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A New Method of Imposing Boundary Conditions in 
Pseudospectral Approximations of Hyperbolic Equations* 

By D. Funaro and D. Gottlieb 

Abstract. A new method to impose boundary conditions for pseudospectral approxi- 
mations to hyperbolic equations is suggested. This method involves the collocation of 
the equation at the boundary nodes as well as satisfying boundary conditions. Stability 
and convergence results are proven for the Chebyshev approximation of linear scalar 
hyperbolic equations. The eigenvalues of this method applied to parabolic equations are 
shown to be real and negative. 

Introduction. The common practice in applying pseudospectral methods to 
partial differential equations is to satisfy the equation at the interior nodes and to 
impose the boundary condition at the boundary. This procedure does not take into 
consideration that the differential equation is satisfied at points arbitrarily close to 
the boundary. In [4], one of the authors discussed the advantages of imposing a 
combination of boundary conditions and the equation itself at the boundary nodes, 
for Chebyshev approximations of the Laplace equation with Neumann conditions. 
Here we analyze the same idea applied to the linear hyperbolic equation 

Ut = Ix, Ixl < 1, t > O. 

U (xO) f(X), 

u(1, t) = g(t). 

We assume that the collocation points are the Gauss-Lobatto Chebyshev quadrature 
nodes, namely: x; = cos(irj/N), 0 < j < N. The stability of the method, with the 
commonly used boundary treatment, i.e., imposing uN(1, t) = g(t), was analyzed in 
[10]. Here we show the convergence of the method for the new boundary treatment, 
namely 

atN (1 t) -OUN (1, t) + a(UN(1, t) -g(t)) = O. 

where a is positive and large enough. A preliminary theoretical discussion in Sec- 
tion 1 and numerical experiments in the last section show the effectiveness of the 
method. In Section 3 we use the results obtained for the hyperbolic equations to 
show that for the heat equation the second-derivative matrices, corresponding to 
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the Neumann conditions with the new approach, have real and negative eigenval- 
ues. The analogous result for the classical way to impose boundary conditions was 
previously proven in [8]. 

The results reported here are only the first step in the implementation of this 
new method to systems of equations. 

1. Description of the New Method. In order to illustrate the new method of 
imposing boundary conditions and to explain what can be gained by this technique, 
we first treat the following time-independent problem 

(law) t ~~~~~Us = f, 1Il < 1, 
( U(1) = O. 

where f E C'([-1, 1]) is given (s > 0). 
In the standard pseudospectral Chebyshev method (see for instance [6]), we seek 

a polynomial of degree N, say VN, such that 

(1.2) { (a) dVN(Xj)f(x) j= ,...,N; 

(b) VN(1) = O. 
where x; = cos(irj/N), j = 0, 1, ... , N, are the Gauss-Lobatto Chebyshev nodes in 
[-1, 1]. In order to determine VN from (1.2), VN(X) is expressed by its unknown 
point values VN(xj) using the Lagrange interpolation polynomial 

N 

VN (X) = VN (Xk)9k (X), 

k=O 

where 

gk(x) = ~( 1)k(1 - X2)Tk(X) 
CkN2(X -Xk) 

with TN(X) cos NO, cos 0 =_ x, so that 

N sin NO 
TN = 

sin 0 

Here, TN is the Nth-degree Chebyshev polynomial and cj = 1 if 1 < j <N - 1, 
while co = CN = 2. Therefore, 

dVN N dgk 
dx (Xj) 5 VN(Xk) - (X) j1 N. 

ax 
k=0 

d 

Upon substituting the above relations in (1.2), we get a linear system of equations 
for the point values vN (Xk). We note that in (1.1) the differential equation holds 
in any arbitrary neighborhood of the boundary, whereas in (1.2) we did not require 
that the equation also was satisfied at xo = 1. We propose now another procedure 
that takes into account the differential equation at the boundary as well as the 
boundary condition. 

In our new method, we seek an Nth-degree polynomial UN such that 

I (a) dN (Xj) = f(xj), j= 1,...,N; 
(1.3) j (b) dUN 

dxb(1)auN (1) = f(1), 
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where a > 0 is a suitable constant depending on N, to be determined later. By 
writing the equality (1.3)(b) as 

1 (dUN f (1) =UN(1), 
a~k dx / 

we note that (1.2) is obtained from (1.3) by letting a -o +oo. We remark that the 
solution of (1.3) satisfies neither the boundary condition nor the equation at x = 1; 
if the method converges both will be satisfied as N -* +00. 

