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Abstract. In earlier parts of this series of papers, we constructed preconditioners for 
the discrete systems of equations arising from the numerical approximation of elliptic 
boundary value problems. The resulting algorithms are well suited for implementation 
on computers with parallel architecture. In this paper, we will develop a technique which 
utilizes these earlier methods to derive even more efficient preconditioners. The itera- 
tive algorithms using these new preconditioners converge to the solution of the discrete 
equations with a rate that is independent of the number of unknowns. These precon- 
ditioners involve an incomplete Chebyshev iteration for boundary interface conditions 
which results in a negligible increase in the amount of computational work. Theoretical 
estimates and the results of numerical experiments are given which demonstrate the 
effectiveness of the methods. 

1. Introduction. The aim of this series of papers is to propose and analyze 
methods for efficiently solving the equations resulting from finite element discretiza- 
tions of second-order elliptic boundary value problems on general domains in R2 
and R3. In particular, we shall be concerned with constructing easily invertible and 
"effective" preconditioners for the resulting system of discrete equations which can 
be used in a preconditioned iterative algorithm to define a rapid solution method. 
The methods developed are well suited to parallel computing architectures. 

In Parts I and II (references [4] and [5]), we described and analyzed methods 
for constructing preconditioners for elliptic boundary value problems on polygonal 
domains in R2 and R3. The proposed methods were based on decomposing the 
domain into subdomains of size d and involved the solution of related problems on 
the subdomains and lower-order coupling systems on the subdomain boundaries. 
The condition number for the preconditioned system was shown to be on the order 
of (1 + ln(d/h))2 for the method of [4] and d/h for the method of [5]. Here h is the 
mesh size. In this paper, we describe a technique which can utilize such methods 
to develop more efficient preconditioners. The condition numbers for the resulting 
preconditioned systems will be made independent of d and h with only a slight 
increase in computational effort. 
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Let Q be a bounded domain in R2 with a piecewise smooth boundary aF. As a 
model problem for a second-order uniformly elliptic equation, we shall consider the 
Dirichlet problem 

Lu = f in Q, 
= 0 on tQ, 

where 
2 a / a9 

Lv =-E -aaxi 

with aij symmetric and uniformly positive definite, bounded and piecewise smooth 
on Q. The generalized Dirichlet form is given by 

(1.2) A(v,$)= > aiji - 
i~j=1 

9i(x 

which is defined for all v and X in the Sobolev space H1 (Q) (the space of distribu- 
tions with square-integrable first derivatives). The L2 (Q) inner product is denoted 

(v,I ) = vo dx. 

The subspace Ho (Q) is the completion of the smooth functions with support in Q 
with respect to the norm in H1 (Q). The weak formulation of the problem defined 
by (1.1) is: Find u E Ho (Q) such that 

(1.3) A(u, 0) = (f, 0) for all 0 E Ho' (Q). 

This leads immediately to the standard Galerkin approximation. Let Sh?(Q) be a 
finite-dimensional subspace of Ho (a). The Galerkin approximation is defined as 
the solution of the following problem: Find U E Sh?(Q) such that 

(1.4) A(U, 4) = (f, b) for all 1 E Sho(Q). 

The underlying method which we will consider is a preconditioned iterative 
method. As explained in Part I, the task of defining a preconditioner for the 
matrix problem corresponding to (1.4) is the same as that of defining another pos- 
itive definite form B(., ) on Sh?(Q) x Sh?(Q). The importance of making a "good" 
choice for B is well known. The form B will define a good preconditioner provided 
it has two basic properties. First, the problem of finding the function W E Sh?(Q) 
satisfying 

(1.5) B(W, D) = G(4) for all D e Sh?(Q), 

for a given linear functional G, should be more economical to solve on a given 
computer architecture than (1.4). Secondly, B should be spectrally close to As in 
the sense that there are positive numbers p0 and 31 satisfying 

(1.6) fooB(VV) < A(VV) < 11B(V, V) for all V E Sho(Q), 
where the ratio /11,/3o is not too large. These two properties will guarantee, firstly, 
that the work per iterative step in applying the preconditioned method will be 
small, and, secondly, that the number of steps to reduce the error to a given size 
will also be small, so that an efficient algorithm will result. 
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In Section 2 the form B is defined and the essential step in the iterative algorithm 
of solving (1.5) is described. This form is defined in terms of a polynomial Pm which 
is related to the classical Chebyshev polynomials. The relevant properties are given 
in Section 3. Section 4 discusses various computational aspects of the method in a 
more general setting. Finally, in Section 5, the results of numerical experiments are 
given. These computations show that the theoretical estimates are fully realized in 
practice. 

