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Nonsymmetric and Indefinite Elliptic Problems* 
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Abstract. We prove some new estimates for the convergence of multigrid algorithms 
applied to nonsymmetric and indefinite elliptic boundary value problems. We provide 
results for the so-called 'symmetric' multigrid schemes. We show that for the variable 

e-cycle and the v-cycle schemes, multigrid algorithms with any amount of smoothing 
on the finest grid converge at a rate that is independent of the number of levels or 
unknowns, provided that the initial grid is sufficiently fine. We show that the p-cycle 
algorithm also converges (under appropriate assumptions on the coarsest grid) but at 
a rate which may deteriorate as the number of levels increases. This deterioration for 
the p-cycle may occur even in the case of full elliptic regularity. Finally, the results of 
numerical experiments are given which illustrate the convergence behavior suggested by 
the theory. 

1. Introduction. In recent years, multigrid methods have been used extensively 
as tools for obtaining the solution of the discrete systems which arise in the nu- 
merical approximation of partial differential equations (cf. [6], [8]). In conjunction, 
there has been intensive research aimed at attaining a more thorough theoretical 
understanding of the multigrid technique [1]-[5], [8], [13]-[18], [21]. In this paper, 
we shall provide some new iterative convergence estimates for multigrid algorithms 
applied to nonsymmetric and indefinite problems. 

The theory for the analysis of multigrid methods applied to symmetric positive 
definite problems is most completely developed [2], [4], [5], [13], [15], [21]. Generally, 
these results assume a 'regularity and approximation' hypothesis which involves a 
parameter 0 < ar < 1. The results in these papers guarantee convergence rates for 
multigrid %'F-cycle, the variable %'F-cycle (cf. [5]) and the if-cycle algorithms for 
various al. In particular, [5], [15] give iterative convergence results for the symmetric 
problem which are valid for any amount of smoothing and any al. 

The theory for multigrid methods applied to nonsymmetric and indefinite prob- 
lems is not so completely developed. Two types of algorithms are the so-called 
'symmetric' and 'nonsymmetric' multigrid schemes. The nonsymmetric scheme 
uses a relaxation procedure based on the original equations whereas the symmetric 
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scheme uses a relaxation based on the symmetric positive definite system associ- 
ated with the normal equations. Some results only hold under rather restrictive 
assumptions involving the relation between the number of smoothings m and the 
size of the coarsest grid hj. For example, Bank [1] gives Yf-cycle results for both 
schemes and for arbitrary a which, however, require first that m be sufficiently 
large, and secondly that hj be sufficiently small (depending on m). Mandel [14] 
gives results for the nonsymmetric 2Y-cycle scheme and the p-cycle scheme (as- 
suming full regularity a = 1) which are valid for any m if hj is chosen sufficiently 
small (depending on m). 

In this paper, we shall prove some new iterative convergence estimates for the 
symmetric multigrid scheme applied to nonsymmetric and indefinite problems. We 
give results for the Y-cycle, variable Y-cycle and >-cycle algorithms for any 
amount of smoothing under the assumption of a > 3/4. Our theorems for the 
variable Y-cycle and v-cycle algorithms require that hj be sufficiently small (in- 
dependent of the amount of smoothing) and guarantee an iterative convergence 
rate which is uniformly independent of the number of levels and the mesh size on 
the finest grid. The assumption that hj is sufficiently small is not very restrictive 
since such an assumption must be made for solvability on the coarsest grid. The 
results for the Y-cycle algorithm are somewhat weaker. We show that the Y-cycle 
converges if hj is small enough (depending on the number of levels and a), at a 
rate which deteriorates as more and more levels are used. Even in the case a = 1, 
the p-cycle convergence estimates deteriorate like 1 - c/ ln(h-1). 

We derive our iterative convergence estimates for multigrid algorithms in an 
abstract setting. The use of this abstract approach more clearly identifies the 
relevant hypotheses. 

The outline of the remainder of the paper is as follows. In Section 2 we describe 
the abstract framework to be used in the paper. The assumptions used in our 
analysis and some preliminary definitions are also given there. Section 3 shows 
how this framework can be applied in the case of nonsymmetric and indefinite 
uniformly elliptic second-order boundary value problems. Section 4 defines the 
multigrid operator and provides a basic recurrence relation used in our subsequent 
analysis. The convergence estimates given in this paper are based on three technical 
lemmas. In Section 5 we prove our multigrid theorems, assuming the technical 
lemmas. Section 6 provides the proof of the lemmas and represents the core of 
our analysis. Finally, the results of numerical experiments illustrating the earlier 
derived theory are given in Section 7. 

Throughout this paper, c and C, with or without subscript will denote a generic 
positive constant which may take on different values in different places. These 
constants will always be independent of the mesh parameters. 

2. Abstract Framework and Assumptions. In this section, we first give 
an abstract framework for our nonsymmetric multigrid application. This abstract 
presentation more clearly identifies the relevant hypotheses used in the iterative 
convergence analysis to be developed. We then list the assumptions required for 
the multigrid analysis presented in later sections. To keep the paper from becoming 
too abstract, we show how a model application to a second-order problem fits into 
this framework in the next section. 
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We start with a Hilbert scale (cf. [11]) of spaces {HI } for ay E [0, 2]. The norm 
on H- will be denoted by lH- 1IHI We assume that Hs C Ht whenever t < s. The 
largest space (i.e., -y = 0) will be denoted H with norm 11 -uH and inner product 
(., .). The space Ha is assumed to be compactly contained in HE whenever -a > S. 
Let Xf be a closed subspace of H1. The spaces HI for -1 < s < 0 are defined by 
duality and with norm given by 

IIV||Hs sup (vup I 

Assume that we are given a nested sequence of 'approximation' subspaces 

X1 C X 42 C ..C AtJ C Ad 

In addition, let A (a,) be a positive definite symmetric quadratic form on X4 x X 

satisfying 

(2.1) cIIvIl'p < A (v, v) < CIIviIli for all v E X 

and D (,.) be a quadratic form on X' x #. We shall be interested in approximating 
the solution of 

(2.2) A (u, )A (u, ) + D (u,5)=(f,$) for all q E X, 

for a given function f E H. We shall assume that (2.2) is uniquely solvable for any 
f eH. 

We will be interested in applying multigrid procedures to develop a rapidly 
converging iterative algorithm for the solution of the Galerkin approximation of 
(2.2) in the subspace Oj. Specifically, we seek the function U E Xdj which satisfies 

(2.3) A (U, X) = (f, X) for all X E -J1. 

Our multigrid algorithms will require the use of discrete inner products (, .)k on 
xk X Ak for k = 1, ... , J. The corresponding norm will be denoted 11 * Ilk. In the 

algorithms, these inner products are used instead of (., ) to avoid the inversion of 
Gram matrices. This means that the problem of computing W E Ak satisfying 

(2.4) (W, 0)k = F(0) for all 0 E Jk 

for a given linear functional F should be simple. 
We next list the assumptions required for our multigrid analysis. 

(A. 1): The first assumption involves elliptic regularity for the forms A ( and 
A (, ). We assume that solutions u of (2.2) and the corresponding equation 

A(u,O)=(f,O) forallO B 

satisfy 

(2.5) ||ui|H1+- <- C~lf IH-l 

for some a E (3/4,1] independent of f. 

