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Sharp Maximum Norm Error Estimates for Finite Element 
Approximations of the Stokes Problem in 2 - D 

By R. Durdn, R. H. Nochetto and Junping Wang* 

Abstract. This paper deals with finite element approximations of the Stokes equations 
in a plane bounded domain 0, using the so-called velocity-pressure mixed formulation. 
Quasi-optimal error estimates in the maximum norm are derived for the velocity, its 
gradient and the pressure fields. The analysis relies on abstract properties which are in 
turn a consequence of the eixstence of a local projection operator Ilh satisfying 

div(v - Flhv)qdx = 0, Vv E [H1(0)]2, Vq E Mh, 

where Mh is the finite element space associated with the pressure. Several examples for 
which this operator can be constructed locally illustrate the theory. 

1. Introduction. We consider the Stokes problem arising in fluid dynamics, 
which describes the flow of a viscous incompressible fluid. In its simplest form, we 
have to solve 

-Au+Vp=f inn, 
(1.1) "' < divu = 0 in Q, 

u=0 ona1?, 

where 0 is a bounded domain'in R2, u represents the velocity of the fluid, p its 
pressure and f a given external force. 

Several finite element spaces have been considered to approximate the solu- 
tion of problem (1.1) using the following velocity-pressure formulation: find u E 

[Ho'(Q)]2,p E L2(Q7), such that 

(1.2) {(Vu,Vv) -(p,divv) = (fv), Vv E 

(q,divu) = 0, Vq E L2(q), 

where (.,.) denotes the inner product in L2(Q) and L2(Q2) is the space of L2- 
functions having mean value zero. It is known that this weak formulation is equiv- 
alent to a saddle point problem. 

The approximation by finite elements of this kind of problems has been studied 
in an abstract form by F. Brezzi [4], M. Fortin [13] and R. S. Falk and J. E. Osborn 
[12]. 
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Given a family {rh} (O < h < ho) of partitions of Q, let Xh C [Ho(Q)]2 and 
Mh C Lo 2(Q) denote the finite element spaces. Then the corresponding discrete 
problem reads as follows: find Uh E Xh and Ph E Mh such that 

(1.3) (Vuh,Vv)-(Ph,divv) = (f,v), Vv E Xh, 

(q,divuh) = 0, Vq E Mh. 

It is well known that Xh and Mh cannot be chosen independently. It was proven 
in [4] that existence of the discrete solution and stability of the scheme follow from 
the condition 

(1.4) sup (q, div v) 
>Iqj1L2, VqEMh, 

VEXh IIVIIH10 

where f is a positive number independent of h. Moreover, if (1.4) is satisfied, 
optimal error estimates in L2 for the gradient of the velocity and for the pressure 
hold; namely, 

(1.5) IU-UhIIHg + IIP-Ph IL2 < C inf 11U V11H1 + qEnf IIp -q1|L2 

Optimal error estimates in L2 for the velocity can be derived by duality argu- 
ments under some regularity assumption on the domain (see [15]); namely, 

(1.6) JJU - UhIIL2 < Ch{I Iu -Uh IIH1 + IIP - Ph IIL2 }. 

In [12] R. S. Falk and J. E. Osborn proved that the condition (1.4) is equivalent 
to the existence of a projection operator Hh: [Ho (Q)]2 __+ Xh such that 

(1.7) |lI1IhV11H1 < CIIVIIH1, Vv E [H() 

and 

(1.8) (div(v- Hhv),q) = 0, Vv E [Ho(q)]2, Vq E Mh. 

Here and throughout the paper, C denotes a positive constant independent of h 
and the functions involved in the estimates, but not necessarily the same at each 
occurrence. 

The aim of this paper is to study convergence in L?? for the velocity and its 
first derivatives and for the pressure. Our analysis is based on the technique of 
weighted Sobolev norms introduced by F. Natterer [17] and J. A. Nitsche [18], [19], 
combined with the use of regularized Green's functions as proposed by J. Frehse and 
R. Rannacher [14] and more recently by R. Rannacher and R. Scott [20] for second- 
order scalar elliptic operators. Elliptic systems were considered by M. Dobrowolski 
and R. Rannacher [10], but their analysis did not include the Stokes equation, which 
has a saddle point structure, and so requires compatibility constraints between the 
discrete spaces. 

In many cases the operator Hh can be constructed locally, and consequently it 
satisfies optimal approximation properties in weighted norms. Under this crucial 
assumption we prove the following quasi-optimal uniform estimates, 

(1.9) j|u - uhIILoo < Chj logh| inf hju{- JuJ- 1w + inf IIP}- VE~~~~~h qifEI~- jjh 
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(1.10) lIP-Ph IIL- < C| log hi 1/2 inf ||u-vll woo + inf p-qil L-}, 

(1.11) I|curl(u-uh)IILo ? C| loghI / { VEnf ||u-v jW _ + qEf IInf qIILo}, 

where we have denoted by WmP the usual Sobolev spaces. These estimates may 
be viewed as the L? analogues of (1.5) and (1.6). 