For other works dealing with the numerical solution of boundary value problems 
via substructuring we refer the reader to [1], [2], [3], [6], [7], [8], [9]. We emphasize 
that a novel feature of our methods [4], [5] is that more than two subdomains can 
meet at an interior point of the original domain. For example, our methods apply 
to a checkerboard subdivision of a square. Using the technique of this paper, the 
condition number for the resulting system is shown to be bounded independently 
of the number of such points. 

2. The Construction of B(., ) and the Preconditioning Algorithm. As 
mentioned in the introduction, the preconditioner which we will construct involves 
the solution of smaller related problems on subdomains and subdomain bound- 
aries. As in Part I, for the sake of simplicity of exposition, we shall proceed with 
the discussion only for the special case of polygonal domains and piecewise linear 
approximations. 

More precisely, we shall begin with the following assumptions with regard to Q. 
These assumptions are the same as those given in Section 2 of Part I, and hence 
the results given in Section 3 of Part I apply. 

A.1: Q is a polygonal domain. 
A.2: For each h, 0 < h < 1 a parameter, Q has been given a quasi-uniform 

triangulation Qh. By this we mean that there exists a positive constant c1 
independent of h such that each triangle r h E Qh contains a ball of radius 
clh and is contained in a ball of radius h. 

A.3: For each triangulation Qh, Q may be written in terms of nr disjoint regions, 
Qk, with Q = U Ok, which are either quadrilaterals or triangles whose sides 
coincide with the mesh lines of the original triangulation and which are 
quasi-uniform of size d > h with constants as above which are independent 
of d and h. If Qk is a quadrilateral, we require additionally that the lengths 
of each side be bounded from below by c1d and that any interior angle a 
satisfy 0 < Co < a < C, < 7r. The collection of regions Qk will frequently 
be referred to as the subdomains (see Figure 2.1). 

For each h, let Sh (Q) be the space of continuous piecewise linear functions defined 
relative to the triangulation Qh and So (Q) be the subspace of Sh (Q) consisting of 
those functions which vanish on 9Q. Sho(Qk) will denote the subspace of Sh?(Q) of 
functions whose supports are contained in Qk (in particular, they vanish on LWQk and 
outside Qk). In addition, let Sh(2k) be the set of functions which are restrictions 
of those in SO?(Q) to Qk. Sh(aWk) will denote the restrictions of Sh(2k) to aQk. 

Let F = U &Qj and Sh(F) be the restriction of functions in Sh?(Q) to F. In what 
follows, c and C (with or without subscript) will denote generic positive constants 
which are independent of h, d and the regions Qk. 
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FIGURE 2.1 

A typical domain with subdomains. 

For simplicity of presentation, we shall restrict our development to the case in 
which each &97k has a uniformly (with respect to arc length) spaced grid. This 
restriction will be removed in Section 4. We define 

2 &U&(Vd 
Ak (u, v)= 1 / 

ik x 
i ,j=l kj 

and hence 
n, 

(2.1) A(u, v) = EAi(u, v). 
i= 1 

To define B, we first decompose functions in Sh (Q) as follows: Write W = 
WP + WH where Wp E Sh(Q1) o ... o Sh(Qnr) and satisfies, for k = 1, . n. , 

(2.2) Ak(Wp, >) = Ak(W, 1) for all 1 E Sh((Qk). 

Notice that Wp is determined on Qk by the values of W on Qk and that 

(2.3) Ak(WH, '1) = 0 for all 1 E Sh(Qk). 

Thus on each Qk, W is decomposed into a function Wp which vanishes on LWQk and 
a function WH E Sh(Qk) which satisfies the above homogeneous equations and has 
the same values as W on &9Qk. We shall refer to such a function WH as "discrete 
A-harmonic ". 

We note that the above decomposition is orthogonal in the inner product defined 
by A and hence 

A(W, W) = A(Wp, Wp) + A(WH, WH). 

