢ = 1/B.
Thus,
1/B < |biqw — g8+ bip + baq| < MBAK™H,

which implies
log(M B2 A)

H< log K

This modification of the original lemma is necessary to avoid further diminishing
the value of log K in (16), which would make the reduction procedure less efficient.

We apply Lemma 2 to inequality (16) to reduce the bound H < Hp (in our
example Hy = 10?%) separately in cases ©), @), ©).

The reduction, in the case of our example, was done in four steps as shown in
the following table.

M | B g< ||/qll< 1Bqll > | new M
I | 1028|100 | 1030 2.1030 0.03 426
I | 426 | 100 |42600 | 4.69-10~5 0.03 115
III| 115 | 50 | 5750 | 3.47-10—4 0.06 101
IV| 101 | 11 | 1111} 1.80-10~3 |0.2727273 84

The final purpose was to reduce the bound H < 10?8 to H < 84.

For this reason we used multiprecision arithmetic to compute the values of a(1),
a® | o) with the accuracy of 100 digits, which enabled us in cases @, @), &) to
compute the corresponding values of ¥ and 8. The approximate values ¥ and Gy
obtained from a(!), a(?), a(® by using 100-digit numbers were exact up to at least
90 digits: |9 — 9| < 1079, |8 — Bo| < 10~%°. Since in cases I-IV, ¢ < 1030, we
have

llgdl| = |g¥ — p| < q|9 — Vo] + lg¥o — p| < 1070 + |gdo||,

and similarly ||gfo|| < 10790 + ||gB]|, that is, ||gB|| > ||gBol| — 107%°. This shows
that using the values of do, By we have to calculate integers g so that ||g]|, ||gBol|
must satisfy somewhat sharper inequalities than the corresponding inequalities for
[1g9]l, ||gB|| in the above table. That is, we have to find ¢ such that

2 —60 3 —60
_— = > — .
llgdoll < MB 107°°, llgbol| > B + 10
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As usual, we computed the values of ¢ using the continued fraction expansion of
J9, in which case the corresponding inequalities were satisfied with much greater
margin, not merely with a margin of 10760, In cases @, @), @ we obtained the
following values for g¢:

I
@ ¢ = 3463384322 3689295773 6922151743
@ q = 3471260358 0565116186 0682550441
® ¢ = 2551657169 4450051521 6625726749

. I Iv.
© 12927 585 585
@ 15932 1083 1083
® 9524 3031 431

In this way we obtained a new and rather low bound Hps for H: in our example,
Hy = 84.

4. Solutions of Medium Size. We now turn to the range Hy < H < Hjs (in
our example, Hy = 35, Hys = 84). In the following we show how one can reduce
the procedure of checking the pairs by, b2 in this range to the test of very few cases
only.

Let Hi < Hj be integers in the interval (Hp, Hpr] and consider the pairs of
exponents by, by with H; < H < Hj, where H = max(|b1],|b2]) as before. by, by
must satisfy (16), that is

619 + by — 8| < AK~H < AK~H1,
whence
(17) ~AK 1 — b9+ < by <AK~H1 — b9 4+ .

We remark that here we have three possibilities for the values of ¥ and § corre-
sponding to the cases @, @, ®. If H; is sufficiently large, then AK ~#1 has a
small value, which means that there may be only very few possible values of b2 for
a fixed b;.

To get all possible pairs by, by with H; < H < Hj, we let b; run through all
integers in [—Ha, Hz]. For each b; we determine the possible values of by from (17)
according to the cases @), @), @. We discard the pair by, be if H; < H < Hy does
not hold or if |b;9 + by — 3| > AKH.

In our example we used the following values in the role of H;, Hy:

H, |36 40| 45] 55| 65
Hy 39|44 54|64 85

The intervals [Hy, Hp] covered the range (Hp, Hps] completely and we found only
24 possible pairs by, b, which were tested with the algorithms described in Section
5.
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5. Searching Over the Remaining Set. In this section we describe those
algorithms which enabled us to check the possible pairs b1, bs. These algorithms
were used to test all pairs in the range H < Hy and the remaining few pairs with
Hy < H < Hys found in Section 4.

