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Convergence of a Higher-Order Vortex Method 
for Two-Dimensional Euler Equations* 

By C. Chiu and R. A. Nicolaides 

Abstract. There has been considerable interest recently in the convergence properties 
of point vortex methods. In this paper, we define a vortex method using vortex multi- 
poles and obtain error estimates for it. In the case of a nonuniform mesh, the rate of 
convergence of the dipolar algorithm is shown to be of higher order of accuracy than 
obtained with the simple vortex methods. 

1. Introduction. Although vortex methods have been used for many years 
for approximation of the partial differential equations of incompressible inviscid 
fluid dynamics, [12], [13], [15], a precise mathematical analysis was not available 
until very recently. In fact, the first complete analysis of a two-dimensional vortex 
method was given by Hald [10] in 1979. Since then, many papers have appeared 
giving error estimates for two-dimensional and three-dimensional vortex methods, 
including [1], [2], [3], [4], [5] and [18]. These analyses mostly assume a uniform 
mesh for the initial vorticity discretization. As a result of the mesh uniformity, 
the resulting error estimates are of unexpectedly high order of accuracy, being 
limited essentially by the regularity of the initial vorticity distribution. In more 
realisitic situations, it is improbable that uniform meshes can be used, e.g., if there 
are irregular bodies in the flow. In this case, the accuracy of the standard vortex 
methods will drop to first or second order, regardless of the initial regularity. In 
order to deal with nonuniform meshes, [17] defines some new vortex schemes for 
the two-dimensional incompressible Euler equations. In this paper we shall give 
a complete error estimate for one of them. This method yields higher order of 
accuracy even on nonuniform meshes. This is achieved by using not only the usual 
6 function point vortices, but also derivatives of such distributions. 

In the next section we will define the algorithm and give explicit formulas for 
its implementation. Then, a rigorous error estimate will be provided following the 
Sobolev space technique of [5] and [18]. 

2. The Construction of a Higher-Order Vortex Method. 
2-D Euler Equations. Let u(x,t) = (u1(x,t),u2(x,t)), x E R2 and t E [0,oo), be 

the velocity field and w = curl u = alU2 - d2u1 be the vorticity. Assume that the 
exterior forces acting on the fluid are potential. Then the Euler equations are: 

(Wt + (u V)w =Dw/Dt = 0, w(x,0) = wo(x), x E R2, 
(2.1) divu = 0, 

u -u-*0 as lxl-oo. 
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Here, by definition, D/Dt := at + (u. V) and is the usual material derivative. 
Concerning the existence and the uniqueness of solutions to the equation (2.1), 
see [14], [16], [19]. Smooth solutions are known to exist for all time in the two- 
dimensional case with smooth initial data. In this paper we assume that the initial 
vorticity wo(x) of (2.1) is smooth so that there exists a smooth solution of (2.1) on 
some space-time interval R2 x [0, T]. 

Let X(x, t) be the path followed by a fluid particle which is at the position x 
when t = 0. Then the map x - X(x, t) satisfies the system of ordinary differential 
equations 

(2.2) dX(xt = u(X(xj t), t), X(xX 0) = x. 

Then, (2.1) with the initial vorticity w(x,O) = wo(x) satisfies w(X(x,t),t) = 

wo(x). In this paper we only consider those flows with smooth vorticity wo(x) 
which have compact support. Under this assumption, there exists a bounded set Q 
such that supp w(., t) C Q 2 Vt E [0, T]. 

Vortex Methods. Vortex methods are based upon the tracking of finite numbers 
of fluid particles and evaluating velocities by discretizing certain singular integrals. 
The basic idea of vortex methods is to approximate the initial vorticity by a linear 
combination of Dirac delta functions. For example, approximate wo by wh = 

EjEJ aj6(X - X.) where aj E R. 
By following those particles whose positions at t = 0 are {Xj}Ej, using (2.2) 

with x = xj, we get wh(X, t) = jEJ a36(X - X(x3, t)). 
To compute u, one uses the fact that div u = 0 to introduce a stream function 

from which the velocity may be expressed as a singular integral. The singular 
kernel is then smoothed by a cutoff function, and quadrature rules are then needed 
to evaluate the integral. In order to get arbitrarily high order of accuracy by the 
above method, a uniform mesh has to be assumed. It can be obtained, for example, 
by subdividing the plane into squares of side h and letting {Xj}jEj be the corner 
points of the squares [18]. We will now introduce our algorithm and some related 
theorems. This algorithm allows us to deal with nonuniform meshes and still obtain 
high-order accuracy. 

A Higher-Order Vortex Method. Recall that if the initial vorticity function is 
smooth, then the classical solution of (2.1) is given by w(X(x, t), t) = wo(x). Now, 
let q (.) e -(R2) where ?(R2) = {q (.) e COO(R2) 1 q$Q) has compact support}; 
''(R2) is the dual space of ?(R2) and (., ) denotes the duality pairing. Then, 

(w(., t), 0)= I (z, t)(x)d = R wo(x)q$(X(x, t)) dx = (wo )5(X(., t))), 
R2 R2 

because the determinant of the Jacobian matrix of x -* X is 1 since div u = 0. 
Thus, we define a weak solution of the Euler equation as follows: 

Definition 2.1. Assume that a unique solution of (2.2) exists. For w(., t) E 
'?'(R2) and wo(.) E -'(R2), if 

(w(., t), q (.)) = (wo (.), q(X(., t))) Vo (.) E 2(R2), 

then, w(., t) is said to be the weak vorticity of the Euler equation (2.1). 
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THEOREM 2. 1. Suppose that X(xo, t) exists. 
If wo (x) = a6 (x -xo) + ?b61 (x-xo) + c6x2 (x -xo), where a, b and c are constants, 

then the weak vorticity as defined above is 

(2.3) w(x, t) = a6(x-X(xo, t)) + b(t)6x1 (x-X(xo, t)) + c(t)62 (x-X(xo, t)), 

where 6x, and 6x2 are derivatives of the Dirac Delta function 6 and 

((t)) = M(x, t) ) M(x, t)= (dXi 
(t) c ~~~~~~~~~dx3,I 

is the Jacobian matrix of x -* X at xo. 

Remark. Note that 

dtM(Xt d (dXi dui dui dXk 
dt ~~dt \dxj) 'dxj) kdXk dxj ,J 

using the summation convention. So, M(xot) satisfies the following system of 
ordinary differential equations: 

(- = Vu Ml dt 
M(xo, O) =I, 

where M = M(xo, t) and u = u(X(xo, t), t) 
Proof. For all q E _(R2) we have 

(WO(), O(X(., t))) = aq(X(xo, t)) - bdO(X(xo, t))/dxi - cdo(X(xo, t))/dx2 
= aq$(X(xo, t)) - bt(dq/dXj) (dX1 /dxj) + (dq/dX2) (dX2/dxj)] 

- c[(d0/dXj)(dXj/dx2) + (d0/dX2)(dX2/dx2)] (at xo) 
= a0(X(xo, t)) - b(t) dO(X(xo, t))/dX, - c(t) d0(X(xo, t))/dX2 
= (a6(. - X(xo, t)) + b(t)6x1 ( - X(xo, t)) + C(t)6X2 ( - X(xo, t)), OH()) 

= (wt ,),o0 ). 

Using Definition 2.1, w (., t) is the weak vorticity. [ 
Now we will define our vortex method by specifying a, b and c over an initial 

vortex distribution. This can be done in many ways [17]. The method used below 
is based on direct numerical integration. 

The Vorticity Field. 

Bj 
xj3 xi 4 

I=( i X1E 00 ) J=t( | Bjn~f0 #0 

FIGURE 1 
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Take an arbitrarily spaced rectangular mesh on R2. Let supp wo C Qo which is 
bounded. To each rectangle formed by adjacent coordinate lines, assign an index 
j and denote it by Bj. Denote the lengths of the edges of Bj by hj1 and hj2. Let 
{Xjk}k=1,4 be the four corners of Bj. To each corner of Bj n Qo # 0, assign a 
global index i, as shown in Figure 1. 