The paper is organized as follows. In Section 2 we state the notation and as- 
sumptions and recall some properties about weights and related norms. In Section 
3 we introduce the regularized Green's functions and prove some weighted a pri- 
ori estimates. Section 4 deals with the LI-error estimates for the solution. A 
weighted-norm error estimate for Green's functions is proved there as well; this is 
the key result and involves some technical calculations. Finally, in Section 5 we 
show several examples of known finite element spaces satisfying our assumptions 
and state the corresponding rates of convergence in L?'(0). 

2. Notation and Assumptions. Let ? be a convex polygon in R2 and let 
{fTh} be a regular and quasi-uniform family of decompositions of Q, where h > 0 
denotes the mesh size [8, pp. 132, 140]. 

We will work with finite element spaces Mhk C Lo (Q) and Xk C [Ho4(?)]2, with 
k a positive integer such that, for every T E Th, 

(2.1) Pk-1(T) C MhkIT C Pk+m(T), 

(2.2) [Pk(T)]2 C Xh IT C [Pk+m (T)]2, 
where Pk (T) denotes the space of polynomials of degree less than or equal to k 
restricted to T, and m is some natural number independent of T and h. 

We define the weight function a by 

(2.3) a(x) := (Ix-xo 12 + 02)1/2 X,x0 E ?2 

where 0 = Kh, with K > 1 a constant to be specified later on. Let us recall the 
following elementary properties of the weights (see [8]): 

(2.4) max a(x) < C min a(x), VT E Th, 
XET xET 

(2.5) IDiou (x)I <C(j, a)ou-i(x), Vx E Q, 

where a E R and Dif denotes the tensor of derivatives of order j of f, and 

(2.6) f&-2(kx) dx < C1 log 0 

for 0 small enough. 
For a E R and j a nonnegative integer, we define the weighted seminorms by 

jjDiq 112. f= 12 | dx, qE H3(Q), 

and the same notation will be used for vector-valued functions. The following 
assumptions will be made: 

(2.7) lIDj(v - HV)IIoar < Chk+l JIIDk+lvIIarc, Vv E [Hk+l (?)]2, j = 0,1; 
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(2.8) IIq - Phkqlla- < ChkllDkqll? , Vq E Hk(F); 

(2.9) v _ hVIILoo ChVvLoo, Vv E [W (Q)]2; 

(2.10) IIVHkVII&1,2 < C||Vv|1,2, Vv E [Ho(Q)]X 

where Phk is an auxiliary operator having values in Mh. In many cases the operator 
H can be constructed locally and, therefore, properties (2.7), (2.9) and (2.10) 

are an easy consequence of standard interpolation error estimates. The operator 

Phk is usually either a local L2-projection or an interpolation operator; thus, the 
assumption (2.8) holds. Further approximation properties on Hk and Phk will be 
required, namely, 

(2.11) -Pq(- h u2q) |I,-2 < ChJlqJJL2, Vq E Mh 

(2.12) IIV(2v v- _H(u2v)) II-2 < ChI|v|| -2 + ChIIVvIIL2, Vv E Xhk 

If the operators Ph and Hk are local, then the estimates (2.11) and (2.12) can be 

proved using a generalized Bramble-Hilbert lemma of T. Dupont and R. Scott [11]. 

Moreover, a similar estimate to these two was proved by R. Scholz in [21]. 

Since no confusion is possible, we shall remove the subscript k in the notation 

of both discrete spaces and interpolant operators. 

3. Regularized Green's Functions. In this section we introduce and analyze 

the so-called regularized Green's functions, which are solutions of the Stokes equa- 

tions with a right-hand side being a suitable regularization of the Dirac measure. 

This technique was first used by J. Frehse and R. Rannacher [14] and further de- 

veloped by R. Rannacher and R. Scott [20], in both cases for a scalar second-order 

elliptic equation. 

Let us start by recalling some regularity results for the following generalized 

Stokes problem: 

-Av+Vq=f inQ, 

(3.1) divv =g inQ0, 

v=O ondF9, 

Let Q be a convex polygon in R2 and let d(x) denote the distance from x E Q to 

the closest vertex of Q. In addition, let f E [L2 (f2)]2, g E H1(Q) and d-1g E L2() 

hold, as well as the following compatibility condition, 

(3.2) jgdx = 0. 

Then the solution (v, q) of (3.1) satisfies (see R. B. Kellogg and J. E. Osborn [16]) 

(3.3) 11V11H2 + I|qIIH1 < C{I1fIIL2 + IIV9IIL2 + I|d 1aIIL2}. 