We shall define B(., ) by replacing the A(WH, WH) term in the above equation. To 
do this, we first note that by Lemma 3.2 of Part I [4], 

(2.4) CWHI/2,Qk < Ak(WH, WH) ? CIWHI1/2Qk 
for discrete A-harmonic functions WH with zero mean value on Qk. The norm 

I I1/2,a-k is the weighted norm on H1/2 (&(k) given by (see [10], [11]) 

IW~l/2 (L~ fA (w() - 
w ( y ) ) ds (x) ds (y) + d-1 (ww)a ) J~j1/2X~k Ok Ok Ix - Y ~ ~ 
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Here, (' .a)[k denotes the L2 inner product on a7k (the corresponding norm will 
be denoted by I I0,aQk). In turn, we shall replace the norm 11/2,ank by a more 
computationally convenient norm. 

To this purpose, we define the operator I on Sh(&9Qk) by 

(2.5) (lV, I)ank (V X for all Jb E Sh(&Qk), 

where the primes denote differentiation with respect to arc length along each side of 
&97k. Now I is a linear operator on Sh (&9k) approximating the boundary operator 

a2 
-s , and it can be shown that there are constants c and C, independent of d and 
h, such that 

(2.6) CIV1/2a~k < (l11/V,V)k + d1 (VV)aI k ? CIVIl12,as 

for all V E Sh(&Qk). The following Poincare inequality holds for all W with zero 
mean value on a9k, 

d1 I 
W l12aQ < cd (IW. W )a8Q k 

It then follows by expansion in terms of eigenvectors of I that 

w - wV 1/2,a[k 
< c(l1/2(W - W), W - W)aQk = c(l / W. W)aQk X 

where W is the mean value of W on a7k. Consequently, we may replace (2.4) by 

(2.7) C(1112WH, WH) ak < Ak(WH i WH) < C(1112WH, WH)aQk, 

which holds for all discrete A-harmonic functions WH. Summing the above 
inequality gives 

(2.8) C(QWH, WH)r < A(WH, WH) < C(QWH, WH)rF 

where 
(QWH, WH)r Eak(l WHWH)aQk. 

k 

The constants ak are scaling factors. One reasonable choice is to take ak = 

(Ak + Ak)/2 where Ak and Ak are respectively the largest and smallest eigen- 
value of the 2 x 2 matrix {aij(xo)} at some point x0 E Qk7. By (2.8), the form 
(QWH, WH) r is uniformly equivalent to A (WH, WH). Consequently, the form B 
defined by 

(2.9) B(W, W) -A(Wp, Wp) + (QWH, WH)r 

is uniformly equivalent to A on SO (Q) x SO (Q). The difficulty with using B as our 
preconditioner is that the corresponding algorithm for solving (1.5) requires the 
solution of problems of the form: Find V E Sh (F) such that 

(2.10) (QV, q$)r = F(q$) for all q$ E Sh (F). 

It is not easy to solve (2.10); consequently, the choice of B = B will not lead to a 
good preconditioner. 

Finally, we shall define our preconditioner for A by replacing Q in (2.9) by an 
operator Q which is easier to invert. In fact, we define Q from its inverse. Set 

(2.11) --= PM(-1 Q)Q-1 
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where Q is some other positive definite symmetric operator on Sh(F) and Pm is a 
polynomial of degree m. For our present discussion, we can think of Q as arbitrary. 
Some interesting examples, from a computational point of view, will result from 
the preconditioners constructed in Parts I and II. The possible choices for Q will 
be considered in more detail in later sections. 

The polynomial in (2.11) is defined (complete details are given in Section 3) so 
that Q-1 is positive definite and Q is uniformly equivalent to Q on Sh(r), i.e., 

(2.12) co(QVV)r < (QVV)pr < ci(QVV)r for all V E Sh(F). 

Hence, we define our preconditioner B by 

(2.13) B(W, W) = A(Wp, Wp) + (QWHWH)r. 

An immediate consequence of (2.12) and (2.8) is that B is uniformly equivalent to 
A; more precisely, we have the following: 

THEOREM. Let B be given by (2.13), where Q, defined by (2.11), satisfies (2.12) 
with co and c1 independent of d and h. Then there exist positive constants c and C 
independent of d and h such that 

cB(WW) < A(WW) < CB(W,W) for all WE Sh(Q). 