(A.2): We assume first that D satisfies 

(2.6) ID (v, w) I < CI|VIIH1 11W11H for all v, w E X. 



392 JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND JINCHAO XU 

It is an immediate consequence of (2.6) that the operator D: X' l- H defined by 

(Dv, 0) = D (v, 0) for all 0 E H 

is well defined and satisfies 

(2.7) IIDvIIH < CI|VIIH1. 

We further assume that D maps H'+' into H', i.e., 

(2.8) jIDvIIH- <? CIIVIIH1+?E. 

Let D* :H >- H1 be defined by 

(D*w, 0) = (w, Dq). 

We assume that D* is a bounded operator from H' into H-1/2-6 for any posi- 
tive E. 

(A.3): We require approximation properties for the subspaces {Ak}. These are 
given in terms of a parameter hk which satisfies 

C,~k < hk < CK k 

for constants c, C and r, < 1 independent of k. We assume that for v in H' and 
s E [1,1 + O], there exists x E Yk such that 

||V- X1H + hkjV - XIH1 < Ch'11V11HS- 

(A.4): We require that the inverse inequality, 

|W|HHO < ChOi :WIIHH for all W E ok 

holds for all d > -y with f, y E [0,1 + O]. 

(A.5): We require first that the discrete inner product (, ))k be equivalent to 

(,) on A, i.e., 

(2.9) CH|XH|H < H|X|jk < CIIXIIH 

In addition, we assume that the discrete inner products accurately approximate the 
inner product on H in the sense that 

(2.10) 1(+ X) - (k,X)kj < Chk11IPHH1H|X|lk for all +,X E Ak. 

We next introduce some discrete operators which play a fundamental role both 
in the analysis and the algorithms to be considered in this paper: 

(0.1): The operator Ak : Ak @ A> is defined by 

(AkW,O)k = A(WO) for all 0 EAk- 

(0.2): The operator Pk AX 1 A4k is defined by 

(2.11) A (Pkw, 0)= A (w, 0) for all 0 E Ak. 

(0.3): The operator Ak : XC'k >k is defined by 

(AkW,0)k = A(W,0) for all 0 E 9k%. 
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(0.4): The operator Pk X - A% is defined by 

A(Pkw,0) = A(w,0) for all 0 E 4k. 

(0.5): The operator Dk : Ak- Ak is defined by 

(DkW, O)k = D (W, 0) for all 0 E Ok. 

(0.6): The operator Ik : Ak+1 I Ak is defined by 

(IkW, O)k = (W, 0)k+l for all 0 E .k 

(0.7): The operator Pk2: H O-4 k is defined by 

(PWkV,0)k = (V, 0) for all 0 EA9k. 

All of the above operators except possibly Pk are clearly well defined. We shall 
assume, however, that hk is less than some positive constant v with v chosen small 
enough so that the above assumptions imply a unique solution to (2.11) (cf. [20]). 
This also implies that Ak is invertible. 

We note that (2.3) is equivalent to 

AkU = Pkof. 

We define two scales of norms on k which we shall use in our analysis. The 
operator Ak is symmetric and positive definite on Ak in the (-, .)k inner product. 
We define the scale of norms {lldIlks} for any real s by 

liWlIk_9 = IIAk/IWIk for all W E k. 

Similarly, the operator A*Ak is also symmetric and positive definite on ok (here, * 

denotes the adjoint with respect to (, k)k). We define the scale of norms {lj 
for any real s by 

III W||ks = ((A*Ak)8/2W, W)1/2 for all W E Ak 

Let Lk = (AZAk)1/2; then clearly 

IIIWIIlk,_ = IILk/ Ilk for all W E Xk 

We will often consider the norms of operators from a space into itself. If T 
S ~-4 S is an operator on a generic space S with norm . 1, then the norm of T will 
be denoted by IITiI and is given by 

11TIh = sup 
IITO7I 

q5ES hI'khI 
3. An Application to the Second-Order Problem. We consider a model 

second-order problem in this section and show that the hypotheses of Section 2 are 
satisfied. This application involves a finite element approximation of a nonsymmet- 
ric and indefinite elliptic problem in N-dimensional Euclidean space. 

Let ? be a domain in RN. The spaces Hs = HI (Q) will be the Sobolev spaces 
of order s on ? [12], [19]. We shall be interested in approximating the solution of 
the problem 

(3.1) Yu = f in ?, 

(3.2) = 0 on (9, 
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or 

(3.3) u = 0 on 9F, 

where 
N a Ou N Ou 

5u=->E Z aij (X) +Zbi(x)- +c(x)u 
ij=1 9xi Ox1 =1 D9xi 

and ,9 denotes the outward co-normal derivative on OQ. 
We assume that the matrix {aij (x) } is symmetric and uniformly positive definite. 
Under appropriate smoothness assumptions for the domain Q and coefficients 

defining Y, it is possible to prove that the solutions of (3.1)-(3.3) satisfy estimates 
of the form (2.5) [7], [10]. For two-dimensional polygonal domains, with coefficients 
in C' (Q), (2.5) holds for af > 3/4, if all interior angles of the polygon are bounded 
by 4ir/3. For more general applications, we implicitly assume the appropriate 
hypotheses so that (2.5) holds for Oa > 3/4. 

The space X' is a subset of H' (Q) satisfying appropriate boundary conditions. 
In the case of boundary condition (3.3), X' is the completion of CO (2Q) in the 

H'((Q)-norm. For boundary condition (3.2), X' = H'((Q) unless c(x) = 0 for all 
x, in which case X' consists of those functions in H' (Q) which are orthogonal to 
constants. 

A weak formulation of (3.1)-(3.3) is: Find u E X' such that 

(3.4) A(u, v) = (f,v) for allv E Xf, 

where (,.) is the usual L2(FQ) inner product and 
ENai Ou~Y dx+ZJ 09 

A(u, v)= n ij m- dx +E bi vdx + cuv dx. 

Note that, in general, A(.,) is nonsymmetric and indefinite. We assume that (3.4) 
has a unique solution. 

We define A (,.) by 

A(uv)= E | aijx - dx + uvdx. 

Then, obviously 

D (u, v) = Jvd+ (c- 1)uv dx. 

We next check assumption (A.2). Inequality (2.6) follows immediately from the 
Schwarz inequality. The operator D is given by 

N Ou 
Du = A bi- + (c - 1)u, 

i=1 t 

and hence (2.8) clearly holds. Finally, we note that for w E H' (Q) and X E X', 

(3.5) (D*w, ) = (w, D) =-(Dw, q) +E biniwoqds-( - b 2do) 
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where ni is the component of the outward normal in the ith direction. We assume 
that bi is in C1(F) and that c is in LIc(Q). The boundary term in (3.5) vanishes 
in the case of boundary conditions (3.3) and hence D*: H'(Q) ~-+ L2(au) in this 
case. In the case of boundary conditions (3.2), by a well-known trace inequality, 

N 

from which it follows that D*: H1(Q) _ H-1/2- (F). Thus (A.2) holds for either 
application. 