Interpreting the initial vorticity wo as a distribution, we shall approximate wo 
by another distribution wh of the form 

Wh(X) = E [ajk8(x - Xjk) + bljk6, (x - Xjk) + b2jk6z2(x-xjk)I 

iEJ k=1,4 

- E[ci6(x - xi) + d1i 6x (x - xi) + d2i 62 (X-Xi)] 
iEI 

Then, based on Theorem 2.1, we expect that w(., t) can be approximated by 

Wh(X) = E E [ajk6(X - X(Xjk, t)) + bljk(t)6x1 (x - X(jk, t)) 
jEJ k=1,4 

+ b2jk (t) 6X2 (X - X(Xjk, t)) ] 

= ~[ci6(x - X(xi, t)) + d1i(t)6x, (x - X(xi, t)) + d2i(t)6X2 (x - X(xi, t))], 
iEI 

where 

(b2jk(t) Jb2jk) a d2i(t)) d2i 

Concerning the choice of the coefficients {ajk, blik, b2jk}, observe that for k(*) e 
9(R 2)1 

(Woh(2),(X)= E j [ajk(Xjk) - bljk(t)Ox,(xjk) -b2jk(t)kX2(Xjk)]i 

jE J k=1,4 

whereas 

(Wo(), k()) = 1R| wo(x)?(x) dx = w I wo(x)q(x) dx. 
R2 jEJ Bj 

This suggests that approximating wo by wh corresponds to approximating the in- 
tegral 

f|j wo(x)(x) dx 

by some numerical integration rule, where {ajk, bljk, b2jk}jeJ,k=1,4 define this rule. 
For our algorithm, the following quadrature rule is used [17]. For a 2-dimensional 
rectangle B with corners {P}i=1,4, sides h1 and h2, as shown in Figure 2, and 

f EC1(B), 

f ~~hih2 
l f(x) dx 4 4 (f(Pl) + f(P2) + f(P3) + f(P4)) 

(*) + 24 [-f (PO) + fx (P2) + fx(P3) - fx(P4)] 

+ 24 
+ 2~h [_ (p1)-f(p2) + f (p3) + fV(p)] 24 CA4] 
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P2 P1 

P3 E I P4 

FIGURE 2 

For this rule, a direct calculation shows: 

THEOREM 2.2. The quadrature rule (*) is exact for all third-degree polynomi- 
als. L 

Denote the right-hand side of (*) by Q2(B, f ), i.e., fB f (x) dx Q2(B, f). Thus, 
if {ajk, bljk, b2ik} e J, k=1,4 are chosen by the above rule, then for q(.) E ?(R2), 

(Woht ), +( = S 5 [ajk4(Xjk) -bljkq$i (Xjk) -b2jk+x2(Xjk)] 
jEJ k=1,4 

=: Q2(BjiO). 
jEJ 

Then, when h --+ 0, EjE Q2(BJ , q5) -j(W(.),O q(.)). More precisely, Wh converges 
in 9'(R2) to wo as h -O 0. Correspondingly, wh - W in .,'(R2), by Definition 
2.1. To see what the corresponding coefficients {ci, d1i, d2i} are, let us consider an 
example. 

.. .. .. .... .... ... ................s 
. .. .. . 

[ Xi ___I___ 

FIGURE 3 FIGURE 4 

Suppose that the mesh is as shown in Figure 3. The points with closed circles 
are the nodal points of the mesh. Then Bj is some rectangle with nodal points 
as its four corners while Si is a rectangle which contains the nodal point xi and 
is bounded by dotted lines. Note that dotted lines equally divide sides of every 

Bj. Bj1, Bj2, J3B3 and Bj4, as shown in Figure 4, are four adjacent rectangles. Let 
Si be the rectangle shown and I Si I be its area. Since xi is a common corner of 

Bj1, Bj2, B33 and Bj4, by the quadrature rule (*), we have the following: 

ciq(xi) - dlikx, (xi) - d2ikx2 (Xi) 

= (1/4)[hj11hi12 + hj2lhj22 + hj3lhj32 + hj4lhj42]WO(xi)q0(xi) 

+(1/24)[h?,hjl 2-h?2, hi22-h?3 hj32 + h?4 
h42](woq)xi 

(xi) 

+ (1/24)[hjllh?2 + h ?2 hj22 -hj3l h? 32-hj41h42](wo)x2(xi) 

= JSi I{wo(xi)O(xi) + Hil (woq)xl (xi) + HU2 (Wo)X2 (Xi))} 
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Assume that there exists a constant C > 0 such that 

maxiEj(hji, hj2) <C 

minjEJ(hjl, hj2) - 

and let h = maxjEJ(hil, hj2); then, Hi1 = O(h) and Hi2 = O(h) and 

(2.4) Ci = ISiI{wo(xi) + Hi1wOx 1(xi) + Hi2woX2(xi)} 

d(i2 = -ISiHjiwo(xi), d2i = -ISijHi2wo(xi), Vi E I. 
The Velocity Field. In order to obtain the velocity field from the vorticity field, 

we need the following result. Let K: R2 -4 R2 be defined by 

K w xI (X2) 
K=27rjxj2 

( 1) 

LEMMA 2. 1. The convolution operator f -K * f is a bounded linear mapping 
from L??(R2) n L1(R2) into B0(R2)2 (set of bounded and continuous 2-D vector- 
valued functions). Moreover, if f E L?'(R2) n L1(R2) and satisfies f(x) -4 0 as 

lxi -4 oc, then the function v = K * f (2-D vector) is the unique solution of 
{ div v = 0, 

curl v =f, 

v(x) -O 0 as lxi ox, x E R2. 

Proof. See [16]. W 
It follows from Lemma 2.1 that u(, t) = K * w(, t) in problem (2.1). After 

computing the approximate vorticity field wh, we need to find the corresponding 
velocity field. It would seem natural to set uh(., t) = K * Wh(., t), but since the 
kernel K is a singular function, its convolution with delta functions is not defined 
in general. To avoid this problem, the now standard remedy is to regularize K as 
follows. 

Let f(x): R2 -4 R satisfy fR2 f(x) dx = 1 and let f,(x) = (1/e2)f(x/e). f and 
ft are referred to as "cutoff" functions. If K, = K * f,, then Lemma 2.1 implies 
that K, E B1(R2)2 provided f E W1" (R2) n W"',(R2). Then, u(.,t) will be 
approximated by u h = Wh * K., so that 

uh(x) = E [ajkKE(x - X(xjk, t)) - bljk(t)KEx1 (x - X(xjk, t)) 
jEJ k=1,4 

- b2jk (t)Kex2 (X -X(Xjk, t) )] 

- E [ciKE(x - X(xi, t)) - d1i(t)KfEx1 (x - X(xi, t)) 
iEI 

- d2i (t)KEX2 (x- X(xi, t) )] 

Here, KEx1 = dK~/dxl, KEX2 = dK/dx2 and {X(xi,it)}~i are exact particle 
positions at t. But we can compute only approximate positions {Xh(x, t)}iEI 
and corresponding approximate Jacobian matrices {Mh (xi, t)}iEI. Therefore, only 
approximate coefficients {A/i (t), a'2i(t)} eI can be obtained. So, the actual velocity 
field we compute is 

(2.5) ?4Wh(X, t) = E[ciKe(x - Xh(Xi, t)) - i (t)Ke,1 (x - Xh(Xi, t)) 
iEI 

- '2i (t)KEX2 (x - Xh (Xi, t))]. 

Here we use W to denote the numerical velocity field. 
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In summary, the 2-D algorithm is as follows: 

{dX h(XI t) /hx xh 
|~~ ~~ dX(z ) h(XhJ t), Xh (X, 0) = x, 

d t) VZ/h(XhIt)Mh(XIt)I Mh(xO) =I 

(see the remark after Theorem 2.1), where ?4h is the numerical velocity field given 
by (2.5), Xh(x, t) is the computed particle position at t with its initial position at 
x, and Mh(x, t) = (9Xih/Oxj) is the Jacobian matrix of the mapping x __ Xh(x, t). 
Moreover, 

(li -Mh (Xi t) dii 
4&2i(t) /d2i) 

and {ci,di, d2i}iei are given by (2.4). 

3. Error Estimates. In this section we will give a complete error estimate for 
the algorithm constructed in the last section. The analysis given here consists of 
two parts, one for estimating the consistency error and the other for stability error. 
The first part is based upon Sobolev space theory. The second part depends on 
analysis of the velocity kernel and the behavior of the cutoff function. 

Notations and Definitions. The norms used for the analysis are discrete LP- 
norms. 