We shall describe a three-step algorithm to compute the solution W = Wp + WH 
of (1.5) (see [4] and [5]). The function Wp extended by zero outside of Fk is a 
function in Sh?(7k) which satisfies 

(2.14) Ak(Wp, 1) = G(41) for all 1 E ShoAk). 

Thus, for step one, the function Wp on Qk can be obtained by solving the corre- 
sponding Dirichlet problem (2.14). Note that the problems on different subdomains 
are independent of each other and hence can be solved in parallel. 

Now with Wp known, we are left with the problem of finding WH, the second 
step in the algorithm. It is not difficult to see that the boundary values of WH 
satisfy the equation 

(2.15) (QWHO)r = G(G)-A(WpO) for all e ESh(F), 

where 0 is any extension of 0 in Sh?(Q). Let us discuss the solution of (2.15) in more 
detail. 

To solve (2.15), we must apply the polynomial in (2.11). Let VH satisfy QVH = 

QWH, i.e., 

(2.16) (QVH,0)r = G(0) - A(Wp,0) for all e ESh(P). 

By the definition of Q, WH on P is given by 

(2.17) WH -Pm(Q1Q)VH. 

In addition, we must evaluate Q-'Q, i.e., given ' E Sh(r) we must find 7 = 

Q'Qf solving 

(2.18) (Q,0)r = (QM, )r for all e ESh(r). 

Accordingly, the computation of WH on F only requires. evaluation of the form 

(QM, .)r and the inversion of the (Q., )r form. The evaluation of the right-hand 
side of (2.18) is discussed in Section 4. 
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Once the boundary values of WH are known, the third step of the algorithm only 
requires the computation of the discrete harmonic extension to the interior of the 
subdomains. As described in [4], [5], this problem can be reduced to the solution 
of independent Dirichlet problems on the subdomains. 

Remark 2.1. As will be seen in the following section, the degree of the polynomial 
Pm depends upon the relative condition number of the forms Q and Q. Indeed, if 
Q and Q satisfy inequalities of the form 

(2.19) Ao(Qvv)r < (Qvv)r < A1(Qvv)r for all v E Sh(r), 

then it suffices to choose m proportional to A1/A`. 
Remark 2.2. Other examples of Q have been constructed in our earlier papers. 

If Q is chosen to be the identity, then (2.19) holds with A1/AO < c(dh)-1. Choosing 
Q corresponding to the boundary form constructed in [5], i.e., 

(2.20) (QWH, WH) r Q(WH, WH), 

where Q is defined by (2.14) of [5], the results of [5] imply that (2.19) holds with 

A1/AO < cd/h. Finally, choosing Q corresponding to the boundary form constructed 
in [4], i.e., 

(2.21) (QWH, WH)r -B(WH, WH), 

where B is defined by (2.3) of [4], the results of [4] show that (2.19) holds with 
A1/Ao < c(1 + ln(d/h)2). 

3. The Construction of the Polynomial Pm. In this section we shall con- 
struct and analyze the polynomial Pm which appears in (2.11). The ideas involved 
here are not new, but we will restate the relevant results and constructions for 
completeness. 

We first observe that (2.12) is equivalent to 

(3.1) c(Q-VV)r < (Q-1VV)r < C(Q-'VV)r for all V E Sh(r). 

Now the operator Q 1Q is selfadjoint in the inner product given by 

[uv] (Quv)r, 

and the change of variable X = Q-1V gives that (3.1) is equivalent to 

(3.2) c[X,X] < [Pm(Q-1Q)Q-1QXX] < C[X,X] for all Xe Sh(r). 

A straightforward spectral argument gives that (3.2) holds (with C = 1 + E and 
c = 1 - e) whenever the polynomial Pm satisfies 

(3.3) I1-xPm(x)j < e for all x E [Ao, A1], 

where e is any positive constant less than one not depending on d or h, and A0 and 
A1 are the constants appearing in (2.19). 

We shall define Pm in terms of the Chebyshev polynomials. The Chebyshev 
polynomial Tj(y) of degree j is given by 

Tj(y) = cos(j arecos(y)). 