We next consider the finite element approximation subspaces. For simplicity, 
we shall only describe a piecewise linear application in two dimensions. The appli- 
cation to higher-dimensional problems and more general approximation subspaces 
is straightforward. We write Q = U Ti1, where Ti {Ti } is a collection of trian- 
gles with mutually disjoint interiors. We assume that these triangles are of quasi- 
uniform size h1. This means that there are positive constants c and C such that the 
diameter of every triangle is bounded by Ch1 and each triangle contains a circle of 
radius ch1. We define a sequence of triangulations by induction. Assume that the 
triangulation Tkl = {T -} has been defined. The triangles of Tk are formed by 
connecting the midpoints of the edges of the triangles in Tkl. Thus, each triangle 
in Tk_1 gives rise to four triangles in Tk. 

The approximation subspace ok consists of functions which are continuous and 
piecewise linear with respect to the triangulation Tk. In the case of Dirichlet bound- 
ary conditions, we additionally require that the functions in Tk vanish on AQ. In the 
case of boundary conditions (3.2) and c(x) = 0, we also require that the functions in 
Tk have zero mean value. For these spaces, hk = 2-k+lhl and classical techniques 
in the theory of finite elements imply that (A.3) and (A.4) hold. 

We finally define the discrete inner products. Let x&.-, j = 1,2,3, denote the 
vertices of the ith triangle of the kth grid. Define 

3 

(3.6) (0, Xk = 1/3E S ikTI E (xj)X(xj). 
i j=i 

Here J ikJ denotes the area of the triangle Tik. It is not difficult to show that (A.5) 
holds for this inner product. Note that (3.6) can be rewritten 

(3.7) (qX)k = EZw40(yzi)X(Y0), 

where {yk} are the nodes of the kth grid and wk is an appropriate weight function. 
Note that (3.7) implies that the solution of problems of the form (2.4) reduces to 
division by the weights {w 4}. 

4. Multigrid Algorithms. We will define the multigrid algorithms in this 
section and develop certain recurrence relations which will be used in the iterative 
convergence analysis given later in the paper. The multigrid algorithm defines a 
linear operator Bk on Ak which is an approximate inverse for Ak. We will consider 
the so-called 'symmetric multigrid scheme'. Here 'symmetric' refers to the fact 
that the relaxation process used results from an iterative scheme for the symmetric 
operator A*Ak. 
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We define the operator Bk oAk 1 Ok by induction on k. As we shall see in later 
sections, for stability, the coarsest grid in the multigrid process must not be too 
coarse. To this end, we shall define our algorithms starting from the intermediate 
grid, level j, 1 < j < J. In this algorithm, we assume that the operator Bj equals 
AT1, although some results still hold when Bj is defined differently (see Remark 
5.2). 

The Multigrid Algorithm. 
Set Bj = A-1. Assume that Bkij :k-1 @ > Afk- has been defined and define 

Bkg for geEk and k= j+1,...J as follows: 
(1) Set x0 = 0 and q0 = 0. 
(2) For I = 1, ... , m(k), define 

(4.1) x1 = x1- + Ak 2A* (g-AkX1 ), 

where /k is the largest eigenvalue of Lk = (A*Ak)1/2 
(3) Define Bkg = Xm(k) + qP, where q2, for i = 1,2,... ,p, is defined by 

(4.2) q= qi + Bk-1[Ik-1(9 - AkXm(k)) -Ak-lqtl]. 

The heuristic motivation for the above algorithm is as follows. Step (2) is a 
smoothing process and is designed to reduce the high-frequency components of the 
error. The low-frequency components of the error are then reduced by the coarser 
grid correction (3). 

Remark 4.1. We have used it2k in (4.1) for convenience. In actual algorithms, 
any reasonable bound for the largest eigenvalue of the system A*Ak can be used. 

Let g = Akx and Kk = I- ,f42A*Ak. Clearly 

X- xm(k) = Km(k)X 

It is straightforward to check that qP satisfies 

qP = (I - (I - Bk-Ak1)P) Pk-1 (X - Xm(k)). 

Combining the above equalities gives 

(4.3) I - BkAk = [(I - Pk-) + (I - Bk-lAk-l)PPk-l]Km (k) 

The relation (4.3) provides a fundamental identity for the analysis of the multigrid 
algorithm. 

The goal of this paper is to prove inequalities of the form 

(4.4) t11I -- BkAk1112,1 < 6k 

Such inequalities immediately imply that the linear iteration 

un+1 = Un +Bk(F-AkUn) 

converges to the solution U of 
AkU = F 

with a rate of v/ per step in the norm 111 li k. Equality (4.3) gives a way of relating 
the reduction 6k to that of the (k - 1)-grid and hence provides a key ingredient for 
a mathematical induction argument. 
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5. The Convergence Theorems and their Proofs. We give our convergence 
results for multigrid algorithms in this section. We first give results for the variable 
7'F-cycle. Next, we consider the 2w-cycle with constant m(k) = m. Finally, we 
consider the 2-cycle algorithms. The proofs of these theorems depend on three 
lemmas. These lemmas are central to the analysis of the paper and will be proved 
in the next section. In this section, we prove our multigrid theorems, assuming the 
lemmas. 

We start by stating the lemmas. The first lemma gives a so-called 'regularity 
and approximation' estimate for the projection operator Pk. 

LEMMA 5. 1. If hj is sufficiently small, there exists a positive constant C not 
depending on k such that 

jj(I - Pk-1)v 1 < C(a 1' IILkVI| )&(Lkv, )k5a for all v E Ak. 

The next two lemmas represent an essential part of the analysis of this paper. 

Their proof uses the Dunford-Taylor integral formula for operators and is given in 

the next section. 

LEMMA 5.2. If hj is sufficiently small, there exists a positive constant C not 
depending on k such that for all v E 4k, X E 'k-1, 

(5.1) (Lk(I - Pk-l)VX)k < Ch "/2II/(I - Pk-1)VIIIk,lIIIXIIIk,1 

holds for any positive e. 

LEMMA 5.3. If hj is sufficiently small, there exists a positive constant C not 
depending on k such that for all X E Ak-1, 

|IIIXlII121 IIIX1112_1,11 < Ch 4k (1 + 11n hk 1) IIX1112 1 

We can now state and prove the convergence theorem for the variable 27'-cycle 

algorithm. 

THEOREM 1. Let p = 1 and assume that m(k) satisfies 

(5.2) 3om(k) < m(k - 1) < /hm(k) 

where /3o and /1 are constants greater than one and independent of k for k = 

j + 2, ... , J. Let -y be positive and less than min (a - 1/2, 4a -3). Then there exist 
positive constants M and v not depending on k such that when hj < v, (4.4) holds 
with 

M 
(5.3) k M + m(k)a/2 

fork =+1,. J. 

Proof. We will prove the theorem by induction. For the purpose of this proof, 

let m(j) = 3om(j + 1) (note that m(j) does not appear in the definition of the 

multigrid process). Clearly, (4.4) holds for k = j with 6k given by (5.3). Let 

k E {j + 1, .. , J} and assume that (4.4) holds for k - 1 with 6k-1 given by (5.3). 
It follows from the recursive relation (4.3) that 

111(I - BkAk)v!IIki = jjj(I-Pki)iljjj~1 + IIj(I - Bk-lAk-l )PkPjI!k1 

+ 2(Lk(I - Pk-l)v, (I - Bk-lAk-l)Pk-l1)k, 
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where v = Kk(k)v. Applying Lemma 5.2 gives 

|||(I - BkAk)vttkti 

< (1 + Ch1 ) (|||(I-Pkl)iltt~l + |||(I - Bk-lAk-l)Pkl1IItl). 

