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Convergence of a Higher-Order Vortex Method
for Two-Dimensional Euler Equations*

By C. Chiu and R. A. Nicolaides

Abstract. There has been considerable interest recently in the convergence properties
of point vortex methods. In this paper, we define a vortex method using vortex multi-
poles and obtain error estimates for it. In the case of a nonuniform mesh, the rate of
convergence of the dipolar algorithm is shown to be of higher order of accuracy than
obtained with the simple vortex methods.

1. Introduction. Although vortex methods have been used for many years
for approximation of the partial differential equations of incompressible inviscid
fluid dynamics, [12], [13], [15], a precise mathematical analysis was not available
until very recently. In fact, the first complete analysis of a two-dimensional vortex
method was given by Hald [10] in 1979. Since then, many papers have appeared
giving error estimates for two-dimensional and three-dimensional vortex methods,
including [1], [2], [3], [4], [5] and [18]. These analyses mostly assume a uniform
mesh for the initial vorticity discretization. As a result of the mesh uniformity,
the resulting error estimates are of unexpectedly high order of accuracy, being
limited essentially by the regularity of the initial vorticity distribution. In more
realisitic situations, it is improbable that uniform meshes can be used, e.g., if there
are irregular bodies in the flow. In this case, the accuracy of the standard vortex
methods will drop to first or second order, regardless of the initial regularity. In
order to deal with nonuniform meshes, [17] defines some new vortex schemes for
the two-dimensional incompressible Euler equations. In this paper we shall give
a complete error estimate for one of them. This method yields higher order of
accuracy even on nonuniform meshes. This is achieved by using not only the usual
6 function point vortices, but also derivatives of such distributions.

In the next section we will define the algorithm and give explicit formulas for
its implementation. Then, a rigorous error estimate will be provided following the
Sobolev space technique of [5] and [18].

2. The Construction of a Higher-Order Vortex Method.

2-D Euler Equations. Let u(z,t) = (u;(z,t),u2(z,t)), € R? and ¢ € [0, ), be
the velocity field and w = curl u = 8;uy — d2u; be the vorticity. Assume that the
exterior forces acting on the fluid are potential. Then the Euler equations are:

wt + (u- V)w = Dw/Dt =0, w(z,0) = wo(z), = € R?,
(2.1) divu =0,
u—0 as|z|— oo.
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Here, by definition, D/Dt := 9, + (u - V) and is the usual material derivative.
Concerning the existence and the uniqueness of solutions to the equation (2.1),
see [14], [16], [19]. Smooth solutions are known to exist for all time in the two-
dimensional case with smooth initial data. In this paper we assume that the initial
vorticity wo(z) of (2.1) is smooth so that there exists a smooth solution of (2.1) on
some space-time interval R? x [0, 7).

Let X(z,t) be the path followed by a fluid particle which is at the position z
when t = 0. Then the map z — X(z,t) satisfies the system of ordinary differential
equations
(2.2) dX((if’t) =u(X(z,t),t), X(z,0)=u.

Then, (2.1) with the initial vorticity w(z,0) = wo(z) satisfies w(X(z,t),t) =
wo(z). In this paper we only consider those flows with smooth vorticity wo(z)
which have compact support. Under this assumption, there exists a bounded set (2
such that suppw(-,t) C Q, Vt € [0, 7).

Vortex Methods. Vortex methods are based upon the tracking of finite numbers
of fluid particles and evaluating velocities by discretizing certain singular integrals.
The basic idea of vortex methods is to approximate the initial vorticity by a linear
combination of Dirac delta functions. For example, approximate wy by wf =
> jes @;6(z — z;) where a; € R.

By following those particles whose positions at ¢ = 0 are {z;},es, using (2.2)
with o = z;, we get wh(z,t) = 3 ; @, 6(z — X(z;,1)).

To compute u, one uses the fact that divu = 0 to introduce a stream function
from which the velocity may be expressed as a singular integral. The singular
kernel is then smoothed by a cutoff function, and quadrature rules are then needed
to evaluate the integral. In order to get arbitrarily high order of accuracy by the
above method, a uniform mesh has to be assumed. It can be obtained, for example,
by subdividing the plane into squares of side h and letting {z,};cs be the corner
points of the squares [18]. We will now introduce our algorithm and some related
theorems. This algorithm allows us to deal with nonuniform meshes and still obtain
high-order accuracy.

A Higher-Order Vortex Method. Recall that if the initial vorticity function is
smooth, then the classical solution of (2.1) is given by w(X(z,t),t) = wo(z). Now,
let ¢(:) € Z(R?) where Z(R?) = {¢(-) € C®°(R?)|¢(-) has compact support};
2'(R?) is the dual space of Z(R?) and (-, ) denotes the duality pairing. Then,

w0600 = [ w@ )o@ da = [ un(@)o(X(@,0)d = o). 6(X(-0),

because the determinant of the Jacobian matrix of z — X is 1 since divu = 0.
Thus, we define a weak solution of the Euler equation as follows:

Definition 2.1. Assume that a unique solution of (2.2) exists. For w(-,t) €
2'(R?) and wo(-) € Z'(R?), if

(w(,),6(-)) = (wo("), p(X(,1))) Ve(-) € Z(R?),

then, w(-,t) is said to be the weak vorticity of the Euler equation (2.1).
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THEOREM 2.1. Suppose that X (zo,t) exists.
If wo(z) = ab(z—20) +b0g, (z— o) + bz, (z—20), where a,b and ¢ are constants,
then the weak vorticity as defined above 1s

(2.3) w(z,t) =ad(z — X(z0,t)) + b(t)z, (z — X (20,t)) + ¢(t)bz, (z — X (20, 1)),

where 65, and 6, are derivatives of the Dirac Delta function § and

(o) =00 (). e = ()

18 the Jacobian matriz of £ — X at xzg.

Remark. Note that

Doty = L (5 () _ (du dXs

dt "7 T dt \dz; ) \dz; ) \dXx dgz; )’
using the summation convention. So, M (zq,t) satisfies the following system of
ordinary differential equations:

dM
{—d't——VU'M,
M(Z0,0)=I,

where M = M (zo,t) and u = u(X(zo,t),1).
Proof. For all ¢ € Z(R?) we have

(wo(-), #(X(:,1))) = ad(X (0, t)) — bdp(X (20,t))/dz1 — cdd(X (z0,t))/dz2
= ad(X(2o,t)) — b[(d¢/dX1)(dX1/dz1) + (dp/dX2)(dX2/dz1)]
—c[(d¢/dX1)(dX1/dz2) + (dp/dX2)(dX2/dz2)] (at zo)
ad(X (zo,t)) — b(t) dp(X (z0,t))/dX1 — c(t) dp(X(z0,t))/d X2
= (ab(- — X(z0,t)) + b(t)s, (- — X(20,1)) + ¢(t)bz, (- — X(20,¢)), ¢("))
= (w(-,1),6(")).
Using Definition 2.1, w(,t) is the weak vorticity. O
Now we will define our vortex method by specifying a,b and ¢ over an initial
vortex distribution. This can be done in many ways [17]. The method used below

is based on direct numerical integration.
The Vorticity Field.

Xj2 X1
B;
IR Xj3 Xj4
I=( i | XjeQ, ) J{j | BjnQ,=2 }

FIGURE 1
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Take an arbitrarily spaced rectangular mesh on R2. Let suppwg C (lp which is
bounded. To each rectangle formed by adjacent coordinate lines, assign an index
J and denote it by B;. Denote the lengths of the edges of B; by hj; and hjz. Let
{Zjk}k=1,4 be the four corners of B;. To each corner of B; Ny # &, assign a
global index <, as shown in Figure 1.