Consider a fixed pair by, b;. We have to decide whether 8 = r)ll’l 7732 may have
the form z + oy + A with z,y € Z, A € Zg, where m < XY? X = max(|z],|y]|).
Our condition on A can be written in the form
(18) max |8 — z — o®y| < max(v/]z], V]y]),

1<i<3
where 2,y € Z are unknowns, but 8(*) is given along with b, bs.
I If |z| > |y| then (18) yields

whence

¢ ]zl BW Viz[ | W .
(19) -G GEtem SYS @t aw T am (=123

II. If |z| < |y| then (18) implies

Iyl <89 —z—aly < \/m,

that is,

200  —a®y—Viy[+8D <z<-aWy+ [ +8Y  (1=1,2,3).

If in (20) we interchange the roles of z and y, we can see that in both cases I, IT we
want to find rational integers z and y satisfying the system of inequalities

(21) Az — Bi/|z|+C, <y < Az + Bi/|z| + C, (i1=1,2,3),

where the coefficients A;, B,, C; are given by (19) and (20). (In both cases, B; > 0,
¢ =1,2,3.) Further (after the change of  and y in case II), z and y must satisfy

(22) —lz| <y <z

as well.

First, we have to find those values of z for which the intersection of the intervals
given by (21) for y is nonempty. This is the case only if any lower bound, given for
y in terms of z, is less than any such upper bound, that is, if

(23)  (Ai—A)z—(Bi+B)V]z[+(C.—C,) <0 (1<4, j<3, i#J)

is satisfied. (In view of B; > 0, the similar inequality for 4 = j is trivial.) These
inequalities are second-degree inequalities for \/m .

The main problem of this section is to find the solutions of (23). Here, the
coefficients A;, B, have (in most cases and also in our example) moderate values.
The difficulty is caused by the values of C,, which may be very high or low compared
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to A, and B,. Of course, the solutions of the system of inequalities (23) could
be found in a unique manner by using multiple-precision arithmetic, but since it
is necessary to use a procedure for computing square roots, which is an iteration
procedure requiring a considerable amount of computation time, it is better to avoid
multiple-precision arithmetic if at all possible. Since large values of C, cannot be
exactly represented in single precision, we used, given the magnitude of the C;, two
algorithms to test all pairs of exponents by, bs.

Our first method was applicable when all the C; were small, say |C,| < 10.
In this case (in which we expect the solutions anyhow) there is no difficulty in
determining the solutions of the system of inequalities (23). We examined cases I
and II separately and in both of them two subcases according as x > 0 or z < 0.
In each subcase we proceeded as follows:

a. For each inequality in (23) we computed the intervals in which \/m may
assume its values and we took the intersection of this set of intervals.

b. We transformed the intervals (obtained by taking intersection) for \/|_a:_| into
intervals for z, and for all integers z in this set of intervals we calculated the
maximum M A of the lower bounds and the minimum M1 of the upper bounds
given by (21) for y in terms of z. For fixed z, the corresponding values of y are the
integers lying in [M A, MI] N [—|z|, |z|] (cf. (22)).

In this procedure, if in any step the calculated interval (system) is empty, we
pass to the next subcase.

Now consider those cases in which some of the |C;| are large (> 10°). In this
case (when we do not expect any solutions) our purpose is to eliminate the cases
by a simple method.

Let A = max |4, — A,|, a = min|A4, — 4;|, B = max|B, + B;|, Ap = max|4,],
By = max|B;|, where the maxima and minima are taken for cases I, II and for
each ¢ # j in A, a, B and for each 7 in Ag, By. The following lemma allowed us to
eliminate easily a considerable amount of pairs of exponents by, bs.

LEMMA 3. Suppose that for fized by, by in case 1 (resp. in case II) there exist
indicest, j, k (i # J) and positive constants Dy and K with the following properties:

|Ck| > Do, |Ci—Cj|< K and D?(K)+ D2(K) < Dy,

where Dy (K) = (B++vB? +4AK)/2a and D2(K) = AgD?(K) + BoD;(K). Then
there are no solutions in case I (resp. case II).

Proof. We may assume that A, — A; > 0 since otherwise the inequality will hold
after an interchange of 7 and j. Then, if z > 0, (23) is a second-degree inequality
for \/]z], whence \/[z] < D1(K). (If < 0, the same holds after an interchange of
7 and 7.) Thus,

|Axz + Br/|z|| < Do(K).

In view of (21) and (22), the possible values of y must satisfy

lyl > |Akz F B/ |z| + Ck| = Do — Do(K)
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and

lyl < |z| < DY(K).