Using Lemma 5.3 and the induction hypothesis, we deduce that 

I11(I - Bk-lAk-1) Pk<ltV l k (1 + Ch )ttt(I - Bk-1Ak-1 )Pk Itl k-1, 

< 6k-1 (1 + Ch") ttPklqIltt1t, 

< 6k-1 (1 + Ch") ttPkl1qIlt1t 

holds for any fixed -y less than 4a - 3. We remind the reader that here and through- 
out the paper, C denotes a generic positive constant which may take on different 
values from line to line. It follows from Lemma 5.2 that 

k t ,1 = ItIPk-lvtttk,1 + 11(1 - Pk-l)U1,1 + 2(Lk(I - Pk-l)V, Pk-li)k 

> (1- Chk a/2)(tttPkl1qIt 1 + III (I - Pk-l)ilttxl) 

and thus for v sufficiently small 

tllk-llll 1< (1 + Chk )lll~s-|(-kl)qI12k 

Requiring, in addition, that -y < a - 1/2 and combining the above inequalities gives 

III(I - BkAk)Vttt|,l < (1 + ChO) {(1 - 6k-1)ttt(I -Pk.l)itI1,l + 6k-1tttVtttki} 

By Lemma 5.1, the Schwarz inequality, and a generalized arithmetic geometric 
mean inequality, 

11(1 - Pkl)qI1t,1 < C (p 1(Lki,)k) (Lki,i)k 

< C (1i2 (L 3,j V)k) /2 (Lki V)1-a/2 

<? {ClkIk (Ltki, O)k + t /(& ) (Lk5, V)k } 
holds for any positive constant rqk. Using the definition of Kk and the fact that its 
eigenvalues are in the interval [0,1) gives 

Uk (L3kb )k = (Lk(I - Kk)Km (k)v, Km (k)V)k 

2m(k)-1 

<(2m (k)) (Lk (I -Kk)Kkv, V) k 
1=0 

- (2m(k))1 (Lk(I - K m(k))V, V)k. 

Combining the above inequalities gives 

III(I - BkAk)vtttkjl 

(5.4) < (1 + Clh-){C0(1-Sk-1)rkm(k) l(Lk(I-K Km(k))V, V)k 

+ [CO(l - k-1)?7k'/(2) + 6k-1](LkKk 2() V, V)k}. 

Setting C2 = CO(1 + Cj), we see that the theorem will follow if we can choose 

%1k, hj and M such that 

(5.5) C2(1 - &k-1)rlkm(k) < 6k 
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and 

(5.6) C2(1 - 6k-1)?k/( ) + C0h1 -1 5 <6k - 6-1- 

We choose ik by 

(5.7) C2(1 - 6k-1)rkm(k) = 

from which (5.5) immediately follows. Solving for rik in (5.7) and using this result 
in (5.6) implies that it is sufficient to choose M and hj so that 

(5.8) 03(1 - 61)2/(2a)m(k)a/(2a) + Cjh 36,/l j) ? ( - 4- 1 k-1 

Let ??J(k) M + m(k)&/2 and Ok - m(k - 1)/m(k) E [0o, 01]; then 

(5.9) 4-"61 (/3km(k))o,/2 

0Z(k -1) 
A direct computation using (5.9) and the identity 6k = M/92r(k) shows that (5.8) 
is equivalent to 

(5.10) C3!/(2 )M-a/(2-a) + 0h7M < Mm(k) /2 (f/2 - 1) 
3 Z(k) 

Note that if M > 1 then 

C' poo,/2Mm(k)a/2 
a 
c/2 

C4-/5o2 _1)/2 < -M m(k)0/_(:/2 _ 

hence it suffices to have 

C5M-c(2-c) + CihiM < C4, 

where C0 = C3/ O/(2 a). Thus, taking M > 1 large enough so that 

C5M-&/(2-a) < C4/2 

and 

hj3 < < v 4 ? 5(2CjM)-11' 

completes the proof of the theorem. 
We next prove a theorem for the standard Y-cycle algorithm. 

THEOREM 2. Consider the 7-cycle algorithm (p = 1) with m(k) = m for 
all k. Let -y be positive and less than min (a - 1/2,4a - 3). Then there exist 
positive constants M, c, and v not depending on k such that when hj < 
min (v, c(j - 1)-2/(a'Y)), (4.4) holds with 

Mk(2-a))/a 
(5. 11) 6k 

- 
(Mk(2-a)/a + Ma/2 j 

fork= j+1,... ,J. 

Remark 5.1. The theorem suggests that the Y-cycle may be less robust than the 
variable p-cycle. Note that the convergence estimate for the Yrcycle algorithm 
deteriorates as k becomes larger, even in the case a = 1. Furthermore, the theorem 
suggests that for stability, the coarsest grid must become finer as the number of 
grid levels increases. 
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Proof. The proof of this theorem is essentially contained in the proof of Theorem 
1 and the proof of Theorem 1 of [5]. Indeed, (5.4) is valid with m(k) = m and hence 
it suffices to choose rik, M, hj, and c so that (5.5) and (5.6) are satisfied. We choose 
r/k by (5.7) and reduce (5.5)-(5.6) to (5.8). Making similar algebraic manipulations 
(compare with (5.10)), we see it suffices to choose the parameters so that 

G M-a/(2-a) + C1h7(k - 1)2/a 

?2MJ/k [k(2-a)/a - (k- 1)(2-a)/a](k -1) 

where 92(k) Mk(2-a)/a+m,/2. Noting that k > 2 and (2-a)/a > 0, elementary 

arguments imply 

k(2-a)/a < C6[k(2-a)/a - (k - 1)(2-a)/a](k - 1). 

Thus, it suffices to prove 

3M cel(c) + Clh7M(k - 1)2/a < C6 MM/20-a)/a 

We set 

M 

+ 

and define M by 

C 31(-a/(2-a) = C6/2. 

Then 

C3M-a/(2-a) < C6 M C6Mma/2k(2-a)/a 
2 1+M 2 ~ (k) 

We then set 

C6M C 
2C, (1 + M)J 

from which it follows that hj < c(j - 1)-2/(ya) implies 

Cl0hM(k - 1)2/a < CQ M <0 6 Mma/2k(2-a)/a 
3 - 2 1+M -2 q(k 

Combining the above inequalities proves the theorem. 

The last theorem which we shall prove is for the W-cycle algorithm. 

THEOREM 3. Consider the >7if-cycle algorithm (p = 2) with m(k) m for all 
k. Let y be positive and less than min (a - 1/2, 4a - 3). Then there exist positive 

constants M and v such that when h. < v, (4.4) holds with 

(5.12) 6k 6 = (1 + M 

fork=j+1,... ,J. 