Moreover, the requirement d-1g E L2 (Ql) cannot be eliminated for the solution 

to satisfy an estimate like (3.3). As an easy calculation reveals, if g E Ho (Q) then 

d-lg E L2(Q), and we get the estimate 

(3.4) I1VIIH2 + IqIIH1 '< C{I1fIIL2 + IV9IIL2}. 
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This is the basic regularity result required in our error analysis. However, 
stronger regularity will be needed in deriving sharp rates of convergence according 
to the approximation theory. For these estimates to hold, we have to modify the 
assumptions on the data. Namely, suppose now 

(3.5) aQ E Ck+1 (Q is not necessarily convex), 

(3.6) f E [Wk 
l 

Qoop E g E Wko (2) I 

where k E N stands for the order of the approximation as stated in (2.1)-(2.2). A 
consequence of the results in [1] for general elliptic systems is the a priori estimate 

(3.7) IIVIIWk+ls + jlqllwkS < CS(IlffIwk-1,s + jjgjjwks), 

where 2 < s < oo and C > 0 is a constant independent of s (see also [7] and R. 
Temam [22, p. 33]). The dependence on s follows from [1] by tracing constants in 
the singular integrals involved. 

Let us now introduce the regularizations of the Dirac mass that we shall deal 
with. For 1 < i < 3 let xi denote a fixed point in i which will be specified later 
on, and let Ti E Th be such that xi E Ti. Then, let &i E C'0 (Q) satisfy 

(3.8) supp 8i C Bi, 

(3.9) 6i dx= 1, 8? > ?, 

(3.10) IIDj8iIIL- < Ch 2, I = 0,1, 

where Bi is a ball of radius ah contained in Ti and a > 0 is a suitable constant, both 
to be determined as follows. Let X be any discrete function; so X is a piecewise 
polynomial and possibly discontinuous across interelement boundaries. Assume 
that the maximum norm of X is attained at xi; X is here extended to the closure 
of Ti by continuity. Then, since the Ti satisfy a minimum angle property because 
the partition Th is regular, we can always find a ball Bi with center yi so that 

Ixi - yi I = Cah. Then a straightforward application of the weighted mean value 

theorem, combined with (3.9), yields 

x6 dx = X(z) for some z E Bi. 

Using now the mean value theorem together with an inverse inequality leads to 

IjX JLO(Q) = IX(xi)I < IX(z)l + CahIIVXIILo(T,) < CaJJX/JL?(Q) + f x8 dx 

Thus, choosing a so that Ca = 2, the previous inequality can be rewritten as 

(3.11) IIXIIL?(Q) < 2 f X6 dx 

This inequality will be often used in the next section. Jn addition, according to 
(2.3), we define the weight function Ui by oi(x) = (Ix - XiI2 + 02)1/2 for each 
1 < i < 3. 
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Let us now introduce the regularized Green's functions. The first one will be 
useful in analyzing the velocity field, and is defined by 

- -AG, + VA, = 6C11 in Q, 
(3.12) div G, = , in Q, 

G1 =0, on d9 , 
where 61 stands for either (61, 0) or (0, 61). We then have the following a priori 
estimate in weighted norms. 

LEMMA 3.1. There holds 

IID2GI102 + JJVA, I102 < C log hl/2. 

Proof. Following P. Ciarlet [8, p. 148], it suffices to deal with the components 

[tj = xJ- x (j = 1, 2) of x - xi instead of with a,. Moreover, it is easy to see that 

IIiUjD2Gl |iL2 + 1I111VA1|L2 
< C{|ID2Q(UjGl)IIL2 + IV(&jAi)11L2 + IIVG,11L2 + I|A, 1L2}. 

In order to estimate the first two terms on the right-hand side, we shall make use 
of the Stokes equations in conjunction with (3.4). Namely, since 

-A(,jtG,) + V(/ujA,) = ltjbl - 2V71j VG1 + AVaj, 

div(g3jG,) = V3 - G1, 

and Vuj G1 E Ho' (Q), (3.4) together with the fact that pj is linear yields 

(3.13) jjD2(ftjG1)11L2 + IIV(,UjA1)11L2 < C{IIIj 11IIL2 + IIVG,11L2 + IIA1IIL2}. 

Since Isjo161L2 = 0(1), it only remains to estimate the last two terms on the 

right-hand side of (3.13). To do so, observe first that the inf-sup condition implies 

IIVG, l1L2 + IA1A IL2 < C0116IIH-1 

and, furthermore, 

1I61jIH-1 = sup(6,,v) < sup(6iv - Ihv) + sup(6lIhv) < C(1 + Ilogh 1/2), 
VES VES VES 

where S stands for the unit ball of [Hol(Q)]2 and Ih denotes the local average 
interpolant [15, p. 109]. Here we have used the inverse inequality between H1 and 
L?? in the finite element subspace. Now the assertion of the lemma is a consequence 
of the above inequalities and the following expressions 

2 

IID2GIa2 = 02 IID2G1 2 2 +E 11Z ,3D2G,11|2, 
j=1 

2 

II VAa2 2= 02 IIVAj112 + E IIjVA1II2, 
3=1 

combined with (3.4) and the fact that 0 = Kh. 0 

In dealing with the vorticity, and so with derivatives of the velocity, we need the 
following regularized Green's function: 

- -AG2 + VA2 = Db2i in Q. 
(3.14) div G2 = O. in Q 

G2 =0, on OQ, 
where D62 stands for any directional derivative of either 62 = (62, 0) or 62 = (0, 62). 
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LEMMA 3.2. We have 

IID2G2IK02 + IIVA2IK02 < Ch-1. 