Define Pm by 

(3.4) 1 - XPm(X) = TM+ i(Y(X)) 
Tm-41(y(0)W 
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where y is the linear function which takes the interval (AO, A1) into (-1, 1), i.e., 

Al= A1 AoX Al-A+O 

Since ITm+i(y)I < 1 for y E [-1,1], we have that 

1 _ _ _ _ _ _ _ _ _ 

(3.5) 1i- xPm (x)I 
- TM (Ai. 1+A)1 ?<2( +) 

for all X E[AO, Al], 
where -y A1/Ao. The second inequality in (3.5) follows from the identity 

Tj (Y) = 2 [(y + Vy2) Ji + (y - Vy2_Jil 1 

and elementary manipulations. 
To satisfy (3.3), we must choose m large enough so that 

(3.6) (f _1)m+l ? 

Consequently, it suffices to choose m in proportion to /; as -y becomes large. Note 
however, that for any m, there is an E(m, Al, A0) < 1 satisfying (3.3). This implies 
that Q will always be positive. The following proposition follows immediately. 

PROPOSITION 3. 1. Let 0 < E < 1 be given. There exists a positive constant Ci 
independent of d and h such that if Pm is given by (3.4) and 

(i) if Q corresponds to the identity operator on Sh (r) and m > C1 (1+(dh)-l/2), 
or 

(ii) if Q is given by (2.20) and m > Ci(1 + (d/h)1/2), or 
(iii) if Q is given by (2.21) and m > Ci(1 + ln(d/h)), 

then (3.3) holds. Furthermore, (2.12) holds with co = 1 - E and cl = 1 + E. 

Remark 3.1. To use the preconditioner defined by B with a given Q, one needs to 
know bounds A0 and A1 of (2.19). Excellent bounds can be obtained in practice by, 
for example, applying the power method for eigenvalue estimation. This involves 
the repeated evaluation of Q-1Q, which is an essential ingredient in the polynomial 
evaluation (2.11). The cost of this calculation is minor compared to the overall cost 
of the algorithm, and no additional coding is necessary. 

Remark 3.2. The most straightforward algorithm involves choosing Q to be the 
identity. For smooth problems, A1/Ao is not too large (see Example 5 of Section 5), 
in which case the degree of Pm grows like (dh) -1/2. However, this algorithm requires 
an excessive number of terms in examples with large jumps in the coefficients across 
subregion interfaces. In contrast, if we use (2.21) or (2.20) to define Q, then the 
constant C, appearing in Proposition 3.1 is independent of the jumps in coefficients 
as long as the jumps occur at the subdomain boundaries (see Examples 2 and 4 of 
Section 5). 

Remark 3.3. The coefficients of the polynomial Pm can easily be calculated by us- 
ing well-known identities involving Chebyshev polynomials. However, when A1/Ao 
is large, the computation of Prm(Q- Q) directly, using the coefficients of Pm, is 
somewhat unstable. We suggest the use of the following two-term recurrence rela- 
tion for Rm= Pm(Q-1Q)V: 

(i) Define p = AA-AO and Ce = 2 
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(ii) set w0 = 2 and Ro = acV; 
(iii) set wi = (1 - wop'2/4)-1 and R1 = [V - W-1QV] ; 

(iv) for m > 1, set Wim = (1-Wm-lP2/4) -1 and 

Rm = Wm(Rm-i - 'XQ1 QRm_1) + XWmV - (Wm - l)Rm-2- 

4. Computational Aspects and Generalizations. In this section we shall 
consider various computational aspects of the method as well as some extensions 
and generalizations. We first describe the computation of the right-hand side of 
(2.18) in the special case where the mesh points on a90k are uniformly spaced. 

We next give a way of extending the techniques of Section 2 to variable coefficient 
problems on certain irregular mesh domains. 

Assume first that the nodes on a90j are equally spaced with respect to arc length. 
As discussed in Section 2, given a function f E Sh(r), we must be able to compute 
the data 

(Qf, .)I 

appearing in (2.18). By the definition of Q, it obviously suffices to compute the 
data 

(4.1) 31/ a 

for each subdomain Qj. We consider first the operator I from which 11/2 is defined. 
Let r be the number of nodes on a90; and {4p, p = 1, ... , r} denote the nodal basis 

for Sh(90j;), where the nodes are listed in, for example, clockwise order. Given the 
nodal values 

'W1 

Wr, 

of a function W E Sh(902j), the nodal values 

(V1 

VEC 

of the function V = 1W satisfy 
Mv = Nw, 

where 

(4.2) Npq = (l4p,4q)aQk and Mpq =(Dpq)aQk 

In this case of equally spaced nodes, the matrices N and M are simultaneously 

diagonalizable. The eigenvectors are 
f exp()27rip 

exp (2' 
r 

(4.3) IQp = | | for p = 1,... ,r. 

exp(27P)J 

Here i is the square root of minus one. The corresponding eigenvalues are given by 

A = (4+2cos (2lP) ) h 
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and 

AN=(2-2cos 2rP)) h. 