Interpreting the initial vorticity wo as a distribution, we shall approximate wg
by another distribution wf of the form

wh(@) =D D lakb(z — z4x) + b1jkba, (€ — Tjk) + baskbe, (z — k)]
jeJ k=14

= Z[c,-&(a: - .’Ei) + d1i6z, (T — ;) + d2ibs, (:l: - zi)].
1€l

Then, based on Theorem 2.1, we expect that w(-,¢) can be approximated by

wh(z) =" Y [akb(z — X (25k, 1)) + b1;k(t)6z, (x — X (zjk,t))
J€EJ k=14

+ b2jk (t)&zg (iE - X(zjka t))]

= Z[Ci5($ — X(4,t)) + d1(t)0z, (x — X (24,t)) + d2i(t) bz, (z — X (2, 1))],
el

bljk(t)) (bljk) (du(t)> (du)

= M(z,k,t and = M (z;,t .

(b2jk(t) (258 1) bajk dai(t) (=i:1) da;
Concerning the choice of the coefficients {a,, b1k, b2k}, observe that for ¢(-) €

2 (R?),

W§(),8()) =D D akd(xjk) — bijk(t) e, (255) = baji(t) bz, (jn)],

JEJ k=14

where

whereas

(wo(-), (")) = /m wo(z)¢(z)dz = 121/31 wo(z)d(x) dz.

This suggests that approximating wp by wf corresponds to approximating the in-
tegral

/ wo(2)$(z) dz
By

by some numerical integration rule, where {a;, b1k, b2jk } je s,k=1,4 define this rule.
For our algorithm, the following quadrature rule is used [17]. For a 2-dimensional
rectangle B with corners {P;},=1 4, sides h; and hg, as shown in Figure 2, and
fec(B),
hihs
[ 1@ dz e BERGP) + 1) + 1(Ps) + £(P0)

h2hgy

24
hih?

24

(*) +

[—fz(P1) + fo(P2) + fo(P3) — fo(P4)]

+ [~ fy(P1) = fy(P2) + fy(Ps) + fy(Ps)]-
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Py 1

P3 P4
FIGURE 2

For this rule, a direct calculation shows:

THEOREM 2.2. The quadrature rule () is ezact for all third-degree polynomi-
als. O

Denote the right-hand side of () by Q2(B, f), i.e., [5 f(z) dz ~ Q2(B, f). Thus,
if {ajk,b1jk,b2jk}jeJ, k=1, are chosen by the above rule, then for ¢(-) € Z (R?),

W (), 0() =D Y lakd(zsk) — b1jkbz, (T5x) — baskda, (25k)]

JEJT k=1,4
=Y " Q:(B;,¢).
j€J
Then, when h — 0, 3~ ; Q2(Bj, ) — (wo(-),#(-)). More precisely, wg converges
in 2'(R?) to wo as h — 0. Correspondingly, w® — w in Z'(R?), by Definition
2.1. To see what the corresponding coefficients {c;, d1;,dg;} are, let us consider an
example.