To show the advantage of the new procedure, we give in Figure 1.1 the plot of 
the error 

(1.4) E = E(o!)= ( 1i(U - UN) (Xi)c) 

multiplied by 105 versus a, for f(x) = sin(x - 1) and N = 8. The point xo is not 
taken into consideration in the sum because the exact solution is known there. It 
is clear from the figure that E(a) is not monotone in a and there exists a = ami" 
which minimizes E. In particular we have E(amimn) < E(+oo). Further experiments 
indicate that, in terms of N, amin increases like N2. 

E X105 

E(+__)____ 

amin 100 a 

FIGURE 1.1 
Behavior of the error versus a. 

We would like to explain why the procedure (1.3) should be, in general, better 
than (1.2). We start by noting that if f is a polynomial of degree N - 1 at most, 
then both (1.2)(a) and (1.3)(a) hold, not only at the grid points x;, but for every 
x since both sides of the equations are polynomials of degree N - 1. In particular 
(duN/dx)(1) = f(1), thus by (1.3)(b) we get UN(1) = 0, leading to the conclusion 
that UN(X) = VN(X), Vx. Suppose now that f is a polynomial of degree N. We can 
assume, because of the linearity, that 

(5f = (1 + x)T (x) (1.5) f W 
(1+ )T 

2N2 



602 D. FUNARO AND D. GOTTLIEB 

Hence, f(xj) = 0, j = 1,.. ., N, and f(1) = 1. Any other polynomial, up to a 
constant factor, can be obtained from (1.5) by adding some suitable polynomial of 
lower degree. In this case it is easily verified that the solution U of (1.1) is given 
by 

(1 6) U(x) = [ - flTN+1 (X) + TN(X) + N lTN1(X)_ 2N 1] 

It is clear that the solution of (1.2) is 

(1.7) VN(X) = 0, Vx. 

On the other hand, the solution of (1.3)(a) is a constant and from (1.3)(b) we get 

(1.8) UN(X) VX. 

With 1/a E /3, the error is given by 

N A1/2 
(1.9) E= ( (U(Xj) +? 3) 1/ 

To minimize E one has to choose 3 as the negative mean of U, namely 

,3min=-N EU(Z)-N IE?= EU(xZ)i 
j=1 1 j=0 =1 

and an easy calculation shows that 

1 _2N 2- N 
(1.10) amin = =m 21 _ (N 2-1) - N . 

This explains the behavior of amin as a function of N. 
In Table 1.1, we summarize the results of another experiment. This time we 

chose f(x) =-(1 -x)1/2, with the boundary condition U(1) = 1, so that the 
solution was U(x) = (1 - x)3/2 + 1. We have tried the two different ways of 
imposing boundary conditions, i.e., 

(1.11) VN(1) = 1, 

(1.12) d -N amin(UN(1) - 1) = f(1) (where amin is given by (1.10)), 
dx 

and we varied the number of grid points N. 

TABLE 1. 1 

Comparison of the errors between the two ways of imposing boundary conditions. 

N Condition (1.11) Condition (1.12) 

2 0.281837 0.243315 
4 0.338991E-01 0.183894E-01 
6 0.995738E-02 0.478991E-02 
8 0.418410E-02 0.190129E-02 

2. The Time-Dependent Problem. In this section-we show how to apply 
the new procedure of setting the boundary conditions, described in the previous 
section, to a scalar hyperbolic equation. In a future paper, we will discuss the case 
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of a system of hyperbolic equations. An analysis of the convergence of this method 
will be carried out for Chebyshev approximations. 

Consider the equation 

Ut = Ux, IxIl < 1, t > 0 

(2.1) U(1,t) =(t) 

1 U(x, 0) = f(x). 
The pseudospectral semidiscrete approximation to (2.1) suggested in this paper 
involves seeking a polynomial UN of degree at most N such that 

-UN = auNt at x = x, j=1,..., NVt>0, 

(2.2) | UN I t) 
aUN 

(1, t) -a(UN(l, t) -9()), 
at (1) a x ( 

UN (Xj, 0) f (Xj), j=O,..., N. 