It obviously follows that the eigenvalues for the matrix 

(4.4) Lpq = (1112,p 'q)Q 

are given by 

(4.5) AL = j (2-2 -2 cost (2 )) (4 + 2 cos ( 2X 'P 
(4.5) AL -= 

Thus one can compute (4.1) by first expanding the nodal values in the basis of 
eigenvectors (4.3), multiplying by the eigenvalues (4.5) and then computing the 
nodal values of the resulting expansion. Note that the transformation from nodal 
values to coordinates in the eigenvector basis (and vice versa) can be computed in 
O(r In r) operations by use of the fast Fourier transform. 

Remark 4.1. From the above discussion we see that the amount of work required 
to evaluate (QM, .)> is O(ln(d/h)/dh). For reasonable domain subdivision strategies, 
the work involved in evaluating Q-1 is also O(ln(d/h)/dh). Thus, the amount of 
work required for evaluating Q-1 is O(mln(d/h)/dh). This quantity is usually 
bounded by Ch-2 (see Proposition 3.1). 

We next consider the extension of the techniques of Section 2 to the case where 
the nodes on aWk are not uniformly spaced (with respect to arc length). Assume 
that there are r nodes on a90k. Let Rk be a rectangular mesh with a boundary 
which has an equally spaced mesh of r nodes. There exists a piecewise linear map 

Tk 3a9k M Rk which takes the mesh of 390k onto that of MRk. We then define 

(4.6) (I / VV)a1k - (i1/2V V)aRk for all V E Sh(aQk), 

where V = V o Tk. The form Q is defined by 

(4.7) (QV, V)r = Zak (l/2V V)aQk. 
k 

All of the constructions of Section 2 now go through. Indeed, we decompose W = 

Wp + WH and define B by (2.13), (2.11) using Q given by (4.7). The algorithm for 
computing the solution of (1.5) is completely analogous to that described in Section 
2. By (4.6), the evaluation of (l1/2f, ')a)Qk may be implemented exactly as described 
in the first part of this section, i.e., we use the procedure given immediately after 
(4.5). 

Finally, we note that in order to get a preconditioner for A, we can apply our 
techniques to any other comparable form A. The form A is chosen for computational 
convenience. For example, A can be chosen so that it can be 'fast solved' even when 
A corresponds to a variable coefficient operator on a nonuniform mesh as described 
in Section 4 of [4]. 

5. Numerical Experiments. In this section we shall present some results of 
numerical experiments which illustrate the convergence properties of the precondi- 
tioning methods of this paper. We use (2.13) as a preconditioner in conjunction with 
the conjugate gradient method. To help illustrate the differences in performance 
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between the preconditioners of [4], [5] and that of this paper, we will consider the 
same basic set of examples as those given in Parts I and II. We shall report many 
of the same parameters as given in Parts I and II. We shall for example, compute 
the condition number K of the preconditioned system**. In some examples, we 
shall also report n, the number of iterations required to reduce the matrix norm 
(Ax x)1/2 of the error En = U - Un by a specific factor. Here U is a randomly 
generated solution of the matrix equations normalized so that -1 < U < 1 and 
Un is the approximation to U obtained using n steps of the iterative algorithm. 
In addition, we shall include spectral bounds Kb for the boundary operator Q 1Q 
and the degree m of the polynomial Pm. 