Definition 3.1. For f(.) E [LP(q)]2 or [LP(q)]2X2 I define 

- - l~~~/p 

IlfIlh,p = z If(xi)IPh2 
_iEI 

Let x -+ X(x, t) be the trajectory mapping and x Xh(x, t) be the computed 
trajectory mapping. For F(X(., t), Xh(., t), t) E [LP(Q7?)]2 or [LP(Q)]2X2, define 

- /p 

IIF(t)I|h,p = EIF(X(xi, t)I Xh (Xi t), t)Ph2 
LiEI 

Let e(X(.,t),Xh(.,t),t) = X(.,t) -Xh(.,t), and E(X(.,t),Xh(.,t),t) = Mi(.,t)- 
Mh (., t). 

For the error estimate, we define wh(x) and u h(x) as 

wh(x) = 1j [ajk36(x - X(Xjk, t)) + bljk(t)8xi (x - X(xjk, t)) 
jEJ k=1,4 

+ b2jk (t)6x2 (X -X(X k, t))] 

= Z[ci6(x - X(xi, t)) + d1i(t) 6, (x - X(xi, t)) + d2,(t)6X2 (X -X (xi, t))], 
iEI 

cWh(X) = E 1 [ajk6(X Xh (Xjk, t)) + Xljk(t)6x1 (X- xh(Xjk, t)) 
jEJ k=1,4 

+ 2jk (t)6X2 (X - Xh (Xjk, t))] 

= [ci6(X _ Xh(x,, t)) + d/1i(t)6x1 (X _ (xh , g) 
iEI 

+ a2i(t)6x2 (xX _ (x, t))]. 
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Then Table 1 contains all quantities we will use for the error estimate. 

TABLE 1 
Trajectory Vorticity Velocity 

Solution x - X(x, t) w(x, t) u = (K*w) 

Computed 
Solution X 4 Xh(x, t) ,h(x, t) h - K * eV 

Intermediate Uh = K*w 

Quantity = K( * wh 

For any j E I, by using the system of ordinary differential equations for the 
particle trajectories, we have 

dX(xj , t) dXh (xj t) u(X(xj, t), t) -_ (Xh (X, t), t) 
dt dt 

= [u(X(x1, t), t) - i h(X(Xj, t), t)] + [Uh(X(Xj, t), t) -_ ?h(Xh(xj, t), t)], 

where the first bracketed expression is called the consistency error, and the second 
the stability error. 

The Consistency Error. Let 

I(.,t) =u(.,t) - u,(.,t) =K *w -K * w 

and 

II(.,t) = ue(.,t) - Uh(.,t) = K, *w-Kg *wh. 
Then, the consistency error is I + II. For I, we have the following result. 

THEOREM 3. 1. Assume that there exists an integer k > 1 such that 

(i) fR2 f(x) dx = 1, 
(ii) fR2 x f(x) dx = 0, Va e N2, 1 < IalI k - 1, 

(iii) fR2 lixI I (x)I dx < x0. 

Then there exists a constant C = C(pTwo) > 0 such that IlI(, t)llLoo(R2) < C6k 
and III(t)IIh,p < Cek for all p E [1, oo], t E [0O T]. 

Proof. See [18, Chapter II, Lemma 4.1]. 0 
In order to analyze II(., t), we need to discuss a few auxiliary results. First of all, 

consider some properties of the regularized kernel Ken These properties are also 
very useful for the stability error estimate. We begin by recalling a classical result. 

LEMMA 3.1 (Calderon-Zygmund). The convolution operator f -- (OK/Oxi) *f 
is a bounded linear mapping from LP(R2) into [LP(R2)]2, for i = 1,2 and 1 <p < 
xc. LI 

LEMMA 3.2. Let p E (1,xo) and f E W "-1P(R2) for some integer f > 1. 
Then there exists some constant C such that 

IIO'KeIILP(R2) < 
f 

for a E N2 with IaI and (1/p) + (1/q) = 1. 

Proof. See [18, Chapter II, Lemma 3.2(ii)]. 0 
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LEMMA 3.3. Let ( be a nonnegative integer. The following properties hold for 
all a eN2 with IlI = /: 

(a) Iff E W,'(R2)nW/",(R2), we have I OK,(x)I < Ci/e1+' for all x E R2. 
(b) If f E WI' (R2) n W 00(R2) satisfies in addition IxK1+2Idof(x)I < C2, 

then 

IO K. (x) I < ? 3 for all lxi > e. 

Proof. See [18, Chapter II, Lemma 3.3]. C 

LEMMA 3.4. Let S be a compact set in R2. For any multi-index 3, assume 
that there exists a constant Ci > 0 such that 1xI',31+21Of(x)l < C1. Then there is 
a constant C = C(S) such that for all e < 2 

-2' 

C(S), 11 = ?, 
IIO9KeIILl(s) < j C(S)IlogeI, 1I1 = 1, 

c(s)el-11 loIiI > 1. 

Proof. Let Be = {x E Rn I xi < e}. Then, 

IIO(KKEIIL1(S) = f I0OK(x)I dx = 10O K. (x)I dx + f J93K.(x)I dx 
S S~~ ~~nB, S\B, 

? C22/6101+1 + C3 dx (Lemma 3.3) 

C2 e1 11 + jdiam(S) rCI dr 

J [diam(S) - e], 1I1 = 0, 

= C261-1 l + C4 [log(diam(S)) - loge], 11 = 1, 

(1 - 10)[diam(S)1-101 
- 

61-101], 101 > 1. C] 

As we defined in the last section, the initial coefficients of 6 functions in the 
approximated vorticity field are chosen according to a quadrature rule. Now we 
want to find a bound for the error which results from the numerical integration. 
We first state a classical result due to Bramble and Hilbert [9, Theorem 4.1.3]. Let 
k be a nonnegative integer, denote by Pk the space of all polynomials of degree < k 
in the n variables x1, ... , xn. 

LEMMA 3.5 (Bramble-Hilbert). Let Q be an open bounded subset of R' with a 
Lipschitz continuous boundary and let L: X -4 L(X) be a bounded linear functional 
on WkP(Q), k > 1, p E [1,oo], with norm IILII, which satisfies L(X) = 0 for all 
X E Pk-1. Then there exists a constant C > 0 such that 

It(0)| < C||t|||101k,p,Q V0 E Wk,p(Q), 

where 

/' \ 1/p l/p 

II0I1k,pQ = I S I IO kI dx , kkk,p,Q = (EX 1 ) I d 
ajoj=<k l = L) 

and IILiI = supII01I k~p, = IL(k)I. 
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As a consequence of Lemma 3.5, we obtain 

LEMMA 3.6. Let j E J and Bj be a 2-D box as defined above. Assume that the 
center of B3 is v = (X 1, I X2) E R2. If g(_) E W4"1 (Bj), then there exists a constant 
C > 0 independent of Bj such that 

(3.1) f g(x)dx-Q2(Bjg) i Ch4I9I4,1,B,. 

Proof. Let R = [-1, +1]2 and B1 (R) be the set of functions whose derivatives 
through order one are bounded and continuous on R. Then, for /.) E B'(p), 
define F (j) = fji(x)dx - Q2(,). By Theorem 2.2, %(F) = 0 for all E 

P3(R)- 
It is very easy to check that - '(z ) is a bounded linear functional on B' (p). 

By Sobolev's embedding theorem, W4"1(w) C B'(R). So, z - '(z) is also a 

bounded linear functional on W4 1(w) which vanishes on P3(Rf). Thus, by the 

Bramble-Hilbert lemma, there is a constant C1 > 0 such that 

(3.2) 1% (,)I < C1 ,- 4,1,sq 

For a function g(.) defined on B3, change variables by letting 

Xi = xi + (hjjl2)$j, -1 < (i < 1, i = 1, 2, 

and define Az(g) = g(x) = g(ov + (hj1/2)(1,j2 + (hj2/2)62). Then (3.1) follows 

from (3.2). LI 

Now consider the second part of the consistency error. Recall that 

11(.1 t) = us (, t) _Ugh(_, t) = We * w - K * Wh, 

II(X, t) = (KE * w)(X, t) - Q2[Bj, Ke(X - X(, t))wo(.)] 
jEJ 

THEOREM 3.2. Assume that f E W4"1 (R2) n W4,oo (R2). 
(a) If there exists a constant C, > 0 such that 

IXIlaI+218af(X)I < C, for all tat < 4 and x E R2 

then there is a constant C = C(Q, wo, p, T) > 0 such that 

jjII(, )ijL??(Q) < C 
63, 

ttII(t)llh,p < C-3 for all t E [0, T] and 1 < p < o. 