The choice of the nodes {x;} determines the particular spectral method. For ex- 
ample, the points 

(2.3) Xj =COS NI j=O0l,...IN, 

determine the usual pseudospectral Chebyshev method, whereas the points 

(2.4) xi = cos N+ j = 0, 1,...,N 

determine a different version (see [7]). The pseudospectral Legendre method is 
defined by choosing x; to be the extrema of the Nth-degree Legendre polynomial. 

We would like to show here the convergence of the solution UN (x, t) of (2.2) 
to U(x, t) defined in (2.1) when N - +0oo, in the case of the Chebyshev method 
defined by (2.3). The stability proof for the Chebyshev method (2.2) and (2.3) 
for a = oo is discussed in [10]. We use the same basic ideas to get directly a 
convergence proof, for a 0 oo. The proof here is presented in detail since it will 
serve as a reference for our future work discussing systems. We start with the 
following preliminary results. 

LEMMA 2. 1. Let UN(X, t) be the solution of (2.2) when x; are given by (2.3); 
then 

aUN aUN (1 + X)T(x) 
(2.5) -i iz2 at ax 2N2 I 

where r = -a(UN (1, t) - g(t)) . 

Proof. It is sufficient to note that (2.5) exactly coincides with (2.2), when eval- 
uated at the collocation nodes. 0 

We define now PMU as the polynomial interpolating U at the points cos(irj/M), 
j = O,1, . . ., M. Note in particular that (PMU)(1, t) = U(1, t), for any M. We are 
ready to write the error equation. 

LEMMA 2.2. Let eN(X, t) = UN (X, t) - PN-3U(X, t); then 

(a9N a9EN _(1 + X) Tk (EN(l t) + Q(X, ), 
(2.6) at ax 2N2 

eNTv () = PNT! - PhN qf, 
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where Q(x, t) is a polynomial of degree N - 3 in x, given by 

Q(x, t) = - PN3 (+u) 
X (PN-3U) 

-P- 
9 

Proof. We apply PN-3 to (2.1) to get 

OtN3U 
- 

__9 __PN -3QU , ) 
(1 + 

X)TN(x (2.7) A(t OXU P3 - , 
t)U- c[(PN_3U) (1, t) - g(t) ] 2N2 

with the initial condition [PN-3U]t=o = PN-3f. In fact, note that, since 
(PN3U)(lt) = g(t), the last term that was introduced in (2.7) is zero. Hence, 
(2.6) follows from (2.7) and (2.5). 0 

Next we will show that EN (x, t) tends to zero as N increases. The proof will 
be based on a careful energy estimate for (2.6). For this, we need the following 
lemmas. 

LEMMA 2.3. Let w(x) = Z4=0 bkTk(X); then 

(2.8) rx Ew() = w + d rb2N 

where co = cN = 2 and ck = 1 for 0 < k < N. 

Proof. We test (2.8) for Tk, k = 0,... ,4N - 1. If 0 < k < 2N - 1, (2.8) 
is a well-known quadrature formula (see [9, p. 50]); if k = 2N, it is a trivial 
result by noticing that T2N(xj) = 1; if 2N + 1 < k < 4N - 1, then by writing 
T2N+m = 2TNTm - T2N-m, (2.8) follows easily from the orthogonality of the 
Chebyshev polynomials. 0 

LEMMA 2.4. Let v(x) = kN akTk(x); then 

N S i-(1 + Xj)(1 l-x3)v(x3)vx(xi) 
(2.9) =? 

(1?x)( 
OX) 

vvxd 
7 2 1-(1 + z)( 2 zdz+- (1-O)Na 

2 
_0 aNaN- 

for any ,3 real. 

Proof. The result is an application of the previous lemma (see also [10]). 0 

LEMMA 2.5. Let EN(Xt) be defined by (2.6). Suppose that 

N 

EN(Xt) = 5akTk(x); 
k=0 

then 

(2.10) d (2aN - aN-1) = -4N(2a2 - aNaN-1). 