The examples were chosen to illustrate the effectiveness of the algorithm on 
problems with both smooth and discontinuous coefficients on domains with different 
geometries. In all of these examples, subspaces Sh (Q) of piecewise linear functions 
defined on a quasi-uniform mesh of size h were used and the algorithm was applied to 
solve the finite element equations approximating the solution of an elliptic problem 
of the form (1.1). The procedure discussed in Section 4 of Part I for choosing 
the coefficients of the preconditioning form and solving the related subproblems 
was used throughout this section. In all examples, estimates for the largest and 
smallest eigenvalue of Q- 1Q were computed by the power method. These estimates 
were used for A0 and A1 in (2.19). The degree m of the polynomial Pm was usually 
taken to be the greatest integer less than or equal to 1 + /'R where Kb_ A /AO. 

FIGURE 5.1 
Subdivision of the square. 

Example 1. For our first example we take L = -/, the Laplace operator (i.e., 
a,, = a22 = 1 and a12 = a21 = 0), ? the unit square and a regular rectangular 
mesh of size h. Note that, although in this very simple case the resulting equations 
may be solved rapidly on a serial machine by a variety of 'fast' methods, the algo- 
rithms of Part I and II would be particularly appealing for a machine with parallel 
architecture. We will also use this example as a benchmark for the more compli- 
cated examples to follow. We subdivide the domain ? into sixteen subregions as 
indicated in Figure 5.1. 

Table 5.1 illustrates the iterative reduction rates for Example 1 when h = 1/32. 
The largest and smallest eigenvalues for Q-1Q were .36 and 1.3, respectively, and m 
was taken to be equal to 2. The table lists the total reduction and average reduction 

**The condition number K is defined to be ,/3/,/3 where ,3o and ,31 are defined to be, respec- 
tively, the maximum and minimum constants satisfying (1.6). 
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rate as a function of the number of iterations in the matrix norm (Ax . x) 1/2 and the 
maximum norm. These reductions are normalized so that the initial error is unity. 
We see, for example, that a reduction of .0001 in the A-norm (resp. maximum 
norm) requires only 7 (resp. 9) iterations. 

TABLE 5. 1 
Iterative convergence for Example 1. 

A-error Max-error 
Iteration A-error Average Max-error Average 

Reduction Reduction 
1 1.7 x 10-1 .17 7.8 x 10-1 .78 
2 2.9 x 10-2 .17 3.2 x 10-1 .57 
3 1.5 x 10-2 .24 1.5 x 10-1 .54 
4 3.5 x 10-3 .24 2.7 x 10-2 .40 
5 8.0 x 10-4 .24 7.7 x 10-3 .38 
6 2.9 x 10-4 .26 2.7 x 10-3 .37 
7 8.9 x 10-5 .26 1.3 x 10-3 .39 
8 3.9 x 10-5 .28 4.9 x 10-4 .39 
9 7.9 x 10-6 .27 6.1 x 10-5 .34 
10 1.7 x 10-6 .27 1.6 x 10-5 .33 
11 5.6 x 10-7 .27 7.0 x 10-6 .34 

To more fully illustrate the convergence behavior of the method on this prob- 
lem, we consider Table 5.2, which gives the condition number and theoretical reduc- 
tion*** for Example 1 as a function of the mesh size h. We note that the theoretical 
reduction gives a pessimistic bound on the worst case convergence in the A-norm. 
For example, the actual reduction rate given in Table 5.1 for 11 iterations was .27, 
which is considerably better than the theoretical rate of .32 given in Table 5.2 for 
h = 1/32. 

TABLE 5.2 
Convergence for Example 1. 

h Kb m K P n 

1/8 1.8 2 2.3 .21 6 
1/16 2.6 2 3.0 .27 7 
1/32 3.6 2 3.7 .32 7 
1/64 5.0 3 3.2 .28 6 

1/128 6.2 3 3.5 .30 6 

In the next table, we consider the effect that the degree of the polynomial Pm 
has on the rate of convergence of the preconditioned algorithm. Table 5.3 gives the 
number of iterations n required to reduce the A-norm error by .0001 and the ob- 
served average reduction (in the A-norm) per iteration as a function of m. Clearly, 
as m tends to infinity, the operator Q tends to Q. Table 5.3 suggests that the 
methods converge rapidly, even for small values of m, and shows that very little 

***It is well known (cf. [12]) that the error for preconditioned conjugate gradient iter- 
ation satisfies (AEn * En) < 4p2n(AEo Eo), where the reduction factor p is given by p - 

(VW - 1)/(Vk + 1). 
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FIGURE 5.2 
The coefficients for Example 2. 

improvement (in the convergence rate of the preconditioned algorithm) results from 
a more accurate approximation of Q-1. The results given in the table correspond 
to h = 1/32; similar results were obtained for other values of h. 