.................................................

~~~~~~~~~~~~~~~~~~~~~~~~~~~

.................................................

FIGURE 3 FIGURE 4

Suppose that the mesh is as shown in Figure 3. The points with closed circles
are the nodal points of the mesh. Then B; is some rectangle with nodal points
as its four corners while S; is a rectangle which contains the nodal point z; and
is bounded by dotted lines. Note that dotted lines equally divide sides of every
B;. Bji, By, Bjs and Bjy4, as shown in Figure 4, are four adjacent rectangles. Let
S; be the rectangle shown and |S;| be its area. Since z; is a common corner of
Bj1, Bj2, Bjs and Bjy4, by the quadrature rule (x), we have the following:

¢id(zi) — d1iz, (T:) — d2ida, (74)
= (1/4)[hjis hjiz + Rjar hjag + hjsy hjsy + gy BjgoJwo(z:) b (24)
1/24)[”;11 m h?21h.7'22 h’]31h.732 +h?41 J4z](w0¢)z1(93z)
+ (1/24) [h’Ju J12 +h]21h322 h131h332 Rja 342 (0o @)z, (2:)
(

= lSil{wO(zz) (xz) + Hzl(w0¢)11 (zz) + Hz2(w0¢)zz zz)}
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Assume that there exists a constant C > 0 such that
ma‘xjeJ(hjl’h ) < C
minje s (hy1, hy2)
and let h = max;e s(hs1, hy2); then, Hy; = O(h) and H;; = O(h) and
¢i = |Sil[{wo(zi) + Hizwog, (2:) + Higwoz, (z4)},
dii = —|Si|Hiwo(z:),  d2i = —|Si|Hiqwo(z:), Vi€l

The Velocity Field. In order to obtain the velocity field from the vorticity field,
we need the following result. Let K: R2 — R? be defined by

_ 1 —T9
~ 2nz|? < T )

LEMMA 2.1. The convolution operator f — K * f is a bounded linear mapping
from L®°(R?) N L*(R?) into B°(R?)? (set of bounded and continuous 2-D vector-
valued functions). Moreover, if f € L*°(R?) N L' (R?) and satisfies f(z) — 0 as
|z| — oo, then the function v = K * f (2-D vector) is the unique solution of

divev =0,
curlv = f,

v(z) = 0 as |z| — o0,z € R2.

(2.4)

Proof. See [16]. O

It follows from Lemma 2.1 that u(-,t) = K * w(-,t) in problem (2.1). After
computing the approximate vorticity field w”, we need to find the corresponding
velocity field. It would seem natural to set u®(-,t) = K x w"(-,t), but since the
kernel K is a singular function, its convolution with delta functions is not defined
in general. To avoid this problem, the now standard remedy is to regularize K as
follows.

Let f(z): R? — R satisfy [, f(z)dz =1 and let fc(z) = (1/€?)f(z/e). f and
fe are referred to as “cutoff” functions. If K. = K * f, then Lemma 2.1 implies
that K. € B'(R?)? provided f € W1 (R?) N WL (R?). Then, u(-,t) will be
approximated by u? = w" x K., so that

= E E [aije(a: - X(Ijk, t)) - bljk(t)Kezl (:l: - X(‘Tjka t))
jEJ k=14
- b2jk(t)K€22 (‘T - X(ij,t))]
= E [cz I - X(:):,, )) - dli(t)Kszl(z - X(Iivt))

1€l
- d%(t)ff{;z2 (z— X(Zi, t))]
Here, K.y, = dK./dz1, K¢y, = dK¢/dzy and {X(z;,t)};cr are exact particle
positions at ¢. But we can compute only approximate positions {X"(z;,t)}icr
and corresponding approximate Jacobian matrices {M"(z;,t)};c;. Therefore, only
approximate coefficients {#/;(t), #2:(t) }sc1 can be obtained. So, the actual velocity
field we compute is

(2.5) ZMa,t) = leiKe(z — X" (24,1)) — Z1i(t) Kex, (z — X" (21, 1))
i€l

- dm(t) 61‘2( - Xh(zi7t))]'
Here we use % to denote the numerical velocity field.
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In summary, the 2-D algorithm is as follows:

dX"(z,t
—%=%’l(xh’t)’ Xh(x?0)=x’
h
@% = VZI (X" t)M"(z,t), M"I(z,0)=1

(see the remark after Theorem 2.1), where % is the numerical velocity field given
by (2.5), X"(z,t) is the computed particle position at ¢ with its initial position at
z, and M*(z,t) = (X" /0z;) is the Jacobian matrix of the mapping z — X" (z,1).

Moreover,
(Ga0) =0 ()

and {c;,d1;,d2; }ics are given by (2.4).

3. Error Estimates. In this section we will give a complete error estimate for
the algorithm constructed in the last section. The analysis given here consists of
two parts, one for estimating the consistency error and the other for stability error.
The first part is based upon Sobolev space theory. The second part depends on
analysis of the velocity kernel and the behavior of the cutoff function.

Notations and Definitions. The norms used for the analysis are discrete LP-
norms.

Definition 3.1. For f(-) € [LP(Q)]? or [LP(Q)]?*2, define

1/p
I fllnp = [Zlf(zi)l”th .

i€l
Let 2 — X(z,t) be the trajectory mapping and z — X"(z,t) be the computed
trajectory mapping. For F(X(-,t), X"(-,t),t) € [LP()]? or [LP(2)]?*2, define

1/p
> IF(X (@i, t), XM (ait), )W} .

el

IFE®)llnp =

Let e(X (- t), X"(-,t),t) = X(-,t) — X"(,t), and E(X(-,1), X"(-,1),t) = M(,t) —
M"(-,1).
For the error estimate, we define w"(z) and »"(z) as
wh(z) = Z Z lajk6(z — X (z5k, t)) + b1ji(t)bz, (z — X (k1))
JEJ k=14
+ b2k (t)0z, (z — X (25K, 1))]
= Z[cié(x = X(zi,t)) + d1i(t)bz, (z — X (2iy 1)) + daa(t) 62, (z — X (24, 1))],
i€l

) =30 3" [2ib(@ — XM (@5, t)) + A1k (8)0z, (2 — X (250, 1)

jEJ k=1,4
+ Lajie(£)8g, (x — XM (5, 1))
= [eib(z — X"(2:,1)) + Z1i(t)6z, (z — X (24, 1))

1€l
+ 22i(t) bz, (z — Xh(:ti, t))]
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Then Table 1 contains all quantities we will use for the error estimate.

TABLE 1
Trajectory  Vorticity Velocity

Exact

Solution T X(@:t)  wlzt)  u=(Kxw)
Computed

Solution T— Xh(x’ t) Wh(x, t) %eh = K€ * l&‘h
Intermediate wh(z.t) ue =Ke*xw

Quantity ) .

h_
u; = Ke xw

For any 7 € I, by using the system of ordinary differential equations for the
particle trajectories, we have
. hiq.
dX(dth’ t) - e C(i:tl:j, t) = U(X((I:j, t)a t) - ?/eh(xh(zj’ t)’ t)
= [U(X(zj’ t),t) — uQ(X(a:j,t),t)] + [ug(X(xj’ t),t) — ?/eh(Xh(zj’ t),t)],
where the first bracketed expression is called the consistency error, and the second
the stability error.
The Consistency Error. Let

I(,t) = u(,t) —ue(,t) =K xw— Kcxw

and
(1) = ue(:,t) —ul (-, t) = Ko » w — K¢+ wh.
Then, the consistency error is I + II. For I, we have the following result.

THEOREM 3.1. Assume that there exists an integer k > 1 such that

(1) fo fl@)dz =1,

(i) frz2*f(z)dz=0,Va e N?, 1<|o|<k-1,