Proof. We can argue as in [10] using (2.6) and the fact that Q(x, t) is a polynomial 
of degree N-3. 0 
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LEMMA 2.6. Let 6N(Xt) be defined by (2.6); then 

N 1(1 + zX) (1 - 3xj) ?N (zj, t) (xi, t) 

(21) =N( / ? (9 z1: 6 t2a-N1 
j=0 

(2.11) 1 (1+ X)(1-3OX) a9eN x-7o2N 
- 1 -(2a - aNl )2 

V1 1 2 N O ix 16N dtka 

-jN (33-1--) aN. 

Proof. Combine the results of Lemma 2.4 and Lemma 2.5. 0 

THEOREM 2.1. Define 

2 N - 1 
(2.12) Il.=0 

= --1+z)(1 Z)?(jt 

+ r 16N (2aN-aN-1)2 

and let 
1 K1 - Zm + Zm 

K = 2K E 1-Zm 
m=1 Zm 

where Zm are the zeros of TK and K is chosen such that K > N + 1. Then we have 

2 dt1?I+ 2 (N -aK 
2 

(1, t) 

(2.13) diieii< 21 (1 +z) - (1 ) Q2(1,t) dx, Vt > O. 

Proof. We evaluate the equation in (2.6) at the points x;, then multiply by 

N (1 + x3) (1 - _Xi N (Xj, t) 

and sum up over j =0,... N to get 

(2.14) =-ZE-(1+xj) (1- Xi) 6N(Xjt) 6N (Xzt) 

2 
22(1, t) + N -1+ zj) (1- -Xi) 6N (Xi,t) Q (Xi,t) 

The right-hand side of (2.14) is composed of three terms. We start by estimating 
the last term. First, we realize that the polynomial (1 + x) (1 - X)ENQ is of degree 
2N - 1 and therefore, by Lemma 2.3, we have 

NE 7( 1 + xj) (1- i N(Xj, t)Q(xj, t) 

= " / (1i+\) (1 dx 
= (1 +x) 1 -~x} EN(X,t)Q(X,t) 1`x 
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Upon using the Gauss quadrature formula based on Zm, m = 1,... , K, one gets 

I +, (1 ) XENQ I 

- | K (+ Z~m) (- _Zm EN(Zmt)Q(Zmt) 

< 2K 2(12) 

KK m= ( ZM + Zm( 2 )Q 

M. 1Zm+Zmn (,Z t) 

2KE1 2(1- Zm) 

+ f(1 +x - .x Z)2(t) 1 _2 d) x.z t) 
7r -Zm + Zm 2 (m 

2K m=1 2(1-Zm) 

+2/1( )( 1 222 ~ x 

For the first term in the right-hand side of (2.14) we use the result in Lemma 2.6 
with fi= 2. Therefore, by (2.12) and the previous estimate, we get 

2 t IkNII2 <!f |(i + z) (1 - 2Z +k[E(xat) - eN(1, t)] dxx 

- 2N (2- 2N 2- 2?Nl 

(2.15) K 2 zm)(1 2 zM) 2 
(Zm t) 

+ K+ ) (i 1)2 )-t dx 2 

Integration by parts for the first term in the right-hand side of (2.15) yields 

2 f (i + x) (- !) - t)] 
N 

+[-1(X +6 (1 tt) ] d 

lflr 1-Z +xx[2 t) 2-(1t)] dx1 ) 

+ 2 J-iX 21-) 1-dx 

where we wesnoted that the last integrand is a polynomial of degree 2N + 1 <2Km- 1 
and therefore the Gauss quadrature formula is exact. Going back to (2.15), one 
finally gets (2.13). 0 
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Remark 2.1. It can be shown that 11 11 defined in (2.12) is actually a norm. In 
fact, it is possible to find a positive constant c, independent of N, such that 

112| > C E(1 + X) /dx 
JJINII N Vx 1- x2' 

for every polynomial EN of degree at most N. El 
Finally, by integrating (2.13), we get the main result of this section. 

THEOREM 2.2. Let a be such that ir(a/N - -YN+1) > C*, where C* does not 
depend on N; then we have 

IIEN( X t)112 + C* / 2 
?(1, T) dT 

(2.16) < IIPNf - PN-3fII2 

+ 4 | (l xX (1- ) Q _x, 2dx dT.D 

The previous theorem is a convergence result by noting that the right-hand side 
of (2.16) goes to zero in a spectral way (see for instance [1]). 