TABLE 5.3 
Convergence of the preconditioned algorithm 

as a function of m for Example 1. 

m K RObserved n m K ~Reduction n 

1 7.5 .33 9 
2 3.7 .27 7 
3 2.8 .21 6 
4 2.9 .21 6 
8 2.8 .21 6 

Example 2. In this example, Q is the unit square and the subdomains were taken 
as in Example 1 (see Figure 5.1). The operator L is taken to have coefficients which 
have discontinuities across the subdomain boundaries. More specifically, we take 

all = a22 = p and a12 = a21 = 0, where p is the randomly chosen piecewise 
constant function on the subdomains as indicated in Figure 5.2. Table 5.4 gives the 
results for the condition number of the preconditioned system and the theoretical 
reduction factors for this example as a function of h. 

TABLE 5.4 
Convergence results for Example 2. 

h Kb m K p n 

1/8 1.9 2 2.3 .21 6 
1/16 2.7 2 3.1 .27 6 
1/32 3.9 2 3.8 .32 6 
1/64 5.0 3 3.4 .29 6 

1/128 6.4 3 3.8 .32 6 

Note that the results differ only slightly from those given for the Laplacian 
in Table 5.2. We remark that similar results were obtained in tests with other 
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randomly chosen coefficients. This indicates that the iterative method of this paper 
will be extremely effective on interface problems, even when the coefficients change 
drastically across interfaces, as long as the subdomain boundaries align with the 
interface boundaries. 

FIGURE 5.3 
The irregular geometry of Example 3. 

Example 3. In this example, we consider an interface problem where the interface 
separates two domains with irregular geometries. The domain Q is again the unit 
square subdivided into sixteen subdomains as illustrated in Figure 5.3. The space 
Sh(Q) is taken to be the piecewise linear functions defined on the irregular mesh 
roughly exemplified by the lighter lines. Again the coefficients of L are piecewise 
constant functions defined by all = a22 = p and a12 = a2l = 0, where p is given 
by Figure 5.4. 

~L=1000 

FIGURE 5.4 

The coefficients of Example 3. 

Results for this problem are given in Table 5.5. A comparison with Table 5.2 in- 
dicates that the irregular geometry of this example increased the condition number 
only by at most a factor of three. This results in less than a factor of two increase 
in the number of iterations required for a given accuracy. Here again, m was equal 
to two or three. 
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TABLE 5.5 
Convergence results for Example 3. 

h Kb K ~~~Observed n h Kb K P Reduction _ 

1/8 1.8 4.9 .38 .29 9 
1/16 2.6 7.6 .47 .40 11 
1/32 3.6 9.9 .52 .45 12 
1/64 4.9 8.9 .50 .42 11 

FIGURE 5.5 
The mesh and subdomain structure for Example 4. 

Example 4. In this example, we illustrate the present algorithm applied to the 
solution of a problem on a polygonal domain with nonconvex corners. The mesh 
and subdomain structure were chosen as illustrated in Figure 5.5. Note the mild 
refinement near the nonconvex corners of the domain. For the operator L we use 
the Laplacian as in Example 1. The results for this case are given in Table 5.6. 

TABLE 5.6 
Convergence results for Example 4. 

Number of Observed 
Unknowns Kb K P Reduction _ 

405 2.8 4.4 .35 .35 9 
1705 3.8 5.8 .41 .40 10 
6993 5.2 5.3 .40 .37 10 

Example 5. As a final example, we illustrate the algorithm described in Remark 
3.2, i.e., we consider the case where Q = I. We consider the problem and domain 
decomposition of Example 2. Table 5.7 gives the condition number Kb of Q, n, 
K, and the observed reduction in the A-norm as a function of h. In this case, we 
increased m as suggested by Proposition 3.1 (i). 
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TABLE 5. 7 

Convergence results for Example 5. 

h Kb m K Observed n 
___ ___ ___ __ _ __ _ __ R eduction 

1/8 11.5 4 2.4 .21 6 
1/16 25 5 3.2 .25 7 
1/32 52 8 3.3 .31 7 
1/64 105 11 4.3 .31 8 
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