(b) If we only assume that IX121f(X)l < C,, then there is a constant C, = 

C,(Q,wo,p,T) > 0 such that 

ttII, t)tt1L(Q) < Cse3+s 

ttII(t)llh,p < Cs8 for alit E [0, T] and' i p < x, 

where s > 0 is an arbitrary number. 
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Proof. (a) By the definition, we have III(x, t) I = IK, * w(x, t) - * wh (X, t) 1. So 

III(x, t)I = { i KE(x - X(y, t))wo (y) dy - Q2 [Bj, KE (X -X(, 0) ( ) I 

<S { , KE(x-X(y t))wo(y) dy-Q2[BjKE(( - XX(.t))wo(.)]} 
jEJ 

? C2h4 E IKE(x-X(, t))wo( )14,1,Bj (by Lemma 3.6) 
jEJ 

? 02h4 5 j IOyKe(x - X(y, t))93wo(y)I dy. 

IaI+IfI=4 

Using the smoothness of u, we have I9Xi(y, t)I < C3 for i = 1,2, y E Q, 0 < I?i ? 
4. Now using the chain rule, 

III(x, t)I < C4h4 5 I O~K,(x - X(y, t))O9wo(y) dy 

Ia1+11<4 

C5h 4 1 | 
c' 

K. (x - X(y, t)) Idy 

1a1<4Q = 1C4?4 IO' K. (x -X) IdX 

= Cs4 E IIOaKe(X- )IIL1(Q) (detJ= 1). 
1a1<4 

If x E Q and X E Q, since Q is bounded there exists a compact set T_ C R2. 
such that x - X E T. By Lemma 3.4, there is a constant C6 = C6(T-) such that 
jjO K,(x - )IIL1(Q) < IIO9Ke( )IL1(,r) < C6/e3 for all x E Q and Icil < 4, and so, 

(XIx t) I = UE (X, t)U Xt < C7 .3, Vx E Q. 

This implies that 

|| UE (, t) - Uh(. *,t)||L??(Q) < C7 

For 1 < p < ox, it follows that 

{ A l~~~~~~~~~~/p 

II1I(t)I1h,p = h2IuE(X(i, t), t) -Uh(X(, t), t) }/p 
iEI 

1 /p 

< ||UE ( ,t)-U ( )|| X E h2 

iEI 

? C8 (measure Q) " /P h4/63 = 09h4/63. 

(b) As in (a), we have 

jII(x, t) I < C4h4 Of / IK (x -X(y, t))0 wo(y) j dy. 
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This time, Lemma 3.4 is not directly available to estimate 1acK(x. - )IIL1(Q), for 
all jai < 4. For jai = 0 and 11 < 4, by Lemma 3.4 as above, 

jOx'K6(x-X( ,t))O9WO(.)IIL(i-) < C1ojjKF(x-X(.,t))IIL1(Q) < C11(T). 

For Ioj > 1 and 1I1 < 3, using H6lder's inequality, we obtain 

11 XCKe (X - X(., t)) oW(.0 ) I L1 (Q) 

? |laxoKc (x-X (, t)) I ILPI (Q) I Iay'W wo Ll~q'(Q) 

(1/p'+ 1/q' = 1 and 1 <p' < o) 

< Ci2 1O Ka (x - X(X, t))IILP' (0) < C12II9xKE(I)IILp/(R2). 

Using Lemma 3.2, 

II9XC' E)IILPI(R2) < C12 < 
C12 

Hence, III(x, t)I = Iu (x, t)-uh(x, t)I < C13h4/E3+s for all x E Q, where s = 2/q' > 
0. Then (b) follows. O 

The Stability Error. By definition, this is 

u (X, t) - /h (Xh, t) = [Uh(X, t) 
-_ 

h(X, t)] + [Wh (X, t) 
_ 24h(Xh, t)], 

where X = X(x, t) and Xh - Xh(x, t) for x E Q. We call the expression in the first 
bracket Part I, the other Part II. 

Part I. By Table 1, 

Uh (X, t) _ 2h(X, t) = Ke * Wh(X, t) - K6 * Wh(X, t) 

= E [ciK_(X - X(xi, t)) - d1i(t)K6:1 (X - X(xi, t)) 
iEI 

- d2i(t)KCX2 (X - X(xi, t))] 

- ? [ciK6(X - Xh(x,, t)) - i(t)Kx1 (X - Xh(zX, t)) 
iEI 

- 2i (t)KCX2 (X - Xh (X, t))] 

= {Zci[Ke(X - X(xi, t)) - K6(X - Xh(Xi, t))]} 

+ {- Edji(t)[Kcxi (X-X(xI, t)) - K6zl (X - Xh(XZ, t))] 

+ {-Ed2i (t) [KEX2 (X - X(Xi, t)) - KEX2 (X - Xh (Xi, t))I} 

+ {-E Kez1 (X-Xh(Xl t))[d1i(t) - li(t)] } 

+ {- S KeX2(X - Xh(Xz, t))[d2i(t) -2i(0] 

= Vll(X,t) +Vl2(X,t) +Vl3(X,t) +V21(X,t) +V22(X,t). 
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Here, for i = 1,2,j = 1,2 (or 1,2, and 3), we use Vij(Xt) to denote the terms in 
each pair of braces in the above equation, respectively. Since 

KXj = 9(K * fe)/9xi = K * (9f,/9xi) 

and 

9fe/9X9 = a [f(x/e)/e2] = fi (X/e)/6e, 

where fxl = 9f (x)/&xj, 

(3.3) KEX1 = (K * fxl,)IE_ 

Similarly, 

(3.4) KeX2 = (K * fX26)/6. 

Concerning terms V1j(X, t), j = 1, 2 and 3, we have 

VI1(X,t) = Eci[Ke(X-X(xi,t))-K,(X-Xh(xi,t))] (by (2.4)) 
iEI 

= E Sil(wo(xi) + Hilwo, (xi) + Hi2woX2 (xi)) 
iEI 

* [Ke (X-_X(Xi, t))K, (X-_Xh (XiI t) )], 

V12(X, t) = - E dii(t)[Kexl (X - X(xi, t)) - Ke'x (X - Xh(zi, t))] 
iEI 

= i ISij{M11(Xi, t)Hil/e + M12(Xi, t)Hi2/6}wo(Xi) 
iEI 

[K * fxle(X - X(xi, t)) - K * fxie(X - Xh(Xi, t))]. 

Similarly, 

V13(Xt) = d2i(t)[KeX2 (X - X(Xi, t)) - KeX2 (X-Xh(Xi, t))] 
iEI 

= E 1Sil{M21(Xi, t)Hil/e + M22(Xi, t)Hi2/6}wo(Xi) 
iEI 

* [K * fX2e(X - X(XI, t)) - K * fX2'(X -Xh(Xi, t))]. 

Define 

(3.5) V1(X, t) = j ISjlo&i{K * ge(X - X(xi, t)) - K * g6(X -Xh(Xi, t))}, 
iEI 

where {ai}iEI is a family of real numbers, g(.) is a cutoff function which can be 

f (f) or the partial derivatives of f (.), and g,(x) = g(x/e)/e2. 

LEMMA 3.7. Assume the conditions: 

(1) g(.) E W1'??(R2) and there are two constants C1 > 0 and - > 2 such that 

189g(x)l < Cj(1 + Ixl)-" Vx E R2, lal = 0,1. 

(2) There is a constant C2 > 0 8uch that h/e < C2. 
(3) There is a constant C3 > 0, C3 = C3(woT), such that Ja2il < C3 for all 

iEl. 
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Then, for p E (1, oo), there exists a constant C = C(p, T, wo) such that 

(3.6) IIV(-, t)IILP(R2) + IV1(i( t)I1,p,R2 < C(1 + ||e(t)jjho0/6)2/q le(t)jjhp, 

where 1/p + 1/q = 1 and the discrete norms are defined in Definition 3.1. 

Proof. [18, Chapter II, Lemma 5.2 and Lemma 5.3: Substitute C3 in (3) for 

|IWOIIL0"(R2)]- 

Remark. Although Lemma 5.2 and Lemma 5.3 in [18] are proved for uniform 
meshes, the generalization to the nonuniform case is straightforward. Several sim- 
ilar direct extensions are used below without comment. D1 

In order to find a bound for the discrete norm of V1, we need the following 
standard result in finite element theory. 