(i) Jps l2/*](2)] d < o0.
Then there ezists a constant C = C(p, T,wo) > 0 such that ||I(,¢t)|| Lo (r2) < Ce*
and ||I(t)||n,p < Ce* for all p € [1,00],t € [0,T).

Proof. See [18, Chapter II, Lemma 4.1]. O

In order to analyze II(-, t), we need to discuss a few auxiliary results. First of all,
consider some properties of the regularized kernel K.. These properties are also
very useful for the stability error estimate. We begin by recalling a classical result.

LEMMA 3.1 (Calderon-Zygmund). The convolution operator f — (0K [0z;) f
is a bounded linear mapping from LP(R?) into [LP(R2?)]?, fori=1,2 and 1 <p <
co. O

LEMMA 3.2. Let p € (1,00) and f € W/ ~1P(R2) for some integer / > 1.
Then there exists some constant C such that

a P ——

10°KellLo(re) < Z—irrey
for a € N? with |a| =/ and (1/p) + (1/q) = 1.
Proof. See [18, Chapter II, Lemma 3.2(ii)]. O
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LEMMA 3.3. LetZ be a nonnegative integer. The following properties hold for
all o € N? with |o| =7 :

() If f e W/ L(R2)NW°(R2), we have |0*K,(z)| < C1/e/t! for allz € R2.

(b) If f € W/OL(R2) N W/ °(R2?) satisfies in addition |z|°+2|0% f(z)| < Cq,
then

10° K. (z)] < I_z%T for all |z > e.

Proof. See [18, Chapter II, Lemma 3.3]. O

LEMMA 3.4. Let S be a compact set in R%. For any multi-indez (3, assume
that there exists a constant C; > 0 such that |z|/#172|08 f(z)| < C1. Then there is
a constant C = C(S) such that for alle < 1,

C(9), 18l =0,
10°Ke|lLi(s)y < § C(S)llogel, |8 =1,
C(S)et-18l, 18] > 1.
Proof. Let B, = {z € R"||z| < €}. Then,

10°Kelirs) = [ 10°Ke@ldz= [ [0°Ke(@)da+ [ |0°Kela)ldo
S SNBe S\B.

< Cpe?[elPliHt 4 /S\Be #‘L—l dz (Lemma 3.3)
< Coe 1Pl 4 /dlam(S) Ca_ o
. BIE
[diam(S) — €], 18] =0,
= Coe! 1Pl 4 04 { [log(diam(S)) — loge], 18] = 1,
(1 - 18))[diam(8)*~1Pl — e1=1Al], || > 1. O

As we defined in the last section, the initial coefficients of § functions in the
approximated vorticity field are chosen according to a quadrature rule. Now we
want to find a bound for the error which results from the numerical integration.
We first state a classical result due to Bramble and Hilbert [9, Theorem 4.1.3]. Let
k be a nonnegative integer, denote by Py the space of all polynomials of degree < k
in the n variables z4,...,z,.

LEMMA 3.5 (Bramble-Hilbert). Let Q2 be an open bounded subset of R™ with a
Lipschitz continuous boundary and let L: ¢ — L(¢) be a bounded linear functional
on WEP(Q), k > 1, p € [1,00], with norm ||L||, which satisfies L(¢) = O for all
¢ € Py_1. Then there exists a constant C > 0 such that

L) < CILNIGlepn Yo €WEP(Q),

1/p
> [ |a°‘¢|dz)

o=k

where

1/p
9llkp.0 = |0%¢|P dx , |9lk.p,0 =

and || L[| = supy4), . o=1|L(9)]-
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As a consequence of Lemma 3.5, we obtain

LEMMA 3.6. Letj € J and B; be a 2-D boz as defined above. Assume that the
center of Bj is z = (z1,22) € R2. If g(-) € W41(B;), then there exists a constant
C > 0 independent of B; such that

(3.1)

/B g(z) dz — Q2(Bj,9)| < Ch*|g|s,1,B,

J

Proof. Let & = [—1,+1]? and B!(%) be the set of functions whose derivatives
through order one are bounded and continuous on . Then, for £(-) € B}(%),
define &(z) = [4 #(z) dz — Q2(Z, #). By Theorem 2.2, &(g) = 0 for all z €
P3(Z).

It is very easy to check that ¢ — & (&) is a bounded linear functional on B!(%).
By Sobolev’s embedding theorem, W*!(%Z) C B (%). So, g — &(g) is also a
bounded linear functional on W*1(%) which vanishes on P3(%). Thus, by the
Bramble-Hilbert lemma, there is a constant C; > 0 such that

(3:2) 1€ ()| < Cilgla,2-
For a function g(-) defined on B,, change variables by letting
i =i+ (hji/2)&,  —1<6<1,i=1,2,

and define £(&) = g(z) = g(z1 + (hy1/2)é1,22 + (h;2/2)€2). Then (3.1) follows
from (3.2). O
Now consider the second part of the consistency error. Recall that

(-, t) = ue(y t) —ul (-, t) = Ke » w — K, % wh,

(X, t) = (Ke * w)(X,t) = > Qa[Bj, Ke(X — X(-,t))wo(")].
JEJ

THEOREM 3.2. Assume that f € WH1(R?) nW*>(R2?).
(a) If there exists a constant C1 > 0 such that

|z|!*1+2|3% f(z)| < Cy  for all |a| < 4 and z € R?,
then there is a constant C = C(Q, wo,p,T) > 0 such that
h4
ITI(-, )] ooy < 05—3,
h4
L) ||n,p < C'Eg for allt €[0,T] and 1 < p < o0o.

(b) If we only assume that |z|?|f(z)] < Ci, then there is a constant C; =
Cs(Q, wo,p, T) > 0 such that

h4
HH("t)“Lw(Q) < Cs'E?F;,
h* . .
I@)lnp < Cs =5 P for allt €[0,T] and 1 < p < o0,

where s > 0 ¢s an arbitrary number.
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Proof. (a) By the definition, we have |II(z,t)| = |Ke *w(z,t) — Ke *w"(z,t)|. So

(z,t)] = | {/ Ke(z — X(y,t))wo(y) dy — Q2[Bj, Ke(z — X(-,t))wo(-)]}
jeJ \VB;
<> {/ Ke(z — X (y,t))wo(y) dy — Q2[Bj, Ke(z — X(',t))’wo(')]}l
jed B,
< Coh* > |Ke(z — X(,t))wo()]a,1,5; (by Lemma 3.6)
jeJ
<caht Y [ 105 Ko — X (4, 0)05uolu)l dy.
lo +161=4 "1

Using the smoothness of u, we have |05 X;(y,t)| < Cs fori=1,2,y€Q,0< |a| <
4. Now using the chain rule,

Mz, 0] < Cakt 3 / 0% Ke( — X(y,))0Bwo(y)| dy
lal+|8l<a @

<Okt 3 [ 10%Ke(a — X(u.0)ldy

lo|<4

=Csh* ) / 0% Ke(z — X)|dX
Q

lal<4

=Csh* Y [|0°Ke(z — )11y (detJ =1).

lo|<4

If z € Qand X € , since 2 is bounded there exists a compact set € C R?,
such that £ — X € €. By Lemma 3.4, there is a constant Cg = Cg(€) such that
10%Ke(z — )|l q) < |10°Ke(-)]|1(e) < Ce/e® for all z € Q and || < 4, and so,

h4
[T(z,t)| = |ue(z,t) — ul(z,t)| < Crg, VzeQ.

This implies that
4

h
llue(-,t) — ue (-, t)l| Lo () < 075—3'
For 1 < p < 00, it follows that

1/p
I ||n,p = {Z h2|u€ (X(z:i,1),1) — u:—:l(X(xh t), t)|p}

i€l

1/p
< lue(8) = wl (5 8)l|Lo() {Z h2}
i€l
< Cg(measure ()/Ph* /e = Coh?/e®.
(b) As in (a), we have

M| <Cart Y [ 0%Ke(e - X(u,1)0Fun(o)] dy.
la|+181<4”
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This time, Lemma 3.4 is not directly available to estimate ||0%K¢(z — -)||z1(q), for
all |a| < 4. For |a| =0 and |8] < 4, by Lemma 3.4 as above,

0% Ke(z — X (- 1))05wo(-)llL1 () < CrollKe(z — X(-,1))[lL1 (@) < C11(9).