Proof. The proof of this theorem is essentially contained in-the proof of Theorem 

1 and the proof of Theorem 3 of [5]. Since the term involving (I - Bk_,Akl) 
appears squared in (4.3), following the proof of Theorem 1, we see that (5.4) holds 
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with 6k-1 replaced by 62. We see that the theorem will follow if we can choose 
rik = , v and M such that 

(5.13) C2(1- )m1 ? 6 

and 

(5.14) C2(1 - 62) -a/(2-&) + Clh062 < 6 _ 62 

We choose q so that (5.13) holds with equality. Solving for q and using this 
result in (5.14) implies that it is sufficient to choose M and v so that 

(5.15) 03(1 _ 62)2/(2-a)m-a/(2-a) + 1h6(4-a)/(2-a) < (1 )62(2-a) 

It is elementary to see that 

(5.16) 2-2/(2-a) < (1 _ 6)-a/(2-o) (i)&/(2-&) ( ^ )2/(2-a) 

for 6 given by (5.12). Define M by 

M/(2 -a) 2-2/(2-a) = 2C3. 

Then 

C3(1 - 62)2/(2-a)m-a/(2-a) < 1 (1 - 6)621(2-a) 

Choosing 

(5.17) hj < ( < 2O6 ) 

*~~~~~~~~~~~C 
6 

implies 

Clh76 (4-a)/(2-a) < 1 (1 _ -)621(2-a) 

This completes the proof of the theorem. 

Remark 5.2. The multigrid process described in Section 4 requires that the prob- 
lem on the coarsest grid be solved exactly, i.e., Bj = A-1. It is possible to relax this 

restriction and still apply the results of this paper. We consider, for example, the 

variable 7'-cycle multigrid algorithm. From the proof of Theorem 1 it is immediate 

that the theorem will still hold as long as Bj satisfies 

(5.18) ttt(I-BBjAj)1112k,1 < 6j, 

where 

(5.19) 6 = M 
6i M + Ooc,/2M(j + l)at/2' 

One obvious choice for an iterative definition of Bj is Bj g = xmj where xt for I - 

1, . . . , mj is given by (4.1) with k = j. Here mj is some integer to be specified. An 

iterative definition of Bj has the advantage that no additional coding is necessary 

(in contrast to the use of Bj = A-1, where direct solvers for nonsymmetric and 

indefinite problems must be introduced into the code). There are two additional 

factors involved in the use of an iterative process for Bj. First, one would like to 

avoid the coarsest grids so that hj < vi is satisfied. Secondly, the computational 
work on the coarsest grid should not increase the asymptotic work of the algorithm. 
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We consider the application described in Section 3. We should like the multigrid 
algorithm to achieve a reduction &j which is independent of hj , with computational 
effort bounded by a constant times the number of grid points in the finest grid. Let 
N(k) denote the number of degrees of freedom in the kth grid level. We assume 
N(k)/N(k - 1) > co > i1, and hence the amount of work on the grids 1, ... , J 
will be bounded by O(N(J)) [3], [6]. It is not difficult to see that for Bj defined as 
above, 

II(I - BjAj)1t112,1 < (1 - ch4)mj. 

On the other hand, if we take ,% = i1 = 2, 

M + 2a/2m(j + 1)a/2 
- 

C(hJ/hA/2. 

Consequently, to satisfy (5.18)-(5.19), we need only take 

(5.20) mj = O(h-1h-3). 

The work constraint is then hlhT5 < chj2. Thus setting hj h1/5 and defining 

mj by (5.20) gives rise to a multigrid algorithm which yields a uniform reduction in- 
dependent of hj, with an operation count bounded by a constant times the number 
of degrees of freedom on the finest grid. 

6. The Proof of Lemmas 5.1, 5.2 and 5.3. This section will provide the 
proofs of Lemmas 5.1-5.3. Before proceeding, let us state two propositions and two 
preliminary lemmas. 

PROPOSITION 6. 1. There are positive constants c and C not depending on 
v E X# such that 

||V|12 I < Cf A (v, v) + C||V|12 }. 

PROPOSITION 66.2. For v E H'+" and 0 < 6 < ao 

(6.1) 11(I - Pk)VIIHI-6 ? Chk t(I - Pk)VIIH1 

If hj is sufficiently small, then Pk is well defined and 

(6.2) Ij(I - Pk)VItH1 < C inf jjV - XIIHI, 
- XE~tk 

for all v E /'. 

Proposition 6.1 follows immediately from (2.6). (6.1) follows from a standard 

duality argument and (6.2) can be proved by using the techniques given in [20]. 

We next introduce the preliminary lemmas. The first lemma was essentially 

proved in [1]. 

LEMMA 6. 1. Let 0 < s < 1. There exist positive constants cl, C2 and C3 such 
that 

IIXIIHS < C1IIIXIIIk,s < C2 ttXttk,8 ?. C3IIXIIHs for all X E Ak. 

In addition, there are constants c and C satisfying 

CIIIXII1k,2 < IIXIIk,2 < CttXtttIk,2 for all X E Ok. 
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LEMMA 6.2. There exists a positive constant C which does not depend upon 

v E H1 such that 

(6.3) 11 (I - PkQ)VIIH < Chk IVIIH1, 

(6.4) IIPkVIIHS < CjIVjIH9f for all 0 < s < 1. 

Proof. Let irv denote the H projection of v into Ak. Using (A.3), (A.4) and 
standard techniques of finite element analysis gives 

117rvIIH1 < CIIVIIH1l 

Al(I - *11H < Chk ||VIIH1. 

For X E Jk, by (2.10), 

((Pko - )V, X)k = (7rv, X) - (iTv, X)k < Chk 17rvIIHl1 I|XIk, 

hence 

II(Pk -lr)VI|k < ChkI1lrVIIHl1 

Estimate (6.3) follows from the triangle inequality. 
For (6.4), by interpolation, it suffices to verify the cases s = 0 and s = 1. The 

case for s = 0 follows immediately from the definition of Pk0 and (2.9). For s = 1, 
the argument is standard and proceeds as follows: 

IIPkOVIIH' < II(Pk - 7r)vIIHl + I17rVIIH1 

<Ch-1II(Pko - l)VIlk + CIIVIIH1 < CIIVIIH1- 

This completes the proof of the lemma. 
We can now prove Lemma 5.1. 
Proof of Lemma 5.1. Following the argument in [5], we can easily show (using 

our assumptions and definitions) that 

| -(I-Pkl)vI|i < C(hII2AkvII)2A(v, v) afor all v E Rk. 

We note that (A.4) and Lemma 6.1 imply that h2 < Cy-'. The lemma now follows 
from (6.2) and Lemma 6.1. 

The proofs of Lemmas 5.2 and 5.3 require some technical perturbation estimates. 
We consider the term on the left-hand side of (5.1). Let Gk = Lk - Ak; then since 

(Ak(I - Pk-)V, X)k = 0, 

we have 

(Lk(I-Pk-l)v, X)k = (Gk(I-Pk-l)v, X)k = ((I-Pk-1)v, G*x)k 

(6.5) <k|(-k1) | lGX1 ?11(I Pkl)VIlkIIG*XIlk. 

Thus, we must estimate G* = Lk - Ak - D*A 

In light of (6.5), we see that it would be useful to estimate the difference Lk - Ak. 
Note that Lk is defined as the positive square root of the discrete operator 2k- 

A*Ak. An alternative expression for Lk is given by the Dunford-Taylor integral 
representation (cf. [9]): 

(6.6) Lk = (2wri)-' Jz 2wz (Lk) dz, 

r 
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where 3,_(L2) (z - L2 ) -1 and F is a simple closed curve in the right half (com- 
plex) plane which encloses the spectrum of L2. Let K1, K2 > 0 be such that the 
eigenvalues of L2 and A2 are in the interval [2K,, 'C2]. In this paper, we will take F 
as illustrated in Figure 6.1, i.e., 

= {(', y) I y e [-K1, i1]} U {(tt) I t e [Kc1, 2r2]} 

U {(t, -t) I t E [Ic1, 2K-2]} U {(2K-2, Y) I y E [-2K-2,2K2]}. 