Proof. The proof proceeds along the same lines as the previous one. Conse- 
quently, one is led to estimate IIVG2IIL2 and IIA2IIL2. To do so, we use the following 
a priori estimate, which is a trivial by-product of the inf-sup conditon (1.4); namely, 

IIVG2IIL2 + 11A21IL2 < CIID62IIH-1 < C11621IL2 < ChO1h 

where we have used (3.8) and (3.10). This completes the argument. 5 

The analysis of the pressure field requires a different regularized Green's function 
from those above. Indeed, for X E Co (Q) satisfying fn q dx = 1, let us consider 
the problem: 

AG3 + VA3 = O. in Q. 

(3.15) divG3 = 63 in Q, 

I. G3 = 0, on J92. 

Since the compatibility condition (3.2) holds, problem (3.15) actually has a 
unique solution. Moreover, the a priori estimate (3.4) also holds, because 63 - q E 

Hol(Q). This is why we take X E C0 (Q) rather than a constant. However, if Q 
were smooth enough, say di E 02, X might be constant, as asserted by (3.7). 

LEMMA 3.3. We have 

IID2G3I110, + IIVA3I11f2 < Ch-1. 

Proof. As in Lemma 3.1, we are now led to estimate IIV(63- q)IIO, IIVG3IIL2, 
and 11A311L2. The first term satisfies IIV(63- 0)11f2 = O(h-1) on account of (3.8) 

and (3.10). The remaining terms can be bounded by making use of a stability 
estimate which is a trivial consequence of the inf-sup condition (1.4), namely 

IIVG3IIL2 + 11A31IL2 < C1163 - 1IIL2 < Ch1. n 
4. The Error Analysis. 
4.1. L?-Error Estimates. This section is devoted to the error analysis in L? 

for the velocity, its first derivatives, and the pressure. 
From (1.2) and (1.3) the following error equations follow: 

(4.1) | (V(u-uh),Vv)-(P-Phdivv)=0, VvEXh, 

(4.1) (q,div(u-uh)) = 0, Vq e Mh. 

Analogous error equations hold for the regularized Green's functions and their 
approximations defined in Section 3. 

Let us start by analyzing the error in the velocity field. Clearly, it is enough to 
bound Hhu - Uh. To this aim, let xi e Q be a point where 

juh - HhUJILoo = Max hIuh - (HhU)i|ILo 1<i<2 

is attained. In view of (3.11) we have 

(4.2) hI|hU - Uh ||L < 21 (HhU - Uh, 61) 

=2I(VG, V(Hhu - Uh))- (div(hu-Uh),Aih)I 
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Using the error equations (4.1) and the assumption (1.8) on the operator IIh, we 
see that the expression in (4.2) is equal to 

2I(VG1, V(Ihu-u)) + (P-Ph, div Gh)I 
(4.3) = 21(V(Gh - G1), V(Ilhu - u)) + (p - Php, div(Gh - G1)) 

- (AG, HhU - U)I 

Thus, by the H6lder inequality we have that 

(4 4) I|lhU - UhIIL ? C{|IV(u - IlhU)IIL- ? jjp - PhPIIL-}IIV(Gl - G h)IL1 
+ I|U -IIhUIILooIIAG1IIL1. 

Therefore, we have reduced the problem to that of estimating IIV(Gi - G h) IL 

and IILG, IL1. Using again the H6lder inequality, we see that 

(4.5) IIV(Gi - Gh)IIL1 ? CIloghi1/211V(Gi - Gh) II2 

and, then, we have to estimate IIV(Gi - Gh) II2. Similarly, when dealing with 
the pressure and with the first derivatives of the velocity, we will have to estimate 

IIV(Gi - G') II.2 for i = 2, 3. 
The following theorem states a bound for errors like those above, irrespective of 

the type of Green's functions involved. Moreover, since no confusion is possible, we 
remove the subscript i. 

THEOREM 4. 1. Let Q be a convex polygon in R2. Let (G, A) be the solution 
of one of the problems introduced in Section 3, and let (Gh, Ah) E Xh X Mh be the 
approximate solution. Then for K large enough, there exists a constant C = C(K) 
such that 

(4.6) IIV(G - Gh) 112 ? Ch{IID2GII,2 + IIVAIk2} + 0h2{IID2GIIL2 + 21VAIIL2}, 

where K is the parameter introduced in (2.3). 