For |a| > 1 and |B] < 3, using Holder’s inequality, we obtain
0% Ke(z — X (-, )05 wo()llL1 ()
< 0% Ke(z = X (-, t)ll o (@) 105 wo (Nl Lo ()
(1/p+1/¢d =1land 1 <p’ < o0)
< Cnal|0% Ke(z — X (1)l Le () < Cr2llO%Ke()ll e (m2)-
Using Lemma 3.2,

Cia Ci2
||ag‘st(')”L”’(R?) < glal-14+2/9" = 3+2/¢'°

Hence, [II(z,t)| = |ue(z,t) —ul(z,t)| < C13h*/e3*S for all z € 1, where s = 2/¢' >
0. Then (b) follows. O
The Stability Error. By definition, this is

uP(X, ) — ZH(XM, 1) = b (X, 8) - ZA(X, 0] + [Z (X, 0) - 2P (XP1)),

where X = X(z,t) and X* = X"(z,t) for z € Q3. We call the expression in the first
bracket Part I, the other Part II.
Part 1. By Table 1,

ul(X,t) = #M(X,t) = K. » wh(X,t) — K x2™(X, 1)
=Y [ciKe(X — X(2i,1)) — d1i(t) Kea, (X — X (2, 1))
1€l
— dai(t) Kez, (X — X (z4,1))]
=D [eiKe(X — XM(xi,t)) — 1i(t) Kea, (X — X(24,1))
1€l
— 2ai(t) Keay (X — X" (24,1))]

={qum-m%m—mm—ﬂm@@

i€l

+ {_ Zdlz(t)[Keml (X - X(xiat)) - K€1’1 (X - Xh(xi,t))]
i€l

+ {— Y i) [Keaa (X — X(24,1)) = Keay (X = X" (35, t))]}

i€l

+ {_ZKE.’El (X - Xh(xi’t))[dli(t) _d/li(t)]}

1€l
+ {—ZKea:g (X - Xh(zi,t))[dz)i(t) _4/2i(t)]}
i€l
= Vll(X, t) + V12(X, t) + V13(X, t) + Va1 (X, t) + V22(X, t).



CONVERGENCE OF A HIGHER-ORDER VORTEX METHOD 519
Here, for ¢ = 1,2,5 = 1,2 (or 1,2, and 3), we use V;;(X,t) to denote the terms in
each pair of braces in the above equation, respectively. Since
Ky, =0(K * f¢)/0z1 = K % (0 fc/0%1)
and 5
0fe/0z1 = F-(f(a/e)[€¥] = [, (a/€)/",
where f;, = df(z)/0z1,

(33) Ks:r:l = (K * f21€)/€'
Similarly,
(3.4) Keo, = (K * fr,e) /€.

Concerning terms Vy;(X,t), s = 1,2 and 3, we have
Vin(X,t) = Y eil Ke(X = X(4,8)) — Ke(X — X" (z4,1)] (b (24))
i€l
=Y |Sil(wo(z:) + Hirwoz, (7:) + Hizwoz, (:))
i€l
[Ke(X = X (24,t)) — Ke(X — X"(2,1))),

Via(X,t) = = 3 dyi(0) Kz, (X = X(3,1)) = Kea, (X — X*(21,1))]

i€l
= " |Sil{My1(zi, t)Hir /e + Mia(zi, t) Hia /€ bwo(z:)
i€l
(K% foe(X = X(20,1)) = K * fr,e(X = X" (34,1)))-
Similarly,
Via(X,t) = =) dai(t) [Keas (X — X(2i,1)) = Keay (X — X" (24,1))]
i€l
=Y ISil{May (z:,t)Hir /e + Mas(zi, t) Hia /€ }wo ()
i€l
’ [K * fIzE(X - X(.’E,’,t)) — K * fm2€(X - Xh(xi’t))]'
Define
(35)  Vi(X,t) =) ISilou{K * ge(X — X(2i, ) — K % ge(X — X" (24,1))},
i€l

where {a;}ier is a family of real numbers, g(-) is a cutoff function which can be
f(-) or the partial derivatives of f(-), and g¢(z) = g(z/¢€)/e?.

LEMMA 3.7. Assume the conditions:
(1) g(-) € WH*°(R2) and there are two constants C; > 0 and v > 2 such that
10%g(z)| < C1(1 +a])™ Vz€R?, o] =0,1.

(2) There is a constant Cy > 0 such that h/e < Cs.
(3) There is a constant C3 > 0, C3 = Cz(wp,T), such that |o;| < C3 for all
1€l
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Then, for p € (1,00), there ezists a constant C = C(p, T, wo) such that

(36) Vil OlLs(ra) + Vil D)l1pre < C(L+ lle(®)llnco/€)* lle(®)lIn.ps
where 1/p+ 1/q =1 and the discrete norms are defined in Definition 3.1.

Proof. [18, Chapter II, Lemma 5.2 and Lemma 5.3: Substitute C3 in (3) for
||w0“L°°(R2)]'

Remark. Although Lemma 5.2 and Lemma 5.3 in [18] are proved for uniform
meshes, the generalization to the nonuniform case is straightforward. Several sim-
ilar direct extensions are used below without comment. [

In order to find a bound for the discrete norm of Vi, we need the following
standard result in finite element theory.

LEMMA 3.8. For all p > 2 and all functions g € W1P(R?),

1/p
G717  Ng@llnp = {h2 > Iy(X(mi,t)l”} < C{ligllzr(r2) + hlgl1pr2}-

iezn
Proof. See [18, Chapter II, Lemma 5.4]. O

COROLLARY 3.1. Assume conditions (1),(2) and (3) in Lemma 3.7; then, for
2 < p < 00, there exists a constant C = C(p, T, wq) such that

IVi(®)llnp < C1L+ lle(t)lln,c0/)* ?lle(®) lInp-
Proof. The proof follows directly from Lemma 3.7 and Lemma 3.8. OJ

THEOREM 3.3. Assume the conditions:
(1) f(-) e WZ®(R?) and there are two constants C; >0 and v > 2 such that

0% f(z)] < C1(1 +2])™ VzeR?, |a|=0,1,2.

(2) There is a constant Cy > 0 such that h/e < Cs.
Then, for 2 < p < 0o, there exists a constant C = C(p, T, wo) such that
Vi1 (&)llnp + Va2 (Ollnp + IVia@) Inp < C1 + lle(®) ln,00/€)* 2 lle(®) 5.0,
where 1/p+1/q = 1.

Proof. Since the solution of the Euler equation is assumed to be smooth for
t€[0,T]),M(z,t),wo(z) and Vwg(z) are uniformly bounded for all z € €2. So,

{wo(z;) + Hirwoz, (z:) + HizWoz, (:) }ier,
{IM11(zi,t)Hi1 /e + Mi2(zi,t)Hiz/elwo(zi) }ier  and
{[Ma1(zi,t)Hix [ + Maa(zi, t) Hiz [elwo (i) bier
are all uniformly bounded by some constant which is independent of h and €. Thus,

Theorem 3.3 follows from Lemma 3.7, Lemma 3.8 and Corollary 3.1. O
For estimating Va1 and Vas, the following lemmas are needed.
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LEMMA 3.9. Assume the following conditions:

(1) g(-) e WHL(R2) NW/°(R2) and there is a constant C; > 0 such that for
1Bl =7, |z|/+%|8%g(z)| < C1 for all z € R,

(2) There is a constant Cy such that h/e < Cs.
Then, for any compact set ¥ € R2?, there exists a constant C = C() such that

> 10°K * ge(x — X (x4, t) + y:)|h® < B(B,¢)
t€1,|y:|<|le(t)l|n,0
forallz e #,t€[0,T,] and |B| = £, where Te = max{t € [0,T]]| |le(t)||n,co < Me;
M is an arbitrary constant} and
C, Iﬂl =0,
B(B,€) = { Clloge|, |B8]=1,
cel-18l, 18] > 1.
Proof. For any i € I, as in the proof of Lemma 5.2 in [18], the area of S;(¢) is of
order k2. Let a = max;e; maxyes, | X (y,t) — X"(z;,t)|; then
(3.8) lle(®)lln,co < a < C3h+ |let)|h,c0-
For a fixed z € &, let J; = {i € I'||z — X(=i,t)] < € +a}. If 7 € Jy, then
|z—X(z:,t)] < e+a < e+C3h+|le(t)||n,co- S0, X(zi,t) € S(z,6+C3h+]le(t)]|n,c0)-
This implies that Card J; < Cy4(e/h + 1+ |le(t)||n,00/R)?. So,
S 10°K ge(z — X(20,t) + i) b < Card Jih?|0°K * gellpoo(m2)
1€J1,y:i|<lle(t)lln,00

e/h+ 1+ |le(®)||h.oo/h)2h? _
[ L 1Olae/I < 01+ et nen/o) £

< Ceer™/ for all t € [0,T;] (Lemma 3.3(a)).
Let Jo = I\J;. If i € J,, then |z — X(z;,t)] > € +a. So, |z — X(z4,t) + ys| >
€+a — |le(t)||n,00 > €, because of (3.8). Using Lemma 3.3(b), we obtain

07 07
0PK — X(zi,t) + )| < < ,