Using an expression similar to (6.6) for Ak gives 

(6.7) Lk - Ak = (27ri) f |z'23Z (Lk) (Lk-Ak))z (Ak) dz. 
r 

To estimate (6.7) we shall use the bounds given in the following lemma. 

2K2(0+i) 

KI+Vli 

2K, K2 

K,-iK1 

2K2(1-i) 

FIGURE 6.1 
The curve P used in (6.6). 

LEMMA 6.3. Let S and T be symmetric positive definite operators on Ak sat- 
isfying 

2r, 1 |X||2 < (S2X, X)k < tC2 IIXI12 

2K,1 ||Xllk < (T XX)k < K2 ll~k' 

for all X E Ak. Assume that il > c independently of k. We allow S, T and tK2 to 
depend on k. Then 

(6.8) f IZl/2 ||S .z(S2)llklIWz(T2)Ilk dIzl < C(l + ln(Is2/K1)), 
r 

and for any X E Ak, 

(6.9) f 1I1/2 IS"2 . ,z(S2)xll2 djzj < ClIxIXI2 

r 
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Proof. By symmetry, it suffices to derive the above bounds for the curve 1+_ 
IF U'IF2 U'IF3, where IF {(K ,y) I y E [0, K]}, F2 {(t,t) I t E [K 1,2 K2]} and 
173 ={(2K2, y) I y E [0, 2K2]}. By expansion in terms of eigenvectors, it is easy to 

see that 

(6.10) ttSI3Wz(S2)tlk < max AOtA2 _ z-11, = 0, 1/2, 1. 

A similar inequality obviously holds for T. 
Let 

g( ) _ JIZ11/2 IIS . , (S2) W||z (T 2)Ilk dlIz 

and 
at ) _ I Z11/2 IIS112 . WZz(S2)XII2 dozy. 

Then by (6.10) and elementary estimates, 

gY((rJ) < c Iz/2 K 3/2 dIzI < C, 
F1 

Yj(r2) < Co IzV-1 dizi < Cln(2Ic2/t11), 
r2 

(r3) <c C 32+ Y2 dy<C. 

This verifies (6.8). Similar arguments give 

,q2(ri) < c I. Z11/2 
-3 

/2 d~z|) ||XI12 < C ||XI12 

q2(r3) < C (| 2 + Y2 dy) IIk < C IIXIlk. 

To bound Y2(r2), we expand in terms of the eigenvectors of S. Let {Ai, Oi} denote 
the eigenvalue-eigenvector pairs for the operator S. Without loss of generality, we 
may assume that {fOi} form an orthornormal basis for .. Clearly, 2,j < A2 < I2 

holds for each i. Decomposing 

X = Eci~i 

gives 

11/2 XZ(S2)xll2 = SEIA? - Z12 

Integrating term by term yields 

(6.11) g2-(r2)= E 2 3/4| dtf 

Elementary manipulations show that the integrals in (6.11) are bounded uniformly 
in Ic, 1C2, and Ai. Hence Y2(r2) < C IIXI12. This completes the proof of the lemma. 

We now state and prove a lemma for estimating Lk - Ak. 
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LEMMA 6.4. Let hj be sufficiently small. Then there exists a constant C such 
that for all X E //k, 

ILkx - AkXIIH1 < Cha1(1 + In hkI)DIAkXIIk 

and 

IlLkX -AkXllk < Ch'- llXIIH1. 

Proof. By Lemma 6.1, 

IILkX-AkXIIH1 < CIILk (Lk - Ak)Xllk. 

By (6.7), for any X, 0 E 1k, 

(L 
1 

(Lk -Ak)X, O)k = (27ri) f z1 2(Ekz (AL)Akx, Lk?lz(Lk )O)k dz, 
F 

where 
Ek = Lk /k(L~ -Ak)Ak ' 

By the Schwarz inequality and (6.8), with S = Lk and T Ak, 

(Lk (Lk -Ak)X, O)k< C(1 + In hkl)IIEki|kIlAkxIlkIllllk. 

Note that we have used the fact that 'cl is bounded uniformly from below and by 
(A.3), we can take 12 < Chk4. Similarly, by (6.7), 

(LkX -AkX, O)k = (27ri)- Z1/2(EkAj23Z(A )Al L j2W? J7z(L)O)k dz. 

By the Schwarz inequality, Lemma 6.1 and (6.9), 

| (LkX-AkX, O)k ?< CIIEkIIkIIXIIH1 11011k. 

Thus, the proof of the lemma will be complete if we can show that 

(6.12) IIEkIlk < Chk'. 

Obviously, 

(6.13) L2 -A = AkDk + D*Ak + DZDk 

and hence 

(6.14) 1lEk Ilk ? IIL AkDkA1j Ilk +IILj /D kA-1 Ilk +IILj/ D*DkA' Ilk. 

Using Lemmas 6.1 and 6.2 and (2.7) gives 

(6.15) IIL D~k / AkAk'Ilk = IlDkL' 1/2k - IIP2DLkj/ Ilk < C. 

Similarly, 

IILki/ DZDkA1 Ilk < CIIDkL / Ilk IIDkAj Ilk < C. 

For the first term of (6.14), using Lemma 6.1 gives 

IIL-il/2AkDk- A Il|k < IIL'-2A A2 lk IAk/2DkA-1 Ilk < CIAI D lAk.||k 

Combining the above estimates, making an obvious change of variable, and applying 
Lemma 6.2 implies that the proof of the lemma will be complete if we show 

(6.16) IIDkXIIH1 < Ch'71 IlAkXIIk for all X E A4. 
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Fix X E %k and let w E X, be the solution to 

A(w,q5)=(AkXq!) forallqXE X. 

Clearly X = Pkw. Now 

IIDkXIIHl ?< lPkOD(x - W)H1 + IIPk2DwIIH1. 

Applying (2.7), (A.3), (A.4), and Lemma 6.2 gives 

IIPkD(X - W)H1 < Ch-1 'x - WIIH1 < h' IIWIIH1+&. 

Finally, by (A.4), Lemma 6.2 and (2.8), 

|lPkoDw||Hl < Cha lJjgk0DwjjH-k < Cha lllDwjjH- < Cha lllwlll+,,. 

Inequality (6.16) now follows combining the above estimates with (A.1). This 

completes the proof of Lemma 6.4. 

We can now prove Lemma 5.2. 
Proof of Lemma 5.2. By (6.5), Lemma 6.1 and Proposition 6.2, it suffices to 

show that 

IIG*xIlk < Ch 1/2l RXIIXH1. 

In turn, by Lemma 6.4 and the triangle inequality, noting that a > 1/2, it suffices 

to show 

(6.17) ||D*Xjjk < Ch- 1/2, 6IX||H1. 

Let 0 E .k; then by (A.2), (A.4) and Lemma 6.1, 

(D*X, O)k = (D*X, 0) < CIIXIIH1 It0|IH1/2+e < Ch /2 IIXIIH1 II0|Ik. 