LEMMA 3.8. For all p > 2 and all functions g E W',P(R2), 

f A l~~~~~/p 

(3.7) Il9(t)lIh,p = {h2 E Ig(X(Xit)IP} < C{jj9gjLP(R2) + hjgj1,p,R2}. 
iEZn 

Proof. See [18, Chapter II, Lemma 5.4]. 0 

COROLLARY 3.1. Assume conditions (1), (2) and (3) in Lemma 3.7; then, for 

2 < p < oo, there exists a constant C = C(p, T, wo) such that 

liV' (t) l|h,p < C(1 + ||e(t) |hoo /6)/q Ije(t) I1hp. 

Proof. The proof follows directly from Lemma 3.7 and Lemma 3.8. 0 

THEOREM 3.3. Assume the conditions: 

(1) f(-) E W2'oo(R2) and there are two constants C, > 0 and - > 2 such that 

Ia'f(x)I 0< C(1 + IxI)-" Vx E R2, jal = 0,1,2. 

(2) There is a constant C2 > 0 such that hlE < C2. 

Then, for 2 < p < oo, there exists a constant C = C(p, T, wo) such that 

IV1U(t)||h,p + IV12(t)I||h,p + IIV13(t)||h,p < C(1 + ||e(t) |h,00/e)2/q ||e(t)j|h,p, 

where 1/p + 1/q = 1. 

Proof. Since the solution of the Euler equation is assumed to be smooth for 
t E [0, T], M(x, t), wo(x) and Vwo(x) are uniformly bounded for all x E Q2. So, 

{Wo(Xi) + HilWO.1 (xi) + Hi2woX2(xi)}beI, 

{[Mll(Xi,t)Hil/e + Ml2(xi,t)Hi2/6]wo(xi)}IeI and 

{[M21(xi, t)HA1/e + M22(xi, t)Hi2/6]wo(xi)}iEI 

are all uniformly bounded by some constant which is independent of h and e. Thus, 
Theorem 3.3 follows from Lemma 3.7, Lemma 3.8 and Corollary 3.1. 0 

For estimating V21 and V22, the following lemmas are needed. 
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LEMMA 3.9. Assume the following conditions: 
(1) g(.) E W'1(R2) nf WX?(R2) and there is a constant C1 > 0 such that for 

Ii1 = /, zXlf+2l0lg(X)l < Ci for all x e R2. 

(2) There is a constant C2 such that h/e < C2. 

Then, for any compact set 59 E R2, there exists a constant C = C(Y>) such that 

1D:K * g(x -X(xi, t) + yi)Ih2 < B(f, e) 
iEI, Y I|<||e(t)||h,o 

for all x E 9, t E [0, Te] and Ii| = (, where T. = max{t E [0, T] I Ile(t)Ilh,o < Me; 
M is an arbitrary constant} and 

Jc, 11=0, 

B(f,?)= Cllogel, 111 = 1, 

C, C~-l' 1,3111 > 1. 

Proof. For any i E I, as in the proof of Lemma 5.2 in [18], the area of Si(t) is of 
order h2. Let a = maxiEI maxyes, lX(y, t) - Xh(Xi, t)l; then 

(3.8) I|e(t)Ilh,oo < a < C3h + I|e(t)Ilh,oo. 

For a fixed x e , let J1 = {i E III x-X(xi,t)I < e + a}. If i E J1, then 

|X-X(xi, t)l < e+a < e+C3h+lle(t)llh,.,o So, X(xi, t) (= S(x,e+C3h+||e(t)|jh,0)- 
This implies that Card J1 < C4(e/h + 1 + l e(t) I|h,oo/h)2. So, 

1D9lK * g(xz-X(xi,t) +yi)Ih2< Card J h 2 1(K *e~llL-(R2) 
iEJ lyjj<IIe(t)jIho 

(e/h + 1 + Ile(t)llhoo/h)2 h 2 

<0 4 e~~ * 
< C5(1 + Ile(t)jlh,oo /e)2 

< C61-1 for all t e [0, T] (Lemma 3.3(a)). 

Let J2 = I\Ji. If i E J2, then Ix-X(xi, t)I > e + a. So, |x-X(xi, t) + yi > 
e + a - I e(t) Ih, m > e, because of (3.8). Using Lemma 3.3(b), we obtain 

a13 * ,(x- Xxi t)+ y) I<07 < 07 

6i8K * gg(-X(zj, t) + yj)l< Iz - X(zi, t) + yil+l -f{IZ - X(Zx, t)l -al+ 

so that, 

Z l@$fK*g,(z-X(zi,t)+yi)Ih2 C7 {/+i 
iEJ2,jYi?Ijje(t)jIjh,oo iE J2 { Ix - X(xi, t)I - a 

When h -* 0, 

lim ~~~h 2 1xIea dy 
h-O E{Iz - X(zi, t)I - a}/+' {Ix - yI - 

Since x e , y e Q, where 5" is compact and Q7 is bounded, there exists a constant 
R > 0 such that Ix - yI < R, and therefore, 

dy 21r f r dr dO 

!-yl>F+a {x - y - a}+l Jo e+a<r<R (r -a) 

j2ir R-a (r +,) dr dO 

Jr+1 
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Since a < C3h + Ile(t) Ihoo < C3h + ME < C08 < C8r for all t E [0,Te], it follows 
that 

fI7r fRa (r{+1 < (1+ C8)2w 
(r add <r<R-a dr 

(l + C8)2r(R-a-e), 1131=0? 
- (1 + C08)2r(log(R-a)-loge), 131=1, 

(1 + C8)2r >_ [et -l (R _ a)>1. ] 

Define 

(3.9) V2(X, t) = JSjjaj{013K * g,(X _ Xh(X,, t))}, 
EI 

where {Oai}iEi and g( ) are the same as in (3.5). Then we have 

LEMMA 3.10. Assume the conditions (1) and (2) in Lemma 3.9. Then there 
exists a constant C = C(Q, p) such that 

f A l~~/p 

11V2(t)Ijh,p < B(f3,E) { lailPh2} Vp E (1, oo) and t E [0, T], 
iEI 

where Te and B(f, ?) are the same as in Lemma 3.9. 

Proof. For j E I and i E I, 

X(Xz, t) - Xh(Xi, t) = [X(Xj, t) - X(Xz, t)] + [X(Xz, t) - Xh(Xi, t)]. 

Let yj = X(Xz, t) - Xh(Xi, t); then I yj < Ie(t)I h,oo. So, Lemma 3.9 implies that 

for t E [0,Te], 

S? IflK * g,(X(xj, t) Xh(zi, t))Ih2 < Bi(1, e). 
iEI 

Let Jz(x) = g(-x). Since K(y) =-K(-y), 

K * 9s(Z) =| K(Y)9E(z -y) dy =f K(y) f,(-z -y) dy = K * EE:(x) 
R2 R2 

So we have 

K * g(X(xj, t)-Xh(zi, t)) = K * ~(Xh(Xi, t) - X(Xj, t)). 

Also, 

Xh (X, t) - X(Xj, t) = [X(Xz, t) - X(Xj, t)] + [Xh (Xz, t) - X(Xz, t)], 

and letting Yi = Xh(Xz, t) - X(Xz, t), we have jyjI < lle(t)llh,,,. Substitute "q for g 
in Lemma 3.9; then, for t E [0, T], we have 

1I I93K * g,(X(xj, t) - Xh(zX, t))Ih2 
jEI 

= ,IfldK * qe(Xh(Xi, t) -X(xj, t))1h2 < B2(1,iE), 
jET 
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V2 (X(rx, t), t)I = S ISi Iai{f0K * g,(X(zj, t) - Xh(ZX, t))} 
iEI 

< C3 { IcaiII9:K * g,(X(zj, t) - Xh(Z, t))1/p+ } /h2/p+2/q 

iEI 

? 03 ID1(9K *gF(X(xj, t)_-Xh(X,, t))1Ih2}1/ 

( l/p 

E lailP I9K * 9g(X(Xj, t) - Xh(zX, t))I h2 (H6lder Inequality) 

< C3(Bj(0jE l)lq{ ailP|,91K * 96((j )X~i t)) Ih2 

From this, we obtain 

JV2 (X(Xj i t),i t) lp 

< (C3)p (Bi (:, 6))plq { ajjPj0,3K *9,(X(Xj, t)-Xh(i,l t)) h 2} 

and 

IIV2(t)llI p = I jV2(X(xj, t), t)IPh2 
jEI 

< (C3 ) P( B (0, 6) ) pq ItE[ ai I P 1 d9:K * 9s6 (X (zXj t) 
_ 

Xh (i, It) ) I h ]h2) 

= (C3)P(B1 (f, e))P/lq 1,F,1 IK * g,(X(zj, t) - Xh (Z, t)) h2] IaiI|Ph2} 
iEI L jEI J 

= (C3)P(B1(3, E))p/qB2(f, I) { lailPh2 

Thus, 

r A l~~/p 

11V2(t)I1h,p < C3(B1(3,E))l/q(B2(3,E))l/P { lailPh } for all t E [0,Te]. D 

THEOREM 3.4. Assume the following conditions: 
(1) f(-) E W1 1(R2) n W1'??(R2). There is a constant Ci > 0 such that 

IXI21Dof(z)I < Ci for all x E R2, IaI = 1. 
(2) There is a constant C2 such that h < C2e2. 