I * gs(it (-T'w )+yt)| - |IE _ X(.’l)i,t) +yi|/+1 — {|$ _ X(zi,t)l _ a}/+1

SC4(

so that,
h2
> 10PKxge(e—X(zit) +ui)lh? <Cr 3 vene
i€z lyi <le(t) oo =7 e — X(2i,1)| —a} !
When h — 0,

=0 = {|z — X (i, t)| — a}/ 1 = o=yl 2e+a {lz —y| —a}/*

Since z € ., y € (), where . is compact and (2 is bounded, there exists a constant
R > 0 such that |z — y| < R, and therefore,

/ dy < /2"/ rdrdf
|z—y|29€+a {lz—yl—a}*t = Jo Jeta<r<r (r—a)’*!
€

(27 [R-a (r+a ) dr df
T
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Since a < Csh + ||e(t)||n,00 < C3h + Me < Cge < Cgr for all ¢t € [0,T;], it follows

that
2w R *(r+a)drdf dr
/ / LD < 1+ Colen / e
(14 Cs)2n(R—a —ce¢), |18l =0,
(1 + Cg)27(log(R — a) — loge), 18l =1,
1 1 1
(1+Cs)27r/_1 [e/“l - (R—a)/“l] , 18l>1. O
Define
(3.9) Va(X,t) =D 18i]ai{0° K x ge(X — X" (z4,1))},

€1

where {o;}icr and g(-) are the same as in (3.5). Then we have

LEMMA 3.10. Assume the conditions (1) and (2) in Lemma 3.9. Then there
exists a constant C = C(Q,p) such that

1/p
IVa()llnp < B(B,€) {E Iailph2} Vp € (1,00) and t € [0,T¢],

il
where T, and B(8,¢€) are the same as in Lemma 3.9.
Proof. For j €I and 7 € I,
X(25,8) = X*(20,t) = [X (25, 1) = X(ze,0)] + [X(20,8) — X" (2, 1)].

Let y; = X(zi,t) — X"(z4,t); then |y;| < |le(t)|ln,c0- S0, Lemma 3.9 implies that
for t € [0, T],

D 107K * ge(X(2;.1) = X" (i, 1)) |1® < Bu(8.e).
i€l

Let #(z) = g(~2). Since K(y) = —K(-y),

Koo = [ K@a-sdy= [ K)pel-z=1)dy=K+ po(-2).
So we have
K * ge(X(z5,t) — X"(24,1)) = K * ge(X"(2i,t) — X (25, 1))
Also,
X (zi,t) = X(a5,8) = [X(zi,t) = X (25, 0] + [X*(z,8) = X, 1),

and letting y; = X"(z;,t) — X(z4,t), we have |y;| < ||le(t)||n,c0- Substitute & for g
in Lemma 3.9; then, for ¢t € [0, T¢], we have

Y 10K % ge(X(zj,t) — X" (2, 1)) |B?

JEI

=Y |0°K * ge(X"(zi,t) — X(z5,1))|h? < Ba(B,¢),
JerI
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Va(X(z5,1),8)| =

D 1Si0i{0P K * ge (X (z5,1) — X" (2:,1))}

iel

< Ca ) |aill0PK * ge(X(xj,t) — X (i, 1))| /P ap2/e+2/a
iel

1/q
< Cs {Z |0PK * ge(X (z,t) — X" (i, t))|h2}

i€l

1€1

1/p
: {E o |P|0P K * ge(X (z4,t) — X" (s, t))|h2} (Holder Inequality)

i€l

1/p
< C3(By1(B,¢))'/1 {Z |s|P|0P K * ge(X (x4,t) — X"(xi,t))|h2} .

From this, we obtain
[Va(X (25, t),1) [P

< (Cs)P(B1(B,¢))?/ {Z | P07 K * ge(X (z5,t) — X" (i ¢ ))|h2}

1€l
and
V2115, = [Va(X (25, ), ¢) PR
JerI
< (C3)P(B1(B,€))P/ {E > loulP|0P K % ge(X(z5,t) — Xh(xi,t))|h2l h2}
J€I Lierl
= (C3)(B1(B,¢€))"/ {Z D 10K x ge(X (z5,t) — Xh(a:i,t))|h2] |ai|ph2}
1€l _jGI
= (C3)P(B1(8,€))"/ 1B, (B, ) {E Iail”h2} )
1€l
Thus,

1/p
IVa(®)lp < Co(B1(8,€))9(B(8,€)) M {Z |ai|ph2} for all ¢ € [0, T2). O
i€l

THEOREM 3.4. Assume the following conditions:

(1) f(-) € WEHR?2) N WH°(R?). There is a constant C; > 0 such that
|z|2|0% f(z)| < C; for all z €R2, |a| = 1.

(2) There is a constant Cy such that h < Cae?.
Then there exists a constant C = C(Q,p,wp) such that

Va1 @l + Va2 ()llnp < Cell E(E)Inp Yt € [0,Te].
Proof. By definition,
Var(X,t) = =Y Keg, (X — X" (24, 1))[d1i(t) — 244(t)]

i€l

= —(1/e) D K * fu,e(X — X" (20, 1)) [dni(t) — Z0i(t))-

i€l
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By Lemma 3.10 with = 0 and g = fz,¢, there is a constant C3 = C5({2,p) such
that

1/p
Va1 (®)llnp < (Cs/e) {E |[da(t) — Jli(t)]/|Si||"h2} -
el
According to the construction of the method in Section 2,
[d1i(t) — 21:(8)]/ISi
= [My (2, t)d1s + Mya(i,t)dai — My (i, t)d1s — Miy(i,t)d2il /|Si]
= [M11(2i,t) — M{y (4, 1) (- Hinwo(z4))
+ [Maa(2i,) — Miy(2i,t))(— Higwo(:)),
so that
|d1i(8) = 215(t)I/1S] < 2hl|wol|Loo (r2) | M (23, ) — M" (23, 1)].
Hence, ||V21(t)|lnp < (Csh/E)|E@)|lnp < (CsCo€)||E(t)||n,p (condition (2)), and

in a similar way, ||Va2(t)||lnp < (C5C28) || E(t)||n,p- O
Part II. Consider the difference
?/J‘(X, t) — ?/;‘(X",t) =K. *a/h(X, t) — K. *w"(X",t)
=) [eciKe(X — X"(2i,1)) — Z1i(t) Koo, (X — X" (24,1))
i€l
- “/2i(t)K522 (X - Xh(zia t))]
= eiKe(X" — X" (24,t)) — 1i(t) Kea, (X" — X" (24,1))
i€l

- ‘l/%(t)KEZz (Xh - Xh(mi’ t))]

= {Z cilKe(X — X" (zi,1)) — Ko (XM — Xh(z,-,t))]}

i€l

+ {—Zefli(t)[xm(x-Xh(xi,t)) — Koo (X —X"(zi,t))l}

i€l

+ {— Y i) Keg, (X — X" (34,1)) — Koy (X" - X"(zi,t))]} :

i€l

where we call the expression in the first pair of braces Wi (X, X*,t) and the other

two W1 (X, X", t) and Wyo (X, X", t). Now we define

(3.10) W(X,X",1) = > |Si|os[ K * g (X — X" (1)) — K * go(X" — X" (24,1))],
i€l

where {o;}ier, g and g. are as before. For {a;}ics, we have the following lemma,

where the region () and &% are as shown in Figure 5. & is a compact set which
contains () and is bounded by mesh lines, and z;, zx are adjacent mesh points in

.
LEMMA 3.12. Consider the family of numbers {a; |7 € I, a; = 0 if z; ¢ Q}.
Assume the conditions:

(1) There exists a constant Cy such that manGJ(hjl, hjg)/minjej(hjl, hj2) <
Ci and h < 1.
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FIGURE 5

(2) There exzists a constant Ca which is independent of h such that |a;| < Cq
foralliel.

(3) For any adjacent z; and z with i,k € I, |a; — ak| = Pik|zi — zk|, there
exists a constant Cs3 which is independent of h such that |Bik| < Cs.

Then there exists a function wo(-) € B(¥ ) NWP () (& is the interior of ),

1 < p < o, such that wo(z;) = oy for alli € I, and Hwo(-)nl 2 1s independent of
)p)

h.

Proof. For any 7 € J, take a local Cartesian coordinate system with the origin
at z;1 (see Figure 6). Let P;(¢1,¢2) = Aj + Bj1 + Cj¢e + Dj1¢2, which satisfies

P(0,0) =51,  Fj(h;1,0) = aya,
Pj(hj1, hj2) = ajz,  Pj(0,hj2) = aja.
Then,

Pj(s1,62) = a1 + {(ey2 — aj1)/hj1}a + {(ay4 — aj1)/hya}e
+ {[(e53 — aj2) + (a1 — aja)l/hj1hja}sice.

'y

Xj4 X3

Xj1 ij

FIGURE 6

For the global coordinate system on B;, (z1,22) = (11 + 1, %512 + 2), where
(zj11,2;12) is the coordinate for the point z;1, 0 < ¢ < hjk, £ = 1,2. On By,
define 2;(z1,22) = ,j(2j11 + ¢1, ZTj12 + ¢2) = Pj(s1,62). Let «o(-) be a function
defined on & in the following way:

mo(m)lBj = /&j(zl,xg) = Pj(§1,§2) for all ] eJ.