Inequality (6.17) immediately follows. This completes the proof of the lemma. 

We shall need two additional lemmas for the proof of Lemma 5.3. The first 

involves stability and approximation for the operator Ik. 

LEMMA 6.5. There exists a positive constant C such that for all X E Ok 

(6.18) jj(I - Ik-1)XIIH < ChkllXIIHl 

and 

(6.19) tIIk-lXIIH <? CIIXIIH1' 

Proof. Note that by (2.9) and (2.10), for 'p E 4k 1, 

((Vk-1 - Pkj1)Xi 'p)k-l = (X, 'p)k - (X, '0) < ChkjjXjjH1 1Ik I1k-1. 

This implies that 

|| (Ik-1 -Pk?L)XI|k-1 < ChkI1XIIH1. 

The lemma then follows from Lemmas 6.1 and 6.2 and (A.4). 

LEMMA 6.6. There exists a positive constant C such that for all X E Ak-j 

(6.20) IjAkXIjk < Ch'K |jAk1XIjk-1, 

(6.21) !LkXlXIk < Cha ' Lk-1XLkk-1,- 

(6.22) ||k1lk1< Chk ||Ik_-1Lk-yjjj, 
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and 

(6.23) IILkX 1k < Chk |2Ik_1LkxIIk-1. 
Proof. By Proposition 2, Lemma 6.1, (A.3) and (A.4), for all p E Ak, 

11- Pk-l||k < ChkIIP|IH1 < Ch" 1jj'p1k, 

hence 

IA~-l1||k < Ch"_ 1||W|k- 

Therefore, for X E 0k-1, 

(AkX, 'p)k = A (X, 'p) = A(X, Pk-1jp) 
= (Ak-lX,PkA-1)k-1 < Chk IIAk-WXIk-1 Iko0k. 

This proves (6.20). Inequality (6.21) then follows from (6.20) and Lemma 6.1. 
We next prove (6.22). Noting that Aki1 = Ik-lAk, the triangle inequality and 

Lemma 6.4 give 

IIAk-lXjIk-1 = IIIk-lAkXI|k-1 < (IIIk-lLkXIIk-1 + II(Ak - Lk)XIjk) 

? Ch`'(IIIk.1LkXjjk-1 + IIXIIH1). 

Finally, we note that by Lemma 6.1 and (2.9), 

|X||12 1< C(LkX,X)k < CjjIk-lLkXjjk-1||X||Hl, 

and hence 

IIXIIH11 < CjjIk-lLkXjjk-1- 

Combining the above inequalities completes the proof of (6.22). Inequality (6.23) 
follows immediately from (6.22), (6.20) and Lemma 6.1. 

We are now ready to prove Lemma 5.3. However, before doing so, we note a 
few properties of our operators which are immediate consequences of the defining 
relations. As noted earlier, Aki1 = Ik-lAk. Similarly, Dk-l = Ik-iDk. In 
addition, the operator Ik-i is symmetric on both Ak with the (., * inner product 
as well as Jk-, with the (, *)k-l inner product. 

Proof of Lemma 5.3. For X E Ak-1, 

| I IIk, IIX k-, = ( (Lk-1 -Lk-l )Xi X)k-li 

where Lk-] Ik-lLk. Note that the operator Lk-l :k-1 (4.k is symmetric 
and the eigenvalues of L2_1 are in the interval [c, Ch -4] for appropriate constants 
c and C (independent of k). Applying an expression analogous to (6.7) gives 

((Lkl -Lk-l )X, X)k-1 

= (27ri)'l Zf /2(FkLk-1jZ(L2_j)X, Lk-1,Wz (L2_l )X)k-1 dz, 

where 
Fk=L- -1 1-2k- )-1 

By the Schwarz inequality and (6.9), 

|(Lk-1 - Lk-l )X, X) _ < CIIFk lkk-1j 1L2 XIjk-1 IIL1il XIik-1 

< CIIFkI|k-1 IIXIIIkl, 
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where the second inequality follows from Lemma 6.1 and the identity (Lk-lX, X)k-1 

= (LkX, X)k. To complete the proof of the lemma, we need only bound llFkllk-1. 

We start first with the identity 

Fk = Q1+ Q2+ Q3 

where 
Qi = (I - Ik-1)(Lk - Ak)Lk-, 

Q2 = LijlkIk1,(Lk-Ak)(I - Ik1)AkLk- 1, 

Q3 = L-1(L 2 - Ik-lLk - 2kl +Ik-lAk)Lkl- 

Obviously, it suffices to bound the norms I IQi Ik- 1 for i = 1, 2, 3. 
Let x,0 EAk1. For Q1, by Lemmas 6.1, 6.4, 6.5 and 6.6, we have 

IIQlXIXk-1 < ChkI(Lk - Ak)L1X11H1 < Chk(1 + Ilnhkl)llLkL lXllk 

< Chk (1 + I lnhkl)11X11k-1. 

For Q2, we have 

I(Q2x, O)k-1 = I(AkL_1lX, (I - Ikl1)(Lk- Ak)Lkl10)k 

? IIAkLk-lxIkII(I k-1)(Lk - Ak)AkI1|kIIAkLkl101k. 
Thus, applying Lemmas 6.1, 6.4, 6.5, and 6.6 gives 

IIQ211k-1 < Ch 3(1 + I lnhkI). 

For Q3, we obviously have 

IIQ311k-1 < IIQ3,1Ik-1 + IIQ3,211k-1 + IIQ3,311k-1, 

where 
Q3,1 = Lk 1 Ak1 (Ik1 - I)DkLk- , 

Q3,2 = L-11(D-iAk1 - Ik-lDkAk)Lkl, 

Q33 = L-11(D-lDk1 - Ik-lDkDk)Lkl1 

For Q3,1, by (6.16), (6.22), and Lemma 6.5, 

IIQ3,1XIlk-1 < ChkiILj-lAk-lIk-i||DkLJ-lXIIH1 

< Ch3o-2 IjXIk-1. 

For Q3,2, 

I(Q3,2x O)k-1 I = I(AkL_1lX, (I - Ikl,)DkLkl10)k 

? IIAkLk-lxjkII(I - Ik-l)DkA1j I|kIAkLk-lj0jk. 

Applying (6.16) and Lemmas 6.5 and 6.6 gives 

IIQ3,211k-1 < Chk 4t3. 

Finally, for Q3,3, 

I(Q3,3X, 0)k-1 I = |(DkLk-1iX, (I - Ik-1)DkLkl0)kI 

? IlDkL-1 I|kIILkLk-1ixIkII(I -Ik-1)DkAj Ilk|IAkLkJlI0k. 
Applying (6.15), (6.16), and Lemmas 6.1, 6.5 and 6.6 gives 

llQ3,2 Ilk-1 < Ch4a-3. 

Combining the above inequalities proves Lemma 5.3. 
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7. Numerical Results. In this section, we give the results of numerical exper- 
iments involving the multigrid algorithms. These model computations show that 
the assumption hj < v is necessary for convergence in practice. In contrast, the 
degradation of the convergence rate for a = 1 suggested by Theorem 2 was not 
observed in the reported computations. 

In our numerical examples, we consider the symmetric and indefinite problem 

(7.1) -Pu - Au = f in Q. 

u=0 on(0, 

where Q is the unit square in R2. No examples for the nonsymmetric problem are 
given. 