Then there exists a constant C = C(Q, p, wo) such that 

11V21(t)llh,p + IIV22(t)llhp < CeIIE(t)I|h,p Vt E [OTe]. 

Proof. By definition, 

V21(X, t) = -E K&1 (X - Xh(Xz, t))[d1i(t) - dii(01 
iEI 

= -(1/E) E K * fx e(X - Xh (X, t)) [d 1(t)- i (t)- 

iEI 
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By Lemma 3.10 with 3 = 0 and g = fxie, there is a constant C3 = C3(Q,p) such 
that 

{ A l~~~~~~~/p 

||V21(t)||h,pp ? (C3/?) Ej[d1i(t)-a'ii(t)]/ | Si |Ph2 }/ 

According to the construction of the method in Section 2, 

[dii(t) - alii(t)]IlSil 
= [MAi (xi, t)dli + M12(xi, t)d2i - Mlhl (xi, t)d1i- _M 2 (xi, t)d2i]/ISi 

= [Ml, (X, t) - Mh1 (Xi, t)] (Hi HWO(Xi)) 

+ [M12(Xi It) - Mlh2(Xi t)]Hi2WO(Xi)) 

so that 

Idii(t) -'Ii(t)J/JSil < 2hI|woIILoo(R2) M(Xi, t) - Mh(xi, t)I. 

Hence, jjV21 (t)JIh,p < (C4h/E)jjE(t) Ih,p < (C4C2E)JJE(t)1Ih,p (condition (2)), and 
in a similar way, 11V22(t)I|h,p < (C5C2E)I|E(t)I|h,p. O 

Part II. Consider the difference 

gh(X, t) - h (Xh, t) = Ke * h (X, t) - Ke * ,h (XhI t) 

= E [ciK,(X Xh(i, t))-" i(t)Kex (X -Xh(xi, t)) 
iEI 

-/2!i (t)KX2 (X- (Xi, t))] 

- E [CKX X-xh (x, t)) - 
e/Ci(t)K?xi (Xh_-Xh (xh , t)) 

iEI 

- A2i(t) KEx2 (Xh - Xh (xi, t))] 

= j E cC [Ks (X -xh (x, t))X-K (Xh - Xh (xi, 
iEI 

+ {-4i(t)[KeX2 (X-X h(Xi, t)) - KEX (Xh - Xh(ZX, t))] 
iEI 

+ {E Ai (t) [KsX2 (X -Xh (Zi, t)) )KEX2 (Xh _Xh (Xi, t) )] } 
iEI 

where we call the expression in the first pair of braces Wi1 (X, Xh, t) and the other 
two W21 (X, Xh, t) and W22(X, Xh, t). Now we define 

(3.10) W(X, Xh, t) = So I&a[K * g (X - Xh(xi, t)) - K * g (Xh -Xh(Xi, t)) 
iEI 

where {fxa}iEI, g and g9 are as before. For {ciE}iEI, we have the following lemma, 
where the region Q2 and - are as shown in Figure 5. Y is a compact set which 
contains Q and is bounded by mesh lines, and xi, Xk are adjacent mesh points in 
.91. 

LEMMA 3.1 2. Consider the family of numbers {ai I i E I, ai = 0 if xi 0 Q} 
Assume the conditions: 

(1) There exists a constant C, such that maxieJ(hjl, hj2)/minieJ(hjl, hj2) < 
C, and h < 1. 
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_ X , 

FIGURE 5 

(2) There exists a constant C2 which is independent of h such that ai < C2 

for all i E I. 
(3) For any adjacent xi and Xk with i, k E I, Jai - ak I = AiklXi - Xk 1, there 

exists a constant C3 which is independent of h such that l/Akl < C3 

Then there exists a function o ( ) E B(sl) nl N (vQ (W is the interior of sV), 

1 < p < oo, such that evo(xi) = ai for all i E I, and tlwo(-)ll ? is independent of 

h. 

Proof. For any j E J, take a local Cartesian coordinate system with the origin 
at xj1 (see Figure 6). Let Pj(f1, ~2) = Aj + Bj h + Cj 2 + Dj 1S2, which satisfies 

Pj(O, O) = ajl, Pj(hj1,O) = aj2, 

Pj (hj1, hi2) = a33, Pj (O, hj2) = a1j4 

Then, 

Pi( g2) = ajl + {(aj2 - ajl)/hjl }S1 + {(aj4 -aji)/hj2j}2 

+ {[(aj3 - aj2) + (aji - %4)]/hjlhi21?20 

Xj4 t x3 

Xj:1 _X2 

FIGURE 6 

For the global coordinate system on Bj, (XlX2) = (Xj 1 + fiXj12 + 2), where 

(xj1l,xj12) is the coordinate for the point xj1, 0 < fk < hjk, k = 1,2. On Bj, 
define j4(x1, x2) = Aj(xjll ?+ 1, xjl2 + f2) = Pj (1, 2). Let uo ( ) be a function 
defined on W in the following way: 

eVOo(X)IBj = /j(X , X2) = Pj(~l, g2) for all j E J. 
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By finite element theory, Mu4() e B(,V) and u'o(x)Iav = 0, wo is differentiable 
a.e., O90'o(x)IB, = 9O@'tj for jai = 1. So, 

? jall + I(aj2 - ajl)l + I(aj4 - ajl)l + I(aj3 - aj2)1 + (ajl - aj4)1 
? jaI + 1+lj2j, lhj1 + 1lj4j1 Ihj2 + 1f3j3j2 Ihj2 + 1jl3j14 lhj1 < C2 + 4C3 Vj E J, 

from which 

(3.11) IIWOIILOO(I)< C2 + 4C3. 

Meanwhile, 

1/-j/Ix = (0a/'j1 ) (O0f /Ox1) + (a/-IjOA2)*(O2/aXl) 

= {(a-j2- ajl)/hjl} + {[(aj3 - aj2) + (ajl - j4)j/hjlhj2If2 

and so, IO/j/Oxli < 1lfl32il1 + I/hj3j2 C1 + I/hj1j4IC1 < C3(1 + 2C0). Similarly, 
IdjA/ax21 < C3(1 + 2C0), and 

(3.12) ja |OIIL-(sV) < C0(1 + 2C0), |at = 1. 

(3.11) and (3.12) imply thatuo E WJ'1(s). Since V is bounded, uo E Wo (V) 
implies that uo E WodP(sl) for 1 < p < oo and 11voll p depends on C1, C2, C3 

and-. Ii 

LEMMA 3.12. Assume the conditions: 

(1) g(.) E W2,1(R2) n W2, (R2) and satisfies 

Iqog(X)I < C1(l + IXI)-4 for all x E R 2 and jal = 2. 

(2) hle < C2. 

(3) {ai} EI satisfies (1), (2) and (3) in Lemma 3.11. 
Then there exists a constant C which is independent of h and E such that 

Eai|si| I 
K 

(x-_Xh (X,, t)) < C(1 + ||e(t)||h,oo /E)2 

iEI 1X 

Vx E R2, t E [O. T], k =1, 2. 

Proof. [18, Chapter II, Lemma 5.6: Substitute wo in Lemma 3.11 for wo]. D 

LEMMA 3.13. Assume the conditions (1), (2) and (3) in Lemma 3.12. Then 
there exists a constant C which is independent of h and e such that for all t E [0, T] 
and p E [Ooo], IIW(t)llhip < COIe(t)Ijh,p(1 + I|e(t)I|h,oo/e)2, where W(X, Xh, t) is 
defined by (3.10) and IIW(t)Ilhp is given by Definition 3.1. 
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Proof. By (3.10) we have 

|W(X (Xj, t), Xh (Xj, t), t I 

= E |Sjjce[K *g9(X(xj, t)-_Xh (Xi, t)) -K * 9E (Xh (Xj, t)-_Xh (Xi, t))] 

iEI 

- ZIE IOsii {f DK * g,[X(xj t) -Xh(X t) + o(Xh(Xj, t) -X(xj, t))] do} 
iEI 

(Xh(Xj, t) - X(xj, t)) 

< SiSIxi DK * ge[X(xj, t) Xh (Xi, t) + 0(Xh(Xjt) -X(xj ,t))] dO 

*Xh (Xj, t) - X(xj, t)I 

< C3(1 + Ije(t)Ijh,oo/E)2 IXh(XjI t) - X(xj, t)I (Lemma 3.12), 

and hence, IIW(t)Ilh,p < CI|e(t)I|h,p(1 + I|e(t)Ijh,oo/E)2 2. 