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By finite element theory, #o(-) € B(%') and wo(z)|aw = 0, «¢ is differentiable
a.e., 0%o(z)|B, = 0% 5 for |a| = 1. So,

|Pj(§1,s‘2)|
< laji| + (a2 — @j1)| + [(ea — @j1)| + [(@43 — az2)] + (a1 — @ja)]
<oyl + 1Bjagi st + 1Bjags |hjz + 1Bjsgalhss + 1B515ulhj1 < C2 +4C3 Vi € J,

from which
(3.11) ”(é‘()“Loq(M) < C3 +4Cs.

Meanwhile,

0,25/0x1 = (0,25/0¢1)(061/021) + (0 2/ 02) (052 /O1)
= {(oy2 — aj1)/hj1} + {{(aj3 — a52) + (@51 — aj4)l/hj1hsa}e,

and so, |0,2;/0z1| < |Bjpsil + 1B4z5.1C1 + 1815.1C1 < Cs(1 + 2Cy). Similarly,
|0,27/0z2| < C3(1 +2C1), and

(3.12) |]0°‘w0|]Lm(M) < 03(1 + 201), |O4 =1.

(3.11) and (3.12) imply that zg € W' (). Since % is bounded, o € Wy ()
implies that zo € WP (&) for 1 < p < 0o and ”wo”l B depends on Cj,Cy,Cs

’p!
and &7. O

LEMMA 3.12. Assume the conditions:
(1) g(-) € W21(R2) N W2°(R2) and satisfies

|0%g(z)| < C1(1 + |z|)™*  for all z € R? and |a| = 2.
(2) h/é‘ < Cs,.

(3) {as}ier satisfies (1), (2) and (3) in Lemma 3.11.
Then there exists a constant C which is independent of h and ¢ such that

0K *
> aulSi % (2 — X" (2,1))| < C(1+ [le(?)l|n,0o/€)?
el Oz

vz € R2, t€[0,T), k=1,2.
Proof. [18, Chapter II, Lemma 5.6: Substitute « in Lemma 3.11 for wp). O

LEMMA 3.13. Assume the conditions (1), (2) and (3) in Lemma 3.12. Then
there exists a constant C which is independent of h and € such that for allt € [0, T)
and p € [0,00], [W(Dllnp < Clle®llnp(1 + le(®)llnco/e)?, where W (X, X",t) is
defined by (3.10) and ||W (¢)||n,p is given by Definition 3.1.
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Proof. By (3.10) we have
W (X (25, 8), X" (25, 1), 1

D ISiloulK * ge(X (z5,t) — X (4, 1)) — K * ge(X™ (25, 8) — XP(2i,1))]
1€l

3 [Sile { /0 DK * ge[X(2;,8) = X*(z1,) + (X" (z,1) — X(z,1))] do}
el

(XM (z5,t) — X(z4,1))

D ISilouDK * ge[X (25, t) — X" (2i,1) + 0(X" (25, 1) — X (5, 1))]
el

do

1
<
0
XM (24,1) — X (25, 1)
< C3(1 + [le(t)lln,00/)*| X (2j,t) — X(5,t)] (Lemma 3.12),
and hence, W (t)[ln,p < Clle(t)llnp(1 + lle(t)In,c0/€)?. O
THEOREM 3.5. Assume the conditions:
(1) () e W2I(R2)NW2°(R?) and satisfies
|0%f(z)| < C1(1 +|z|)~* for all z € R? and |o| = 2.
(2) h/e < Cs.
Then there ezists a constant C = C(wog,p,T) such that
W11 (®)lln,p < C(L+ lle(®)lln,0o/€)lle®)lln,p  for all t €[0,T], p € [1,00].
Proof. By definition,
Wit (X, X", ) = > il K % fe(X — XM (4,t)) — K % fo(XP = X" (z4,1))),
i€l
where ¢; = ISi'(wo(zi)+Hilw0:zl ($¢)+H¢2w012 (a:i)). Let o; = wo(zi)+Hi1w021(a:i)
+Hi2Woz, (7;); then |o;| < Cs|lwo|lw 1.0 (r2) for all 7 € I. For two adjacent z; and
Zx with 7,k € I we have
i — ae| = |wo(zi) — wo(zk) + Hiz(wos, (zi) — wos, (zk))
+ Hi2(Wog, (T:) — Woz, (Tk)) + Woz, (Tk)(Hix — Hr1)
+ Woz, (Tk) (Hiz — Hy2)|
= |Dwo(zik) - (zi — zk) + Hy1 Dwog, (yix) - (% — Tx)
+ Hig Dwog, (2ik) - (i — Tk) + Woz, (Tx) (Hi1 — Hy1)
+ Woz, (zx) (Hiz — Hi2)|
< Cyllwollwz.0(m2)|Ti — 2kl

where z;k, y;x and z;; are intermediate points between z; and zx. Thus, by Lemma
3.13,

IW11()llnp < Cslle)llnp(1 + lle(®)lln.co/€)* ¥t €[0,T], p €[0,00]. O

For the estimation of Wy (X, X",t) and Waa(X, X", t), we have the following
result.
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THEOREM 3.6. Assume the following conditions:
(1) () e WL R2)NW2>°(R?) and satisfies
|z|*|0% f(z)| < C1  for all z € R? and |a| = 2.
(2) h < Cqe?.
Let T = {t € [0,T]||le(t)|ln,00 < M1, ||E(t)||lnc0 < M2}, where M; and M, are

two arbitrary constants. Then there exists a constant C = C(wo, T, p) such that

W21 (B)llnp + IWa2()llnp < Clle(t)llnp  for allt € [0,T¢] and p € (1, 00).
Proof. By definition,
Wai (X, X", 1) = = >~ hi(t)[Kea, (X — XM(2,8)) — Keay (X" — XP (21, 1))]
i€l
= DO K fo (= X)) = K fore X = Xz 1)]

i€l

= 5 DO T Dk ¢ o6 = X (ait) + 00~ XM 8] - (X% = 30,

1€l

and
W21( (zjvt) Xh(xj’ )’t)

= S [ Do (X ) = X01) + 00K, ~ X (2,) 6]

1€l
'(Xh(zj’t) _X(Ijvt))-
So,
Wa1(X (25, ), X" (25, 1),¢)|
< IXh(zj’ )_ (:L‘],t)l

Z | h(t)' 0<9<1 |DK * fz,6(X (z5,1) _Xh(zu t) +0(X(z;,t) - x* (zi, 1)l

i€l
= |Xh(z]-,t) - X (zj,t)]
[(8)] | h
x% e o0f6e1 IDK * fo,e(X(25,8) + (X (25, t) — X" (5, 1))

- X(zi’t) + y’i)l’
where y; = X (z4,t) — X"(z;,t) and |y;| < ||e(t)||n,co- By the definition of #4;(t),
1i(t)/e = —[M7y (zi, t) Hix + Miy(zi, t) Hizlwo ()| Sil /e

Since for t € [0,T¢], |E(t)||ln,c0 < Mz, and ||M(-,t)||Le(r2) is bounded for ¢t €
[0,T7], we have |[M"(z;,t)| < Cg for all i € I and ¢t € [0, T]. Therefore,

|M{L1(.’Ei,t)H¢1 + M{B(.’Ei,t)HizVE <Cqse Vielandte [0, T;],
because h < C2¢?, H;; = O(h) and H;y = O(h). Hence,
|#1i(t) /€| < Crellwo|| oo (r2)|Si| for all ¢ € I.
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Using Lemma 3.9 and Lemma 3.10 with |3| = 1,

Wa1(X (25,1), X" (25,1),1)]
< X" (25,1) = X(25, 1)

2
X ZGZI I le(t)l Orélg%(l ‘DK * lee(X(xj,t) + B(X(a:j,t) "‘Xh(zj,t))

= X(zi,t) +yi)l
< X" (z5,t) — X(25,)|Cre|wol| oo (r2)Csllog €] < Co| X" (z;,t) — X (x5, 1).

This implies that ||W21(t)||n,p < Colle(t)||n,p for allt € [0, T7], p € (1,00). Similarly,
[IWa2(t)|lnp < Crolle(t)||np for all t € [0,T¢], p € (1,00). O

The Error Bounds. Now we will give the error estimate for the 2-D vortex
method constructed previously.

THEOREM 3.7 [Summary]. Assume the following conditions:

(1) (i), (i) and (iii) of Theorem 3.1.

(2) f() € WHH(R?) N W*H*(R?) and there exist constants C1,Cy and v > 2
such that

[0°f(z)] < C1(1+z))™", =z €R?|a|=0,1;
|0°f(z)| < C2(1+z))™%,  z€R2|a|=2.

(3) There exists a constant C3 > 0 such that h < Cse?.
Then, for 2 < p < oo, there exists a constant C = C(p, T, s,wg) such that

h *
<O (& + g el + By ) Ve 0T

40

h,p

where s > 0 s an arbitrary number.

Proof. This result is the content of Theorems 3.1-3.6. [

Since the error bound for d{e(X, X*,t)}/dt involves the term ¢||E(t)||5,p, we now
need to analyze d{e¢E(X, X",t)}/dt:

d h _ d _ h
ZeB(X, X", 1) = Ze{M(a,t) - M*(z,)}.

According to the systems of ordinary differential equations for M and M*,

s%{M(x, ) — MM (z, 1)} = e{Vu(X, ) M(z,t) - VZP (X", t)MP (z, 1)}