Remark 2.2. One can check that -WN+1/N converges to 2 when N goes to +oo. 
This means that, by taking a proportional to N2, the hypothesis of Theorem 2.2 is 
satisfied. This assumption is similar to that made for the time-independent problem 

(see (1.10)). n 
3. Boundary Conditions for Elliptic Equations. A theoretical analysis 

of the convergence for pseudospectral approximations of the solution of Neumann 
problems, with a modified approach to treat the boundary conditions similar to that 
examined in the previous sections, has been developed in [4]. Here we shall prove 
that the matrices relative to such approximations have real and strictly negative 
eigenvalues (note that, in the Chebyshev case, these matrices are not symmetric). 
For this purpose, we consider the parabolic equation 

(3.1) Ut = UXX, xi < 1, 

with the Neumann boundary conditions 

(3.2) UX(+1) = 0. 

The solution is determined up to a constant. The Chebyshev method with the 
new boundary treatment involves seeking an Nth-degree polynomial UN such that 

(3.3) aaU a2UN atx;=cos I I = 1... N -1 at x2 N 
and 

aUN 2 UN aUN 

(3.4) at xa2 a ax =0 atx=1, 
aUN 92 UN aU =0 atx=-1, at - x2 - x 

where a is a positive constant to be determined later on. The eigenvalue problems 
associated with (3.3)-(3.4) consist of finding a nonvanishing polynomial v, of degree 
at most N, such that 
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and 

(3.6) AV{ 
- 

Av-v + avx = O at x =1, 
Av - v3X - a-vx = O at x =-1. 

The problem (3.5) admits the trivial solution A = 0. We will show that the 
other eigenvalues are real and strictly negative. We begin by noticing that one can 
explicitly derive the characteristic polynomial of (3.5)-(3.6). In fact, (3.5) can be 
written as follows: 

(3.7) Av = vxx + aR + bS, a, b E R. 

where 

R(x) = 
xT () S(x) = T(N ) R~) N2 8() N2 

Therefore, following [8], we have the next result. 

LEMMA 3. 1. The solution v of (3.7) is given by 

(3.8) v(x) = ap(x, At) + bq(x, yu), 

where A = 1/A and 
=00 

|p(x, y) = ER (21)(X)Yk+1l 

(3.9) k=O 

q(x, A) = S(2k)(x)APk+ . 
k=O 

Proof. We first note that p and q are polynomials in x. Then, it is easily verified 
that 

(3.10) 
{ 

Ap-pxx=R inR, 
( Aq - qx- = S in R, 

and therefore v defined in (3.8) is the solution of (3.7). This completes the proof. 0 
To get the characteristic polynomial of the second derivative operator, we need 

to substitute (3.8) into (3.6) and make use of (3.10) to get 

a R(1)+aa (1,pA)] +b S(1)+a -(1,A)] =0, 
(3.11) 

a 
[(1 

+ b 
k) 

9Xaq 

a [R(-1) -a(-1, At)] +b [S(-1) -a(-1,)] =0. 

From now on we suppose that N is even (for N odd, similar arguments can be 
applied), so that we have R(1) = S(1) = R(-1) = -S(-1) = 1 and p(x,,u) = 

p(-x, ,u), q(x, At) = -q(-x, At). Hence, we can state 

THEOREM 3.1. The complex number A $ 0 is an eigenvalue of (3.6) if and 
only if A = 1/A satisfies 

(3.12) 2 [1+a -(1lp)] [1+ a cY (1, p)] 0. 

Proof. The left-hand side of (3.12) is the determinant of (3.11). Since we are 
looking for a nontrivial solution of (3.6), this determinant must vanish. O 



BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 609 

Now define 

( g(H) = 1 +a tp, 

(3.13) Ox 

h() = 1 + o (Oq 

It is not difficult to check that g and h are polynomials in ,u of degree N/2. In 
order to show that the roots of g(p) and h(pu) are real negative and distinct, we use 
the notion of a positive pair (see [5] and [8]). Two polynomials form a positive pair 
if their roots are real negative and interlaced. We shall prove, for instance, that 

g(,) and p(l, p)/p form a positive pair. To show that, we first need the following 
result. 