THEOREM 3.5. Assume the conditions: 
(1) f(.) e W2"1 (R2) n W2' o(R2) and satisfies 

Iatf(x)I < C1(l+ IxI)-4 for allx ER2 and jal =2. 

(2) h/e < C2. 
Then there exists a constant C = C(wo, p, T) such that 

IIW11(t)Ijh,p < 0(1 + Jj8(t)Ijh,oo/E)2Ije(t)Ijh,p for all t E [OT], p E [1, oo]. 

Proof. By definition, 

Wll(XXht) =, ci [K * fE(X - Xh(Xi t)) - K * fE(Xh - (X, t))], 
iEI 

where ci = Si (wo(xi) +Hi1wo,1 (xi) +Hi2woX2 (xi)). Let ai = wo(xi)+?Hiwox1 (xi) 

+Hi2woX2(Xi); then lail < C311WoI|W1,-(R2) for all i E I. For two adjacent xi and 

Xk with i, k E I we have 

ei - Cek = wo(xi) - WO(Xk) + Hil(WOx1 (Xi) - wox1 (Xk)) 

+ Hi2(wo2 (Xi) - WoX2 (Xk)) + wo1 (Xk) (H1 - Hkl) 

+ W?X2 (Xk) (Hi2 - Hk2)I 

= |Dwo (Xik) (Xi - Xk) + Hi 1 Dwox 1 (Yik) (Xi - Xk) 

+ Hi2DwoX2 (Zik) (Xi - Xk) + Wox1 (Xk)(Hil - Hkl) 

+ WoX2 (Xk) (Hi2 - 
Hk2)1 

< C4IIWOIIW2oo(R2)IXi - Xk|, 

where Xik, Yik and Zik are intermediate points between xi and Xk. Thus, by Lemma 

3.13, 

IW11(t)I1h,p < C5OIe(t)Ijh,p(1 + I|e(t)Ijh,oo/E)2 Vt E [O,T], p E [O,oo]. D 

For the estimation of W21 (X, Xh, t) and W22 (X, Xh, t), we have the following 

result. 
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THEOREM 3.6. Assume the following conditions: 

(1) f e W2 "(R2) n W2' (R2) and satisfies 

IxIl4I&f(x)l < C, for all x E R2 and jal = 2. 

(2) h < C2E2. 
Let T = {t E [O, T] I Ije(t)Ijhoo < Mje, IIE(t)jhoo < M2}, where M1 and M2 are 

two arbitrary constants. Then there exists a constant C = C(wo, T, p) such that 

llW21(t)llh,p + llW22(t)llh,p < Cjje(t)jjh,p for all t E [O,T,,] andp E (1,oo). 

Proof. By definition, 

W21(X, Xh, t) = - Zdi i(t)[Kexl (X - Xh(X, t)) - K61 (Xh - xh(x, t))] 
iEI 

z=- -[(t)K * fE(XXh(Xi, t))-K * f1(XhXhh (X, t))] 
iEI 

= Z , -1t) [f DK * fz1E(X - Xh(XZ, t) + O(X - Xh)) dol (Xh - 

iEIx 
, 

and 

W21 (X(xj, t), xh(xh , t), t) 

= , - [t ~~DK * fxE(X(xz, t)-Xh(i,l t) + O(X(Xjl t)-_Xh(Xjl t))) dO] 

(Xh (Xj, t) -X(x, t))I 

So, 

IW21(X(xjI t), Xh(xj, t), t)| 

< jXh (Xj, t)-X(Xj, t)| 

x E d'i (t)I max IDK*fx1,(X(xj, t)-Xh(Xz, t) + O(X(Xj, t)-Xh(Xz, t)))I 
iEI - - 

Xh (Xj, t) -X(xj, t)| 

x > li(t) max IDK * fx1E(X(xj, t) + O(X(xj, t) - Xh(Xj, t)) 

iEI - - 

- X(xil O + Y011 

where yj = X(xi, t) - Xh (Xi, t) and IyjI < Ije(t)Ijh, . By the definition of /lij(t), 

e/ii(t)/E =-[Mlhl(xixt)Hil + Mlh2(Xit)Hi2]wo(xi)lSil/lE 

Since for t E [O,T*], IIE(t)llhoo < M2, and IIM( ,t)IIL-o(R2) is bounded for t E 
[O T,*T], we have IMh(xi, t)I < C6 for all i E I and t E [, T,]. Therefore, 

IM11(xit)Hi +Mlh2(xit)Hi2l/e < C7E ViE Iand t E [OT*], 

because h < C2E2, Hi1 = O(h) and Hi2 = 0(h). Hence, 

Ieii(t)/eI ? C7eIIWOIILOO(R2)I SiI for all i e I. 
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Using Lemma 3.9 and Lemma 3.10 with 111 = 1, 

1W21(X(xj, t), Xh(xj, t), t)| 

< lXh(Xjl t)-_X(Xj, t)| 

x Ej Vl4(t)I max IDK*fxie(X(xjt)+O(X(xj,t)-Xh(xjt)) 
iEI E 0<0<1 

- X(xi, t)+ Yi) 

< IX(xj, t) - X(xj, t)OlC7ellWoLoo(R2)C8lOgeI < C09IXh(xj, t) - X(xj, t)I. 

Thisimpliesthatl1W21(t)llh,p<C?lle(t)llh,pforallte[O,T,],pE(1,oo). Similarly, 

11W22(t)llh,p < Cjolle(t)llh,p for all t E [OT, ], p E (1, oo). D 

The Error Bounds. Now we will give the error estimate for the 2-D vortex 

method constructed previously. 

THEOREM 3.7 [Summary]. Assume the following conditions: 

(1) (i), (ii) and (iii) of Theorem 3.1. 

(2) f( ) E W4'1(R2) n W4,o (R2) and there exist constants C1,C2 and -y > 2 

such that 

I9af(x)Il ' Ci(?Ixl)-5, x E R2, IaI = 0,1; 
laof(X)f < C2(1 + IXI)-4, x E R2, jai = 2. 

(3) There exists a constant C3 > 0 such that h < C3e2. 

Then, for 2 < p < 00, there exists a constant C = C(p, T, s, wo) such that 

|He(t) (| < C ek + h+ ? I|e(t)I|h,p + ellE(t)V1hp Vt E [0,T7], dt h,p 

where s > 0 is an arbitrary number. 

Proof. This result is the content of Theorems 3.1-3.6. D 

Since the error bound for d{e(X, Xh, t)}/dt involves the term 6IlE(t)llh,p, we now 

need to analyze d{eE(X, Xh, t)}/dt: 

d E(XXh, t) = de{M(x, t) - Mh(x, t)}. 