Proof. The proof of this crucial result is rather technical and will be postponed 
to Subsection 4.2. Instead, we now apply Theorem 4.1 to derive quasi-optimal error 
estimates in the maximum norm. To begin with, we first consider the velocity field. 

THEOREM 4.2. Let Q be a convex polygon in R2 and let (u, p) be the solution 
of the Stokes problem (1.1). Let (uh, ph) e Xh x Mh be the finite element approx- 
imations defined by (1.3). Assume that u e [W" o'(Q)]2 and p E L??(Q). Then 
there exists a constant C > 0 such that 

(4.7) ||u - UhILOO < Chj log ht{IIV(u - HhU)IIL- + lIP - PhPIILo}. 

Proof. As we pointed out before, it is enough to bound 1lhU - Uh. In view of 
(4.4) we have to estimate IIV(G1 - G h)IIL. To this end, note first that Theorem 
4.1 together with (4.5) yields 

IIV(Gi - G h)IIL < Cl log hI1/2h{IllD2Gi 11,2 + IIVA112} 

+ C log hl 12h2{flD2G11IL2+ IIVA1IIL2 }. 

Then, using the a priori estimate (3.3) and Lemma 3.1, we obtain 

IV(Gi - G h)|IL1 < Cl log hjh. 
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Analogously, using again Lemma 3.1, we get 

JIAG, ||L1 < Cl log hi. 

Thus, the theorem follows from the two previous inequalities combined with (4.4) 
and the assumption (2.9). 0 

As an easy corollary of Theorem 4.2 we have the following estimate for the 
vorticity, 

iicurl(u - Uh) iiLo < Cl log hi{i iV(u - Ihu)|IiLo + iiP - PhPiiLo }. 

However, this estimate can be improved, as the following theorem shows. 

THEOREM 4.3. Under the assumptions of Theorem 4.2 there exists a constant 
C > 0 such that 

(4.8) iicurl(u - Uh)iiLoo < Cj log hi 2{IIV(u - HhU)IiLo + iiP - PhPiILo}. 

Proof. Our present goal is to demonstrate the following estimate, 

JIV(U - Uh)iiLO < C1 log high2{ /17V(U - HhU)iiILo + liP - PhPiiL-}, 

which, in particular, implies the assertion. Using the notation of Section 3, with 
x2 chosen to maximize iD(Ihu - uh)(x)i, and the inequality (3.11), we have 

iiD(Hhu - Uh)iiLoo < 21(D(Hhu - Uh), 62)1 = 21(HhU- Uh, D62)i 

= 21 (VG2 , V(Hhu - Uh)) - (div(hu-Uh), A2)i 

- 2j(V(Gh - G2), V(llhu - u)) + (div(Gh - G2),P - PhP) 
- (AG2, Hhu-u)i. 

This last expression is similar to that in (4.3), where G2 and G h are replaced by 
G1 and G h; therefore, we can proceed as in the proof of Theorem 4.2. Indeed, 
using Lemma 3.2, we obtain 

IID(IhU - Uh)IiL- < C1 log hi112/ {IIV(U - IIhU)IiIL- + liP - PhPiIL-}. 

Thus, the theorem follows by applying the triangular inequality. 5 

We conclude this subsection with a theorem concerning the uniform approxima- 
tion of the pressure. 

THEOREM 4.4. Under the assumptions of Theorem 4.2 there exists a constant 
C > 0 such that 

(4.9) liP - PhiivL' < C1 log hi /2{iiV(U -_HhU)iiL- + liP - PhPiiL-}. 

Proof. It is sufficient to estimate PhP-Ph. Let X3 be a point where the maximum 
of IPhP - Phi is attained. With the notation of Section 3, we have from (3.11) 

(4.10) ih-Ph I IiLE < 21 (Php-Ph, 63)1 

< 21(Php-Ph 63 -A) + 2i (Php-pPh, 0) 

The second term in (4.10) can be bounded by using the L2-estimate (1.5) in the 
following way: 

(PhP-pPhq5) < iiPhP-PhiiL2 ik0iL2 < Ci PhP-PhivL2 

< C |iiV(u - HhU) IiL2 + lIP - PhPIIL2 }. 



500 R. DURAN, R. H. NOCHETTO AND JUNPING WANG 

To bound the first term in (4.10) we use the regularized Green's functions 
(G3, A3) defined in (3.15). Then, 

(PhP - Ph, 63-) = (PhP - Ph, div G3) = (Php - Ph, div G h) 
= (Php-p, div G3 ) + (P-Ph, div G h). 