LEMMA 3.2. Let 

(3.14) f (,) = g(ii2) + apt [P(1t ')j] 

where g is defined in (3.13) and p in (3.9). Then f is a Hurwitz polynomial (i.e., 
all its roots lie in the left side of the imaginary axis) provided ca is sufficiently large. 

Proof. By the definitions (3.9) and (3.13), one easily gets 
00 0o 

f(u = 1 + a E R(2k+1) (l)p2k+2 + Cep E R(2k) (1) P2k 

(3.15) k=O k=O 

= 1 + a E R(m)(1))pm+l 

m=O 

We show that f is the characteristic polynomial relative to the pseudospectral 
approximation of a hyperbolic problem. In fact, define 

00 

p(x,1u) = E R(m)(x)pm+l; 
m=0 

then it is readily verified that 
1 

(3.16) -p(x, ,u) = px(X,, y) - ap(1,, )R(x), 

and that the roots of f(At) = 1 + ap(l, A) = 0 give the corresponding eigenval- 

ues. Now, (3.16) actually is the eigenvalue problem associated with the hyperbolic 

equation 

(3.17) AWN = WN 
w(1, t)R(x). 

O9t O9x -C 

With a proof similar to that of Theorem 2.1, where WN plays the role of EN 

with g 0 0 and Q- 0, it is possible to show that, for some norm 11, we have 

dIjwNlI2/dt < 0 if ar is suitably large. This implies that f is Hurwitz. 5 

As an immediate result of Lemma 3.2, we have the next theorem. 

THEOREM 3.2. If a is sufficiently large, then the roots At of the polynomial g 

defined in (3.13) are real negative and distinct. 

Proof. The theorem is a consequence of f being a Humwitz polynomial. In fact, 

this is a necessary and sufficient condition for g(p) and p(l, A)/,t to form a positive 

pair (see [5, p. 228]). In particular, the roots of g are real and negative. fl 
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In the same way, we can also prove 

THEOREM 3.3. If a is sufficiently large, then the roots ,u of the polynomial h 
defined in (3.13) are real negative and distinct. 

Proof. It can be verified that the polynomials h(bt) and q(1, b)/bt form a positive 
pair by showing that h(,2) + cap[q(1, b2l)/b2] is a Hurwitz polynomial. 5 

Finally, by Theorems 3.1, 3.2, and 3.3, we can conclude with the following result. 

THEOREM 3.4. If a is sufficiently large, then the eigenvalues A :A 0 of the 
second-derivative Chebyshev matrix with the boundary conditions (3.6) are real and 
negative. 5 

It is easily verified that a turns out to be proportional to N2, as is also pointed 
out in [4], where an explicit formula for a is given. 

4. Analysis of the Eigenvalues and Numerical Experiments. In this 
section we analyze the behavior of the eigenvalues of the (N + 1) x (N + 1) matrix 
associated with the scheme (1.3). Applying the same proof of Theorem 2.1 in 
Section 2 to the equation (2.5) with g _ 0, we get dIJuNII2/dt < 0. 

N=9 jimx 

a=N2 

0 

.5 

0 

0 

reX 

another - 
eigen value 
at -47 

0 

0 

1-5 
0 

0 

FIGURE 4.1 
Ligenvalues in the complex plane using scheme (1.3). 
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This implies that all the eigenvalues have negative real parts. In Figure 4.1 they 
are plotted for N = 9 and a = N2. The distribution in the complex plane is 
similar to that of the eigenvalues corresponding to the N x N matrix associated 
with the system (1.2). The extra eigenvalue coming from (1.3) is real negative and 
its magnitude is proportional to N2. If RN(A) is the Nth-degree characteristic 
polynomial related to (1.2) (see [2] for the explicit expression of the coefficients), it 
is easily verified that the eigenvalues of (1.3) are the N + 1 roots of the equation 

(4.1) A N+ + aRN(A) = 0. 