According to the systems of ordinary differential equations for M and Mh, 

ed {M(x, t) - Mh(X, t)} = e{Vu(X, t)M(x, t) - VZ/h(Xh, t)Mh(X, t)} 6dt 
= e{(VU(X, t)- Vh(Xh t))M(x, t) + V41h(Xh, t)(M(x, t) - Mh(x, t))} 

= e {(Vu(X, t) -V Zh (Xht))M(x,t) 

+ (VZ4h(Xh, t) - Vu(X, t))(M(x, t) - Mh(x, t)) 

+Vu(X,t)(M(x, t)- Mh(x, t))}. 
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Since we assume that the true solution is smooth, 

r l1/p 

(3.13) IVu(X(X.,t),t)(M(xi,t) - Mh(Xi,t))IPh2 <?C IE(t)lIhpi 
ZEI 

{ A l~~~~~~~~~~~~~~~~~~~/p 
{ (Vg/h (Xh (Xi, t), t) - Vu(X(xi, t), t)) (M(Xz, t) - Mh (x, }2 } 

iEI 

(3. 14) 1 /p 

< IIE(t)lhoo {EIVgh (Xh (Xi, t) t)- Vu(X(xi, t), t) IPh2 1 

iEI 

and 

(3.1 ~ l(V~hh(Xh(xX, t), t) - Vu(X(xi, t), t))M (xi, t)IPh2 } 

(3.15) iEI 

? IIAI t)IILoo(n2) {ZIV1gh(Xh(xi. t)t)-Vu(X(xi, t), t)IPh2I 
iEI 

So, for t E [OTe ], Eqs. (3.13), (3.14) and (3.15) imply that 

d eE(t) 
dt h,p 

< C2 (eIIE(t)IIhxp + 6 IVu(X(xi, t), t)-V?4h(Xh(xi, t), t)IPh2} ) 

By norm equivalence, 

Z jVu(X(xi, t), t) - V/h(Xh(x,, t), t)IPh2 
iEI 

< 
3 [ 10 X~it) t _a u (h 

(X, I t) t) 
2] ?03 { [ u (X(x t) tX t) t)| h 

[4'an __, 

+ - - 
'O 
(Xh (Xi,t),It) h 2] 

=e iX(KXwXiktXt) -X 

- 
d (XI t) _ a6 (Xh, t)) = K * w,,, (X, t) _ a6 (Xh I t)) (k = 1 or 2) 

= e { [K * WXk(Xt)-Ks * WXk (X, t)] + [Ks * WXk (X, t) - (XhI t)]} 

={I1 + 12} 

I1 can be bounded by using the method of Theorem 3.1, substituting wx1 (, t) or 

w2( I, t) for w(., t) in Theorem 3.1. Considering the second term 12, for k = 1, 2 we 
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have 

12= e (K, * W~k(X, t)- ___ (Xh t)) 

= e { (OKe/9Xk) * w(X, t) 

- 2E [Ci- (Xh _ Xh(xi t)) -Xii(t) 8XK (Xh- Xh(x t)) 

-c12 i(t) -a aK (X -Xh (X, I)] 

=(K * fzk,-) w(X, t) 

-,[ci Kf * fk(XhXh (Xi, t)) 
iEI 

- i (t) (K * fzkC)Xl (X _h -X (Xx)) 

--a(2*(t) (K * fk()X2 (X _ XXh (X, tt))] 

where fXk (x) = fXk (X/e)/e2. By substituting fXke(*) for f,(-) in Theorem 3.7, we 
obtain the following result. 

THEOREM 3.8 [Corollary of Theorem 3.7]. Assume the conditions: 
(1) (i), (ii) and (iii) of Theorem 3.1. 
(2) f() e W5'1(R2) n W5'1 (R2). There exist constants C1, C2 and -y > 2 such 

that 

Iaaf (x)l ? C (l + lxl)-5, x E R2, al = 0, 1; 

Iacf(x)l < C2(1 + IxI)-4, x e R2, Icj = 2,3. 

(3) There exists a constant C3 > 0 such that h < C3E2. 

Then, for 2 < p < oo, there exists a constant C = C(p, T, s, wo) such that 

|dt()|| ? + dE(t) jet) h,p w h,p 

<C (Ek + + I+e(t)I|h,p + EIIE(t)I1hp) Vt E [0,T6 ], 

where s > 0 is an arbitrary number. D 

For the main estimate, the Gronwall inequality is needed. 

LEMMA 3.15 [Gronwall inequality]. Let G: R -- R be a smooth function. Let 

be a norm on Rn and let e be a continuously differentiable n-vector function 
on [0,T*I such that e(O) = 0 and jIde(t)/dtII < G(Ile(t)jj). Let y be the real-valued 
function defined by dy(t)/dt = G(y(t)) and y(O) = 0. Then for t E [0, T*], Ile(t)II < 

y(t). 

Proof See [11, Section I.6]. 0 

THEOREM 3.9 [The main estimate]. Assume the following conditions: 

(1) Conditions (1) and (2) of Theorem 3.8 with k > 2. 
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(2) There exist three constants C3 > 0, a and ,B such that 

a > 3 > 2 and C31 < h < C3. 

Then we have the following results: 
(a) For 2 < p < oo, there exists a constant Cs = C,(p, wo, T) such that 

(3.16) Ile(t)I1h,p + elIE(t)I1h,p < Cs ?E+ 

(3.17) |u(t) - h(t)jjh,p + E||Vu(t) - v/h(t)||h,p < Cs (ek + 3+s 

(b) There exists a constant C, = C, (p, wo, T) such that 

(3.18) Ile(t)Ilh,oo + EJIE(t)jlhoo < 
es 
? + 

||U(t) - ?/eh(t)lh,oo + EJJVu(t) - V9h(t)|h,oo 

(3.19) <0_ (Ek?+J3) Vt E [0,T], 

where s > 0 is an arbitrary number. 

Proof. By Theorem 3.8, for p E (0, oo) there exists a constant C1 = Cis (p, wo, T) 
such that for all t e [O, Te ], 

+6d d t ?1 h4 (3.20) +e(t)|| h dt h Cs k+ + Ije(t)<Ih,p+ 1 E(t)I)hp 

where s > 0 is an arbitrary number. For (3.16), let e(X, Xh, t) - (e(X, Xh,t), 
E(X,Xh,t)) and define lle(t)ll = lle(t)lIhp +EIIE(t)lIh,p. Then, 

lide(t)/dtII <C s (Ek + + Ie(t)I) Vt E [OTej] 

Define G: R -* R by setting 

G(a) = C,, 3Ek + +a) =0Ci(a+ e). 

Then, Ide(t)/dtIl < G(jje(t)jj) by (3.20). Solve the initial value problem 

dy(t)/dt = G(y(t)) = Cis(y(t) + 61), y(O) = 0 

to get 

y(t) = (exp(C01t) - 1)Ei. 

By Lemma 3.15, 

JJe(t)jj < y(t) < (exp(C18T) - 1) (Ek + 3+S) for all t E [0, TE]. 
So, 

I|e(t)Ijh,p +?EIE(t)Ijh,p <Cs (Ek + 3+s) Vt e [0,T], 2 < p < 00. 

The above result implies (3.16) for t E [O, Te]j, and (3.17) follows from (3.16) and 
(3.20). For (3.18) and (3.19), consider any p E (2, oo) and note that 

I|e(t)I|hP + 6IIE(t)I|hp ? h2XP(I2e(t)Ilhoo + 6_IE(t)jjh,oo) 
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Then, 

Ile(t)| h,oo + E||E(t)||h,oo < h2/1p( ||e(t)I|h,p + EIIE(t)||h,p) 
1 ( h4~ 

(3.21) ~< _l2/Cs k6 + E+ (3.21) ?~ Eol 3'] 

C3'lE2oe/p+s C3 QE +3) = j (ek ? vt T 

By the same procedure we can show that 

|IU(t) 41ht)(Ih,oo + E|IVU(t) V4h(t)jhxoo < so (E + ?3 Vt E [0, TE ], 

so that (3.18) and (3.19) are satisfied for all t E [O, To ]. 
The remaining problem is to prove that T* = T. Recall that 

To = max{t E [O,T] I I|e(t)Ijh,oo < MjE and I|e(t)jh,oo < M2}. 

Since u, ash, Vu and Vidh are continuous and bounded uniformly for (x, t) E Q x 

[O,T] and e(X,Xh,O) = 0, if T, < T, then I|e(Tf)||h,o = M1e or IIE(Tf)|Ih,C = 

M2. But, by (3.21), 

1 (k ~~h4\ 
Ije(t)Ijhoo + CiIE(t)Ijh,oo < C1 2 X/C8 Ejk ? 3+8) with k > 2. 

Choose p so large that k - (2a/p) > 1. Then, 

Ile(t)Ijh,oo +? EIE(t)jh,o < max(Ml, M2)Ek-(2a/p) 

for suitable E and h, for all t E [0, T*]. This is a contradiction, and it follows that 
T*= T. D 

Remark. The result of Theorem 3.9 may be compared with the analogous 
result, using simple 6 functions. For the latter case, the error bound would be 

C8(Ek + h2/E9+l). Hence, substantial improvements can be obtained by suitable 
choices for E. Some numerical results for this algorithm are given in [8]. 

4. Conclusion. A higher-order vortex algorithm is defined for two-dimensional 
incompressible inviscid flows. This algorithm uses gradients of 6 functions (vor- 
tex dipoles) in addition to the usual 6 functions (point vortices) with appropri- 
ate smoothing. Error estimates are proved, demonstrating the higher orders of 

convergence on arbitrary (graded) meshes for assignment of the initial vorticity 
distribution. 
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