Now, the error equations for (u,p) and (G3, A3), as well as the property (1.8) of 
I1h, yield 

(PhP-pPh, 63-) 

= (Php - p, div(Gh - G3)) + (Php - p, 63-sb) 

+ (V(u - Uh), V(Gh - G3)) + (div(u - uh), A3 _ Ah) 
= (Php - p, div(Gh - G3)) + (PhP - P, 63 -') 

+ (V(u - lhU), V(Gh - G3)) + (div(u - Hhu), A3 - PhA3). 

Then, applying the Holder inequality, we get 

I(PhP - Ph, 63 - k)I < C{IIV(G3 - Gh)IIL1 + 1163 - NIILl + hjjVA3IIL1 } 
f {IV(U - -Ihu)|IL?? + IIP - PhPIIL- }- 

Again, by the Holder inequality, we have 

|IV(G3 - Gh)IL1 ?< C| log 11/211V(G3 - G h)112 

and 

hI1VA33IIL1 < Chi log h/'!2 IIVA3 \3,2. 
Finally, the estimate (4.9) follows from the last three inequalities in conjunction 
with Theorem 4.1 and Lemma 3.3. 0 

4.2. Proof of Theorem 4.1. To complete the error analysis, it remains to prove 
the crucial and rather technical Theorem 4.1. Let us start by defining 

(4.11) tb : 2(G - Gh). 

Thus, 

IIV(G - Gh)I122 (V(G - Gh), cU2V(G - Gh)) 
(4.12) - (V(G - Gh),VVk) + 2 (G - Gh, LIa2 * (G - Gh)) 

< (V(G - Gh), V 1b) + Ch4{11D2G11L2 + 11VA11L2 }2, 

where we have used the property (2.5) and the L2-estimate (1.6). To bound the 
first term in (4.12), we make use of the error equation for (G, A) and the basic 
assumption (1.8) on the operator 11h. We thus have 

(V(G - Gh), Vtlp) = (V(G - Gh), V(' - hOP)) 

+ (div(IHht/ -4), A - Ph,) + (div4', A -_ h). 

Inserting this expression into (4.12) results in 

IIV(G - G h)II2 < Ch 4{IID2GIIL2 + IIVAIIL2}2 + ejlV(G - G h)I12 
+ Ch211VAj122 + CIOV(4' - Rh )l12_2 + I(div 4', A - Ah)I, 

where we have used the interpolation error bound (2.8); here, e denotes a small 
positive number independent of h to be determined later on. To proceed, we have 
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to evaluate the last two terms in the previous expression. These are a consequence 
of Lemmas 4.1 and 4.2 below, which imply 

IIV(G - Gh)II22 < CKh4{IID2GIIL2 + IIVAIIL2 }2 

+ CKh2 {I ID2GII0,2 + JIVAII02} + (6 + K )IIV(G - Gh) II22. 

Consequently, a proper choice of the constants e > 0 and K > 1 allows the last 
term to be hidden into the left-hand side. The assertion is then obtained. 5 

Let us now prove the auxiliary results mentioned above. 

LEMMA 4. 1. Let K be as in (2.3) and tb as in (4.11). Then there exist constants 
Ck > 0 and C > 0 independent of K such that 

1IV(/ - Hhtk)II0-2 < CKh 2{ID2GIIL2 + IIVAIIL2} 

(4.13) + CKh{IID2GII.72 + IIVAI112} + 2 IIV(G - Gh)II12. 

Proof. Let us rewrite tb as 

or =o2(G-Gh ) = a2 (G-IIhhG) + a2 (HhG - Gh) =' ki + '2. 

Then 

(4.14) IIV(/'- - H1ht)II-2 ?< IV(1ki - HIht1)II0-2 + IIV(tk2 - IHh02)II1f-2. 

In view of (2.10), the first term on the right-hand side of (4.14) is bounded by 

IIVVb II-2. Using now the properties (2.5) and (2.7) yields 

IIVtklII0-2 < C{JIG - HhGIIL2 + |IV(G - HhG)I11f2} 

< Ch2 IID2GIL2 + ChIID2GIK02. 

For the second term in (4.14) we use (2.12) to get 

IIV(tk2 - Hhtk2)II1-2 < ChIIHhG -G GhII-2 + ChIIV(IIhG -G h)1L2 

? K JIIhG -G GhIL2 + K IIV(IHhG -G h)I1a2 

<? ?h2{IID2GIIL2 + IIVAIIL2} + ?ihIID2GIIU2 + IIV(G - 
Gh)I102. -K K K 

Here we have employed standard L2-error estimates together with the estimate 

(2.7). Finally, substituting the bounds corresponding to '/1 and 02 into (4.14) 

implies the desired result. 0 

LEMMA 4.2. Let t be as in (4.11). Then there exists a constant C > 0 such 
that 

(4.15) I(divt/',A _ Ah)l < Ch2{IID2GII,2 + IIVAI112 }2 

+ Ch4{ IID2GIIL2 + IIVA|IIL2 }2 + eIIV(G-G ) GhII20. 