= e{(Vu(X,t) = V¥Zr (X", 1)) M (z,t) + VX (X", t) (M (2,t) — M"(,1))}
= e {(Vu(X,t) - VZI(X",t))M(z,1)
+(VZM (XM 1) — Vu(X, 8))(M(z,t) — MM (2, 1))
+Vu(X, )(M(z, 1) — M (z,1))}.
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Since we assume that the true solution is smooth,

1/p
(3.13) {ZIVU(X(%J)J)(M(%J)—M"(xi,t))l”h2} S GUE®)hp,

1€l

1/p
{Z (VZ (X" (x4, 1), 1) — Vu(X (24, 8), 1)) (M (z4,1) — M (x5, t))|"h'~’}
i€l
(3.14)

1/p
<NE®Ir,o0 {Z IV (XM (24,1),8) — V(X (24, t),t)l”h2}

i€l

and

1/p
{Z (V2 (XM (i, 8),t) = V(X (2:,1), 1) M (zs, t)l”h"’}
(3.15) '€ "
S IM (1)L (r2) {Z V%2 (XM (3,1),8) = Vu(X (24, 1), t)l”hz} :

el

So, for t € [0,T¢], Egs. (3.13), (3.14) and (3.15) imply that

i€l

1/p
Cy (auE(t)uh,,, +e {Z |Vu(X (25, t),t) — VHR (XD (24, 1), t)|”h2} ) .

By norm equivalence,

1/p
{Z [Vu(X iy ), ) = VP (XP (z4,), ”"’"2}

el

p 1/p
Scs{ > |22 xetant), 6 - 2 e, 2]
€l
au h 2 l/p
|3 | 22 (xm 01,0) - 2 (a0, h] }
el
e <(%ik-(X,t) ‘?f/ (X"t )) —c (K*w,k(X ) - 37/ e (x*, t)) (k=1or2)

=¢ {[K*wzk(X,t) K. xwg, (X, t)] + {Ke * wg, (X, 1) — (Xh t)]}
=e{l; +1}.

I; can be bounded by using the method of Theorem 3.1, substituting wy, (-,t) or
Wg, (- t) for w(-,t) in Theorem 3.1. Considering the second term Iy, for k = 1,2 we
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have
h
I, =c¢ (Ke * wzk(X) t) - Q%—(Xh’t))
oz
= {(8K5/8:1:k) *w(X,t)
2

— A\: [ 3Ke — X" (z4,1)) —a’u‘(t)aa Ia(s (X" = X" (zi,1))
i€l o

2
—dzi(t)%;%(X” - Xh(z;, t))] }

= (K * fz,e) *w(X,t)
=D [eiK * fo (XM — XM (x4,1))

i€l
- ‘/l’t(t)(K * fitki)zl (Xh - Xh(.’lt,;,t))
— 3i(t) (K * fare)oa (X" — X"(2:,1))],

where fg.e(z) = fz,(z/€)/€2. By substituting fz,(-) for f(-) in Theorem 3.7, we
obtain the following result.

THEOREM 3.8 [Corollary of Theorem 3.7]. Assume the conditions:

(1) (i), (ii) and (iii) of Theorem 3.1.

(2) f(-) e WS (R2) N W5 (R2). There exist constants Cy,Cy and v > 2 such
that

[0%f(z)| < C1(1 + |z|) 77, z€R? |a|=0,1;
|0%f(z)| < Co(1 + |z|)74, z€R? |o|=2,3.

(3) There exists a constant C3 > 0 such that h < C3e?.
Then, for 2 < p < 0o, there exists a constant C = C(p, T, s, wg) such that

d
”a“

h *
sc(ek 3+s+ne<t)uhp+euE(t)uhp) vee 0,17,

+e

dt ()

where s > 0 is an arbitrary number. O
For the main estimate, the Gronwall inequality is needed.

LEMMA 3.15 [Gronwall inequality]. Let G: R — R be a smooth function. Let
Il -]l be @ norm on R™ and let  be a continuously differentiable n-vector function
on [0, T*] such that £(0) = 0 and ||dz(t)/dt|| < G(|le(t)|]). Let y be the real-valued
function defined by dy(t)/dt = G(y(t)) and y(0) = 0. Then fort € [0,T*], |le(t)| <
y(t).

Proof. See [11, Section 1.6]. O

THEOREM 3.9 [The main estimate]. Assume the following conditions:
(1) Conditions (1) and (2) of Theorem 3.8 with k > 2.
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(2) There exist three constants C3 > 0, o and B such that
a>B>2 and C;'e* < h<CséP.

Then we have the following results:
(a) For 2 <p < o0, there ezists a constant Cs = Cs(p, wo,T) such that

h4
(3.16) le(®llnp + €l EDlInp < C (e’“ + Em) :

h4
(317)  llu(t) = ZDllnp + el Vu(t) - VZD)llnp < C (e’° + Eaﬂ) :

(b) There exists a constant Cs = Cs(p, wo,T) such that

: Cs h*
(3.18) o)l o + B0 < 5 (8 +25)
[4(6) = 22 (0) o + €l V(0) = TZA D)o
3.19 4
(8.19) 5% e’°+h— vt € (0,7,
€8 8

where s > 0 1s an arbitrary number.
Proof. By Theorem 3.8, for p € (0, 00) there exists a constant C;5 = C14(p, wo, T)
such that for all ¢ € [0, T],

d
Ee(t)

d h*
ve|GEO| < 0u (4 i +leng + B,
h,p h,p
where s > 0 is an arbitrary number. For (3.16), let (X, X",t) = (e(X, X", 1),
E(X,X",t)) and define [|«(t)|| = lle(t)l|n,» + €l E(t)]|n,p- Then,

4

(3.20)

llde(t)/dt]| < Cis (sk + h

g He(t)“) vt € [0,T;].

Define G: R — R by setting

h4
G(a) =C1s <Ek + 631 + a) = Cls(a +61).

Then, ||de(t)/dt]| < G(|le(t)||) by (3.20). Solve the initial value problem
dy(t)/dt = G(y(t)) = C1s(y(t) +€1),  y(0)=0

to get
y(t) = (exp(C1st) — 1)ey.
By Lemma 3.15,
h4 .
IO < ¥(0) < (exp(C1eT) = 1) (& + 1) forallt€ 0,721,
So,

p .
Ie)ns +EIE@Iny <C. (¢ + 1) VeEl0.T2), 2<p< oo

The above result implies (3.16) for ¢ € [0,T;], and (3.17) follows from (3.16) and
(3.20). For (3.18) and (3.19), consider any p € (2,00) and note that

le®linp + el EOlnp 2 B> (le(®)lln,co + ENEE)n,00)-
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Then,
lle(®)lln,00 + ENE@) 18,00 < A™>2(lle(®)ln,p + I E@)lIn,p)

1 .k
(3.21) S Cotenan e <€ + 53+8>

1 e, B*\ _Cs [, At .
SWS‘CS<E +E—3>_?’T etz vt € [0,T7].
By the same procedure we can show that
h4

/
Jul0) = 22 Olco + lV0(0) - V2 Ol < S (4 55) w012,

so that (3.18) and (3.19) are satisfied for all ¢ € [0, T7].
The remaining problem is to prove that T = T. Recall that

T; = max{t € [0,T]| [le(t)llnc0 < Mi€ and [le(t)][n,c0 < Ma}.

Since u, !, Vu and V% are continuous and bounded uniformly for (z,t) € Q x

[0,T] and e(X, X*,0) = 0, if Tr < T, then ||e(T)||h,c0 = Mi€ or |[E(T)||hyoo =

Ma. But, by (3.21),
lle@®)llr,00 + el E(t)

1 & ht .
llh,00 < 'C—s_g,mcs <E + m) with £ > 2.

Choose p so large that k — (2a/p) > 1. Then,
”e(t)”h,oo + E”E(t)”h,oo < max(Ml’M2)€k—(2a/p)

for suitable € and h, for all t € [0,T7]. This is a contradiction, and it follows that
T*=T.O

Remark. The result of Theorem 3.9 may be compared with the analogous
result, using simple § functions. For the latter case, the error bound would be
Cs(e* + h?/e%t1). Hence, substantial improvements can be obtained by suitable
choices for €. Some numerical results for this algorithm are given in [§].

4. Conclusion. A higher-order vortex algorithm is defined for two-dimensional
incompressible inviscid flows. This algorithm uses gradients of § functions (vor-
tex dipoles) in addition to the usual § functions (point vortices) with appropri-
ate smoothing. Error estimates are proved, demonstrating the higher orders of
convergence on arbitrary (graded) meshes for assignment of the initial vorticity
distribution.
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