(In the above inequality we take the sign — or + according as Cx > 0 or Cx < 0.)
Now if D#(K) < Dy — Dy(K), then the contradiction shows that there cannot be
any solutions. 0O

In our example, we applied Lemma 3 with Dy = 108, K = 4520. In our case we
have |n§2)| > 1, |r)£2)| > 1, while Inil)l, |77§3)|, Inél)l, |n§3)| are less than 1. (One can
always choose fundamental units with this property.) Considering the numerical
values of the conjugates of our units, we can see that, if b; > 11 and b2 > 0, then
the conditions of Lemma 3 are satisfied (with k = 2, ¢ = 1, j = 3), so these pairs
could be discarded without any test.

In our second algorithm we dealt with those cases in which large values of the
C; occurred. In these cases, sgn(C;) and log |C,| was represented in the computer
instead of C;. Addition of such values was performed by a separate subroutine
which computed upper and lower estimates of the sum. In each case, when Lemma
3 was not applicable, we followed step a. of our first algorithm, but using log-
arithmic representation of numbers and being careful to round up or down the
results of additions in order to get somewhat wider intervals. If the intersection
of the set of intervals was not empty, then we obtained a maximal value XM for
\/m. Afterwards, we calculated the upper estimate XU = AgXM? + By XM for
|A,z & B;/|z|| and each case could be eliminated by showing that the intersection
of the intervals [C, — XU, C, + XU] (i = 1,2,3) and [-XM?, XM?] is empty.

6. Computational Aspects. The first version of the program was developed
on a simple C64, but later the same programs were executed on an IBM PC com-
patible computer for which the computation time took only minutes. The multiple-
precision arithmetic for the reduction procedure was written in Pascal, using the -
classical algorithms of Knuth [14]. The testing algorithms described in Section 5
were written in Basic. The test of the remaining set (appr. 4000 pairs by, b2) took
about half of the computation time.

7. List of Solutions. Finally, we give all solutions of the equation which was
our example throughout the paper. In each case we give the pair of exponents
b1, ba, the coordinates of § = n?‘r)g2 in the integral base 1, o, o of Zx and the
values of z and y. These data make possible to calculate the coordinates of A
corresponding to z and y. Naturally, in the table one can find also all solutions of
the corresponding homogeneous equation

Ngjg(z+ay) = 23 +32%y —dxy? + 43 = 1.

A Thue equation equivalent to this one was already solved by Petho and Schulenberg
[19]. In the inhomogeneous case, there are usually further solutions corresponding
to a solution of the homogeneous equation, but there are also several other solutions
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by = —10, by =26
/196,277, -9/

179 < £ <182, y = 241
175 < ¢ <183, y = 242
171 < 2 <183, y =243
168 <z <184, y=244
168 < ¢ <185, y =245
169 <z <185, y = 246
169 <z <185, y =247
169 <z < 181, y =248
170 <z < 177, y = 249
170 < ¢ <173, y = 250

by = -8, by =22

/65,105,16/

=98, y = 159
z=199, 160 <y <161
z = 100, y = 162
bl = —7, b2 =19

/ —42,-60,1/

—-37<x<-34, y=-59
—41<z2<-34, y=-58
—45<zx < -34, y=-57
—46 <z < -35, y=—56
—45<2r< -39, y=-55
—44<x< 43, y=-54

b] = —6, b2 =16
/28,37, -5/
z=17,19<y <20
z =18, =20

by =-5, by =15
/—14,-23, -4/
r=-21, y=-39
-26<zr< 21, y=-38
—-25<2<-20, y=-37
-25<z2z<-21, y=-36

by = —4, by =12
/9,13,0/
10<z<11, y=12
6<z<12, y=13
6<z<8 y=14

which do not correspond to any solution of the homogeneous equation.