Proof. Since 

divob = Va2 (G - Gh) + a2div(G - Gh) 

we have 

(divik, A _ Ah) = (Va2 (G - Gh),A I Ah) + (div(G - Gh),a 2(A _ h)) 
(4.16) - 

_ A-h) + (g, A - Ah) 
+ (div(G - G h). 02(\ _ Ah)) 



502 R. DURAN, R. H. NOCHETTO AND JUNPING WANG 

Here we have set 

(4.17) y:=OJVc2. (G-Gh) dx 

and 

(4.18) g:= Va2 (G - Gh) - 

where X Ee Co (Q) stands for the function defined in Section 3. As X is chosen 
independent of h, so are IIIIL2 and IIVkIIL2. The contribution due to the first term 
in (4.16) is now easily evaluated on account of the bound for I-/I proved in Lemma 
4.3 below. Indeed, we can write 

(q$A _ Ah) < ChIIV(G-Gh)II1 2IIA AhIIL2 
< Ch4{ IIVAII2 + IID2GI112} + eIIV(G -G h)I112. 

The contribution due to the remaining terms in (4.16) is analyzed below in Lemmas 
4.4 and 4.5. This completes the proof. 5 

In order to complete the whole argument it only remains to derive some auxiliary 
estimates related to expression (4.16). To begin with, let us first obtain a bound 
for I-YI. 

LEMMA 4.3. Let -a be defined by (4.17). Then there exists a constant C > 0 
such that 

(4.19) I-/I < ChIIV(G - Gh) II02 

Proof. Integrating by parts yields 

I/ = I(div(G - Gh),a2)I = I(div(G - Gh),a2 - Pha2)I < ChIIV(G - Gh)II12, 

where we have used the second error equation in (4.1) for the function G. This is 
the desired bound. 5 

The second step consists of analyzing the middle term in (4.16): 

LEMMA 4.4. Let g be defined by (4.18). Then there exists a constant C > 0 
such that 

(4.20) I (g, - Ah)I < Ch4{IID2GIIL2 + IIVAIIL2 }2 + eIIV(G - Gh) II2. 

Proof. We use a duality argument. Consider the following auxiliary Stokes 
problem, 

-LAw+Viq =0 in Q, 
(4.21) divw = g in Q, 

I. w=0 on10Q. 
Since g E Ho (Q) and An g dx = 0, we can apply the regularity result (3.4) for the 
problem (4.21) in a plane polygon to get 

w E [H 2() nHo (Q)]2, 2 7 E H1(o) nLg2(Q) 

and 

(4.22) IID2wIIL2 + IIV7|IIL2 < CIIVg11L2. 
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We thus have 

|(g A - 
Ah)| < J(div w, A-> A)| 

= j(div(w - Wh), A -A h) + (V(G -G h), V(w - Wh)) 

+ (div(G -G h),rnh -r,)1 

as a consequence of the error equations for (G, A). Therefore, by (4.22) and the 
error estimate (1.5) we can write 

(4.23) l(g, A - Ah)l < Ch2 IIV1IIL2{IID2GIIL2 + IIVAIIL2} 

Now, using the definition (4.18) of g and the L2-estimate (1.6), we get 

(4.24) |IV9IIL2 < Ch 2{IID2GIL2 + IIVAIIL2} + COiV(G - Gh)I11f2 + CI-1l. 

Finally, combining (4.23) and (4.24) with (4.19) yields the assertion. 0 
The third and last step deals with the remaining term in (4.16). 

LEMMA 4.5. There exists a constant C > 0 such that 

(4.25) I(div(G - Gh), U2(A - Ah))l 

< Ch2 2 VAll2 + Ch4{fID2GjIL2 + IIVAIIL2}2 + ejlV(G - Gh)ll 22. 

Proof. Let a : (PhA - Ah). Using the error equations for (G, A), we have 

I (div(G - Gh), 2 (A - Ah)) I 

= |(div(G -G h), 2(A - PhA) + -Ph?)j 

< Ch||V(G-G - )11,2 lIVAll02 + |IV(G-G - )11,2 j? - Phjllj-2. 

Applying (1.5) and (2.11), we can further write 

jj| -Ph jjaf2 < ChlPhA\ 
_ 

AhIIL2 < Ch 2{ID2GIIL2 + IIVAIIL2}. 

Therefore, (4.25) follows from the two previous inequalities. The lemma is thus 
proved. 0 

5. Applications. The aim of this section is to apply our general results to some 
low-order finite element approximations to the Stokes equations. To begin with, let 
us first consider continuous pressure finite elements which are those preferred by 
engineers. 

Example 5.1. MINI ELEMENT. It was introduced by D. Arnold, F. Brezzi and 
M. Fortin [2] as a remedy for the unstable P1 - P1 element. The key idea was to 
enrich the velocity space P1 by adding bubble functions; this new space is denoted 
by P+. Then the discrete spaces are: 

(5.1) XhlT := P (T), MhIT:=P1(T), VTETh. 