Following [6], it can be shown that the eigenfunction corresponding to the root A 
of (4.1) (up to a normalizing constant) takes the following form 

N 
(4.2) u(x) - E h(k)(x)AN where h(x) = TN(X)(1 + X 

k=O 

To discretize in time (2.2), we can use the second-order Runge-Kutta method. The 
analysis of the stability of the method, based on the knowledge of the eigenvalues 
of (1.3), gives an upper bound on the time step At. By choosing a proportional to 
N2, the restriction on At is given by the formula 

(4.3) At < 2 

Therefore, by taking a = N2, condition (4.3) says that At < 3.3/N2. This restric- 
tion is slightly more severe than that obtained by exactly imposing the boundary 
condition in x = 1. Indeed, in this last case, we had At < 17/N2 (see [2]). The 
more restrictive condition on At is due to the presence of the real eigenvalue with 
the largest magnitude. One could think that this result negatively influences time 
discretization for scheme (2.2). Nevertheless, we argue that this is not the case. 
In fact, consider problem (2.1), when the initial guess is f(x) = 1 - cos(x - 1) 
and g 0. We discretize the equation by collocation at the Chebyshev nodes xj, 
j = 1, . . . , N. Two different conditions are tested in x = 1, namely 

a) UN(1, t) = 0, 
(4.4) b) (1, t) = )UN (1, t)-auN(1,t). 

O9t O9x 

We take N = 8,a = N2 and t E [0,T] with T = 1, and we evaluate the error E 
as in (1.4) using both the schemes, respectively obtained by imposing conditions 
a or b in (4.4). Second-order Runge-Kutta is used for time discretization. Figure 
4.2 shows the behavior of the error versus At. As the analysis of the eigenvalues 
pointed out, by increasing At using condition b, instability occurs earlier than using 
condition a. 

TABLE 4.1 

Comparison of the errors for different At and N. 

At = .01 At = .001 At = .0001 
N Condition a Condition b Condition a Condition b Condition a Condition b 
8 .1649E-02 .1124E-02 .1644E-02 .1122E-02 .1644E-02 .1122E-02 
16 .2076E-03 .2039E-03 .1996E-03 .1962E-03 .1995E-03 .1961E-03 
32 .6837E-04 OVERFLOW .3846E-04 .3653E-04 .3842E-04 .3649E-04 
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FIGURE 4.2 

Comparison of the errors versus At using different boundary conditions. 

However, the error using method b is significantly smaller than that of method a. 
Moreover, the choice of larger At for method a causes deterioration of the accuracy. 

For the same example, Table 4.1 shows the error when T = 1 for various choices 
of N. Similarly, Table 4.2 shows the error when different values of T are used and 
At = .001. In almost all the cases, the use of condition b is preferred, especially 
when large values of T are considered. Similar results can be obtained when time- 
dependent boundary conditions are considered. 

TABLE 4.2 

Comparison of the errors for different T and N. 

T =.5 T = 2 T = 10 

N Condition a Condition b Condition a Condition b Condition a Condition b 

8 .1107E-02 .1200E-02 .8904E-03 .7875E-03 .2010E-07 .4098E-09 
16 .2594E-03 .2540E-03 .9567E-04 .8506E-04 .8312E-10 .2718E-13 
32 .4168E-04 .3904E-04 .1187E-04 .1174E-04 .2231E-14 .9872E-19 

We conclude this section by discussing preconditioning for the matrix corre- 
sponding to (1.3). For the matrix resulting from scheme (1.2) an efficient precondi- 
tioner was proposed in [3]. Such preconditioner can be written as a product of two 
N x N matrices Z and D, where D is the upwind finite-differences matrix at the 
collocation nodes and Z is a shift in the space of polynomials of degree N - 1, from 
the values at the staggered grid points to the values at the initial grid. The eigen- 
values after preconditioning are real positive and between 1 and 7r/2. An analogous 
result holds for the (N + 1) x (N + 1) matrix corresponding to the scheme (1.3). 
As preconditioner for this matrix we take ZD, where Z and D have respectively 
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the form 
-ak 0 ..0' 

z~~~ (? D:) Dl?z 

The preconditioned eigenvalues can be explicitly computed also in this case. They 
are 

m sin(7r/2N) So =l Am = .in(m( /2N) X m = l, ,N 

In particular, 1 < Am < Ir/2. The corresponding eigenfunctions, up to a multi- 
plicative constant, are 

m 2 
Um(X) = Tm()- 1 + (Am + 1)' m= 0,1 ... IN. 

The preconditioner presented above is particularly suggested when steady-state 
solutions of problem (2.2) have to be computed. 
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