by = -3, bg = —6

/ —63,52,-9/

T = —85, y=19
r=-84, 19<y<22
z=-83, 19<y<22
z=-82,19<y<22
z=-81,20<y <22

z = —80, y=21
b1=—3, b2=9
/—6,-8,1/

T=—-4, y=-4

z=-3, y=-5

by =-3, by =11

/ —5,-10,—-4/

—14<zxz<-13, y=-25

-15<2<-12, y=-24
r=-14, y=-23

b1=—2, b2=—4

/16,-8,1/

z=16, -4<y< -3

z=17, -5 <y<—4

z=18, -5 <y<—4

z=19, -6<y< -4

=20, 6<y<—4

z=21, 6<y< -5

b1 = —2, bg =7
/3,3,—-2/
r=-1, y=-4
b] = —2, bQ =8
/3,5,1/

5<2<7, y=8
4<z<6, y=9

bl =—2, b2=9
/1,-2,-5/
z=-10, =20 <y < —19
z=-9, y=-19
b] =—1, b2=—2
/—4,1,0/

—6<z<-3 y=1




by=-1, b2=5
/—2,-3,0/
-3<z<L-1,y=-3
by=-1,b=6
/—1,0,2/
3<z<4,y=7
by=-1,bo=7

/ —2,-5,-3/

-10<z< -8, y=-16
-9< <L -T, y=-15

b1=0,b=0
/1,0,0/
1<zx<2,y=0

b1 =0,b2=2

/1,1,0/
1<z2L2,y=1

by =0, by =14
/1,2,1/

z=4,y=>95
2<z2<3, y=6
b] =0, b2=5
/0,—2,-3/
-7<z< -6, y=-13
—-7<z<L -6, y=-12

b1 =0, b2=6
/2,7,6/

z=15, 27T<y <29
T =16, y=29
b1=1, b2=0
/0,1,0/
z=0,y=1
b1=1, b2=1
/—1,-2,0/
-2<zL0,y=-2
b1=1, b2=2
/0,1,1/

z=3, y=4

T=2,y=95

INHOMOGENEOUS NORM FORM EQUATIONS IN TWO DOMINATING VARIABLES

by=1, bp=3
/—1,-3,-2/
—-6<zr< -4 y=-10
b1=1, b2=4
/1,5,5/
z =11, y =22
=12, 22<y <23
b1=2, b2=0
/0,0,1/
r=2,y=4
b1=2, b2=1
/0,-1,-2/
—-56<Lz<L-3, y=-8
b1=2, b2=2
/1,4,4/

z=10, y =17

9<z<10, y=18
9<z<10, y=19

by =3, by =-2
/1,3,0/

0<z2<2, y=3

by =3, bp=-1
/—-1,-3,-1/
—3S$S—2a y=_7
—-4<z<L-3, y=-6
b] =3, b2=0
/1,4,3/

6<z<8 y=14
7<z<9, y=15
b1=3, b2=1
/—2,-8,-7/
z=-17, =33 <y < -32
by =4, by =-3
/1,2,-2/

z=-3, y=-5

371
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b1 =4, by =-2 b1 =9, bo =-9

/0,1,3/ /—9,-27,-5/

6<z<7 y=11 —20<z<-18, y=—46

6<z<7 y=12 —-22<2< 18, y=—45

by =4, by =-1 —2<zx< 17, y=—-44

/—1,-5-6/ -21<2<-20, y=-43

r=—-14, -27<y < -26 by =11, by = —12

by =5, bg = —5 /22,62,1/

/—3,-8,1/ 27<z2<30, y=63

x=0, y=-5 23<r<30, y=64

r=-1,y=-4 19<z<31,y=65

by =5, by =—4 18 <z <30, y =066

/2,6,1/ 18< 2 <26, y=67

4<z<6,y=9 19<2<22, y=68

3<z<5, y=10 by =15, by = —17

by =5, by = —3 / —97,-275,-9/

/—2,=7,—4/ —112<z < —110, y = 312

—11<z<-10, y=-22 —116 <z < -109, y = -311

—12<2<-10, y=-21 —120<z < —108, y = —310
z=-11, y=-20 —124 <z < -108, y = —309

by =6, bp=-5 —127 <z < -107, y = —308

/1,1,-5/ —127 <z < -106, y = =307

r=-10, y=-17 —126 <z < —106, y = —306

b =7 by=—7 -126 <z < —106, y = —305

/ —5,—14,0/ —125< < -110, y = -304

_4st_2,y=_15 —125Sz§—114,y=—303

-8<z<-2, y=-14 —125 <z < 118, y = —302

S7<g<—6, y=—13 —124 <z < 122, y = —301

b1=7, b2——6

/4,13,5/

13<z<16, y=30
14 <2 <16, y=31

=14, y =32
b1 =9, by =-10
/13,35, —4/

4< <5, y=20
3< <5, y=21
=4, y=22
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