The eigenvalues for the operator of (7.1) are (32+k2)7r2-,i where j, k are positive 
integers. We will consider the cases ,i = 30 and ,i = 65. The case ,i = 30 has only 
one negative eigenvalue. When ,u = 65, there are two negative eigenvalues, one of 
which is of multiplicity two. 

To triangulate Q, we first partition it into a regular rectangular mesh and then 
split each rectangle into two triangles (see Figure 7.1). We use the continuous 
piecewise linear finite element subspace on the resulting triangulations described 
in Section 3 and use the discrete inner products given by (3.6). For the purpose 
of this computation, we deviate from the finite element approximation in that the 
lower-order term in (7.1) is approximated by an appropriately weighted diagonal 
term. This is the so-called 'lumped mass' finite difference operator. With this 
discretization it is possible to actually compute the action of Lk and its inverse. 

FIGURE 7.1 

The regular triangular mesh defining X] . 

For these examples, it is computationally feasible to actually compute the best 
possible 6k satisfying (4.4). Note that (4.4) is equivalent to the inequality, 

((I-AkB*)Lk(I-BkAk)v, V)k < &k(LkV, v)k for all v E Ak. 

Thus, the best value of 6k equals the largest eigenvalue of the operator 

(7.2) = Lkj1(I - AkB*)Lk(I - BkAk). 

The largest eigenvalue of F can then be computed by, for example, the power 
method, if routines for computing the action of F are available. We obviously know 
how to compute Ak and Bk. For the constant coefficient problem on a rectangular 
domain with a regular mesh, the operator Lk and its inverse can be efficiently 
computed by use of the Fast Fourier Transform. We are left to compute B*. 
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For a symmetric problem, the operator B* is also a multigrid operator and is 
given by the following algorithm [18]: 

Algorithm for computing B*. Let Bg: 4j i-X4j denote the adjoint of A-1. 
Assume that B*_1 A1 k-1 | 0k-j has been defined and define Bkg for g E Ok 
as follows: 

(I) Set q0 - 0. 
(II) Define x0 = qP where q', for i = 1,2,.. .,p, is defined by 

qi=q- + Bk- l[Ik-19ig 
l 

(III) For I = 1, ... , m(k), define 

xl = X1_1+,U-2 A*(g - A xl-1). 

Arguments similar to those leading to (4.3) imply that the operator B* defined by 
(I)-(III) satisfies the equation 

(7.3) I - BAk = Kmk )[(I - Pk-,) + (I - BAk1)PPk.1]. 

A straightforward mathematical induction argument using (7.3) and the symmetry 
of Ak implies that the operator defined by (I)-(III) is the adjoint of Bk. 

Table 7.1 gives the computed largest eigenvalue for the discrete system (7.2). 
We vary the mesh size on the finest grid and use hj = 1/8 for the coarsest grid. We 
give the convergence parameter 63 as a function of hj = 2-2-J for J = 2, 3,4, 5 
for the variable %-cycle algorithm (A0 = d1 = 2), the standard %-cycle algorithm 
(m(k) = 1) and the 7f-cycle algorithm (m(k) = 1). In the variable %-cycle case, 
we use m(J) = 1. 

The results of Table 7.1 illustrate that the multigrid process can be used to 
develop convergent iterative algorithms for the solution of the equations on the 
finest grid level. The rate of iterative convergence for these algorithms appears to 
be bounded independently of the number of grid levels as suggested by the theory. 

TABLE 7. 1 
6k for 'symmetric' multigrid schemes with hj = 1/8 

applied to (7.1) with ,z = 30. 

hj Var p-cycle p-cycle V-cycle 

1/16 .88 .88 .88 
1/32 .88 .90 .88 
1/64 .88 .90 .88 

1/128 .88 .90 .88 

The next table illustrates the importance of satisfying the assumption hj < v. 
For this example, we again consider (7.1) with ,u = 30 but use hj = 1/4. Values 
of 6j greater than one indicate instability of the multigrid scheme. Note that only 
the v-cycle examples with hi < 1/16 and the variable cyclee example with 
hi = 1/16 were stable. It should not be inferred from these results that the ?*"- 

cycle is generally more stable than the >-cycle algorithms. Later examples will 
show that it shares the same type of stability problems. 
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TABLE 7.2 

6k for 'symmetric' multigrid schemes with hj = 1/4 
applied to (7.1) with u = 30. 

hi Var %"-cycle %"-cycle >f-cycle 

1/16 .93 1.06 1.02 
1/32 1.09 1.07 .88 
1/64 1.09 1.07 .88 
1/128 1.08 1.07 .88 

The next table illustrates how the convergence rate of the multigrid schemes 
depends on the number of smoothings used. Table 7.3 gives &J as a function of m(J), 
the number of smoothings on the finest grid level. In this example, hi = 1/128 
and hj = 1/8 and we again use 00 = 01 = 2 in the variable %"-cycle scheme. The 
theory developed earlier indicates that, for stability, v can be chosen independently 
of m(J). This is consistent with the numerical results which remain stable without 
the use of smaller h. as m(J) increases. In contrast, the 'nonsymmetric' scheme 
requires the use of smaller hj as the number of smoothings increases [1], [14]. 

TABLE 7.3 

6k for 'symmetric' multigrid schemes applied to (7.1) 
with y = 30, h3 = 1/8 and hj = 1/128. 

m(J) Var %"-cycle %"-cycle >f-cycle 

1 .88 .90 .88 
3 .68 .74 .68 
5 .52 .64 .52 
7 .43 .56 .43 
9 .39 .54 .39 

Table 7.3 also shows that the rate of convergence 6j decreases with larger m(J) as 
theoretically predicted. 

For the final example, we consider pu = 65. In this case, we had to use hj = 1/16 
to get a stable algorithm. The computed values of 6j for 1/32 < hi < 1/128 for 
the variable %"-cycle, the %"-cycle, and s-cycle algorithms were approximately 
.88, .9 and .88, respectively. These results, as well as those given in Table 7.1, do 
not exhibit the convergence degradation for the %"-cycle algorithm suggested by 
Theorem 2. 

Table 7.4 gives computed values of 6j when hj = 1/4 was used. These results 
again illustrate the importance of the theoretical assumption hj < v. Note that a 
value of 6j of a thousand implies that two steps of multigrid will amplify certain 
frequencies of the error by a factor of a thousand. Such an amplification leads to a 
rapidly divergent numerical scheme. This example also illustrates that the if-cycle 
algorithm displays the same type of stability problems as the %"-cycle algorithms. 
In fact, the if-cycle schemes were so unstable at smaller hi, that it was impossible 
to compute the corresponding values of 6j due to computer exponential overflow. 
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TABLE 7.4 

6k for 'symmetric' multigrid schemes applied to (7.1) 
with p = 65 and hj = 1/4. 

hi Var %"-cycle %"-cycle >f-cycle 

1/16 956 1060 8.0 X 105 

1/32 826 1115 6.5 X 1011 
1/64 634 1121 * 

1/128 484 1120 * 

When the above examples converge, we observe almost identical results for the 
variable %"-cycle and the >-cycle algorithms. Note that both algorithms have the 
same number of smoothing iterations on the various grid levels. For these examples, 
the extra grid transfer involved in the >-cycle algorithm does not seem to yield a 
faster convergence rate. 
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