Therefore, the order of this approximation is k = 1, whereas m = 2 according to 
(2.1) and (2.2). The local operator Hh was explicitly built in [2] as a way to show 
the inf-sup condition (1.4). 

The mini element is the simplest one of this class. The next one is the popular 
Taylor-Hood element, for which the existence of a local Hh is not known. However, 
the above trick led D. Arnold, F. Brezzi and M. Fortin to a slightly bigger element, 
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namely 
Example 5.2. ENRICHED TAYLOR-HOOD ELEMENT. Now the discrete spaces 

are 

(5.2) XhIT := P2(T), MhIT := Pi(T), VT ETh 

We thus have k = 2 and m = 1. The computational labor involved is comparable 
to that for the classical Taylor-Hood element, because the internal nodes in each 
element can be easily eliminated by the process of static condensation. On the 
other hand, the computational results seem to be better [5]. 

Let us now turn our attention to discontinuous pressure approximations. 
Example 5.3. BERNARDI-RAUGEL ELEMENT. Let the discrete spaces be 

defined by 

(5.3) XhIT := P1(T) spanpi, P2, P3} MhIT := PO(T) VT Erh. 

Here, pi stands for the polynomials Pi = A2A3V1, P2 = A1A3\V2, P3 = \1\2V3i 
where Ai are the barycentric coordinates and vi are normal vectors to the edges 
opposite to vertices i. We then have k = 1 and m = 1. This element was presented 
in [3] and may be regarded as a simplification of the classical P2 - Po element [5], 
[15], which also fits in our theory. 

In the latter case, the velocity space is much bigger than necessary for a first- 
order approximation to be stable. However, taking discontinuous P1-polynomials 
for pressure, results in an unstable scheme. The difficulty is circumvented by simply 
augmenting the velocity space with bubble functions; we refer to [9], [5], [15] for 
more details. 

Example 5.4. CROUZEIX-RAVIART ELEMENT. Let now Xh and Mh be de- 
fined by 

(5.4) XhIT := P2(T), MhIT:= P1(T) VT ETh; 

thus k = 2 and m = 1. The idea behind this choice was further exploited by F. 
Brezzi and J. Pitkdranta [6] who suggested a general stabilization technique; in 
particular, (5.4) is a consequence of their results. 

The families already mentioned are all defined over triangular decompositions of 
Q. Let us now consider some stable quadrilateral elements. The simplest case is 
the couple Q2 - Qo, for which k = 1 and m = 3; here and below, Qi denotes the 
set of polynomials of degree at most i in each variable separately. The existence of 
a local operator Hh can be proved along the same lines as for P2 - Po elements. 
Since Q2 is actually too big, we might expect the pressure space to be enriched 
without loosing stability. This is what indeed happens. 

Example 5.5. Q2 - P1 ELEMENT. Let us set 

(5.5) XhIT := Q2(T), MhIT := P1(T), VT E Th, 

which yields k = 2 and m = 2. The analysis of this element is much the same as 
that of the Crouzeix-Raviart element [5]. 

We now conclude the paper by establishing the rates of convergence in LI' of 
the finite element approximations described above. 

COROLLARY 5.1. Assume that ? is a plane convex polygonal domain. Let 
u E [Wk+l,(Q)]2 and p e Wk'o(Q) be the solutions of the Stokes problem (1.1). 
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Let Uh and Ph be the discrete solutions corresponding to any of the above families. 
Then 

(5.6) h j1| log hl1/211u - UhIILOO + IIP - PhIILoo + I1curl(u- Uh) IIL?o 
<( Chhkj log hl1/2(IIUIIWk+loo(Q) + IIPIIWk,-(Q))) 

Proof. The proof of (5.6) is an easy application of (4.7), (4.8) and (4.9). We 
thus omit the details. 0 

For (5.6) to hold, the continuous solutions must satisfy an a priori regularity 
which is difficult to check. An attempt to weaken this constraint is the following 
result, which holds only under a proper regularity of &Q. 

COROLLARY 5.2. Let (u,p) and (uh, Ph) be the continuous and discrete solu- 
tions of the Stokes problem. For 90f E Ck+1 we have 

(5.7) h1|j log h1 -1/2jU - Uh II Loo + jjP - Ph II Lo + jjcurl(u-Uh )|ILOO 

< Chk Ilog hI13/2 If IIWk-1,oo(). 

Proof. In view of Theorems 4.2, 4.3 and 4.4, the left-hand side of (5.7) is bounded 
by 

I = C| log hj1/2{jjV(u - hU)IIL + lIP - PhPlIL}. 

As f E [Wk-l,(f2)]2, the a priori estimate (3.7) combined with standard interpo- 
lation error estimates yields 

I < Chkjloghl1/2sh-2/8j1fjlWk-loo 2 < s < oo. 

Taking now s = I log hI implies the desired result. 0 
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