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Backward Differentiation Approximations of Nonlinear 
Differential/Algebraic Systems 

By Kathryn E. Brenan and Bjorn E. Engquist* 

Abstract. Finite difference approximations of dynamical systems modelled by non- 
linear, semiexplicit, differential/algebraic equations are analyzed. Convergence for the 
backward differentiation method is proved for index two and index three problems when 
the numerical initial values obey certain constraints. The appropriate asymptotic con- 
vergence rates and the leading error terms are determined. 

1. Introduction. The most general systems of differential/algebraic equations 
(DAE's) arise in the fully implicit form, 

(1.1) R(t, x, x') = 0, 

where x = x(t) and R are vectors of dimension r. The Jacobian matrix OR/0x' is 
assumed to be singular. If it is nonsingular, system (1.1) is an implicit set of ordi- 
nary differential equations (ODE's) and can be, at least theoretically, reformulated 
as x' = f(t, x). 

The k-step backward differentiation formula (BDF) was introduced by Gear [8] 
in 1971 for the numerical integration of DAE systems. This approach has been 
universally accepted in industry as well as in academia as the standard numerical 
method for solving DAE systems. To apply this method to (1.1), replace the 
derivatives x' by their BDF approximation with constant stepsize h and evaluate the 
equations at tn where tn = to + nh. The resulting system of difference equations, 

(1.2) R (tnixnh, )x =0 

is then solved for the numerical approximation xn of x(tn). 
The analytical and numerical theory for linear R with constant coefficients is 

well understood [5], [7], [25], [27]. The variable coefficient and nonlinear cases are 
much harder. In contrast to the theory for the numerical approximation of ODE's, 
the convergence results for linear, constant coefficient systems do not extend to all 
linear, variable coefficient or nonlinear problems. In this paper we will restrict our 
interest to the class of solvable DAE's. A solvable DAE is one for which solutions 
exist, and for which solutions having the same initial values are identical [9]. Now, 
while the k-step BDF have been shown to converge on solvable, linear constant 
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coefficient systems [25], they may be unstable for some fully implicit DAE's. For 
example, in [10] a fully implicit, linear, time-varying solvable DAE system is pre- 
sented for which the one-step BDF is unstable and thus does not converge. On the 
other hand, numerical experiments strongly suggest that the BDF are convergent 
for some classes of DAE's [1]. This example demonstrates that in order to establish 
a convergence theory for numerical approximations to the solutions of nonlinear 
(including linear time-varying) DAE's, a subclass of problems of the form (1.1) has 
to be chosen. It is the purpose of this paper to define an appropriate subclass of 
nonlinear DAE's which cover many of the applications, and to develop a rigorous 
convergence theory for that class. The stability results derived in [1] for the linear 
homogeneous systems corresponding to this subclass of nonlinear systems will be 
summarized as well. Before the results can be presented, some background material 
must be given. 

The behavior of DAE systems is directly related to a property called the index 
[5], also sometimes referred to as the degree of nilpotency [28]. For example, consider 
the following subclass of system (1.1) which we will refer to as semiexplicit DAE's: 

(1.3) y' = E(ty , u), 

(1.4) 0 = H(t, y, u), 

where y = y(t) and E are I vectors, and u = u(t) and H are m vectors. Semiexplicit 
DAE systems arise in dynamic simulations of mechanical problems [17], fluid flow 
problems [18], [21], and optimal [4] and trajectory control [2] problems. Essentially, 
the index of system (1.3), (1.4) is one more than the number of times it is necessary 
to differentiate the algebraic equations before the algebraic variables u can be ex- 
plicitly determined. Hence, if the Jacobian matrix DH/Ou is nonsingular, then the 
system has index one [11], since no differentiation is required. If DH/Du is singular, 
then the index is at least two. If the algebraic subsystem (1.4) is not present, or if 
the DAE system is simply a set of implicit ODE's, the index is zero. A reduction 
algorithm described in [9] gives a precise definition of the index. 

Recall that initial values of ODE's may be specified arbitrarily. However, initial 
values for a DAE system of index v must in general satisfy consistency relations 
which may involve up to M - 1 derivatives of some of the variables. For exam- 
ple, initial values for semiexplicit DAE systems must at least satisfy the algebraic 
equations (1.4). 

Not only is the index of the system important in the characterization of the 
system's solutions, but it is also critical to the convergence and stability properties 
of numerical approximations. For example, the relation of the index to the stability 
and convergence properties of the BDF is very well understood for linear, constant 
coefficient systems, 

(1.5) Ax' + Bx = f (t), 

where A and B are constant r x r matrices. If system (1.5) with index M is solved by 
the k-step BDF (k < 6) with constant stepsize h, the numerical solution converges 
globally to O(hk) accuracy after (v - 1)k + 1 steps [25]. If the one-step BDF (i.e., 
Backward Euler) is used to solve an index three system, the global error is 0(1) 
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after one step [11]. However, after three steps of constant length h, the numerical 
solution is 0(h) accurate. 

If the system's index is restricted to one, then the numerical solution determined 
by the k-step BDF converges to the solution of the general implicitly formulated 
problem (1.1) [9]. However, as was mentioned earlier, subclasses of (1.1) must be 
considered when proving convergence for higher index systems. Since numerical 
solutions of some higher index, semiexplicit systems have been experimentally de- 
termined to O(hk) accuracy by the k-step BDF, it is natural to investigate the 
convergence properties of the BDF on this subclass of (1.1) [1], [2]. 

The subclasses of DAE's studied in this paper are higher index problems (i.e., 
index greater than one) which are sometimes labelled ill-posed [19], [20] or alge- 
braically incomplete [23]. The classification of these higher index systems as ill-posed 
should be understood in the strict sense that they may not exhibit a continuous 
dependence in the maximum norm on the inhomogeneous terms. In fact, it will be 
necessary to impose additional smoothness on the systems and to consider a weaker 
form of stability where the solution depends continuously on the inhomogeneous 
terms and some of their derivatives. Solvability of these systems also requires this 
regularity. It is still possible for the BDF to produce a convergent numerical solution 
in spite of this weaker form of stability. Furthermore, it is important in practice to 
understand how numerical methods behave when applied to higher index systems 
because higher index problems arise in applications much more frequently than first 
thought. Until recently, many engineers solving DAE's were not cognizant of the 
index. Except in special cases, it is still difficult in practice to determine what the 
index of a given DAE is. In any case, it is useful to identify these special cases. In 
particular, the nonlinear systems we study here were originally motivated by the 
need to solve trajectory prescribed path control problems of current interest to the 
aerospace industry. Typically, these problems are index two or three, semiexplicit, 
nonlinear DAE's. While sometimes their index can be reduced (by differentiation 
or some other technique), in general that approach has not been very satisfactory 
in practice. 

In this paper, convergence of the BDF is proven for semiexplicit systems of index 
two and three. In particular, consider the index two system 

(1.6) y' = E(t, y, u), 

(1.7) 0 = H(ty), 

where the m x m matrix (OH/Dy) (OE/Ou), evaluated at the solution (y(t), u(t)), 
is assumed to be nonsingular for all t in some interval I, and m < 1. Let us also 
consider the index three system, 

(1.8) v' = F(t, v, wIu), 

(1.9) w' =G(t, v,Iw), 

(1.10) 0 =H(t, w), 

where the m x m matrix (OH/OwXaG/Ov)(OF/Ou) is nonsingular along the so- 
lution (v(t),w(t),u(t)) for all t E I. In system (1.8) --(1.10), v and F are vectors 
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of dimension p, denoted as dim v = dim F = p, while dim w = dim G = q and 
dim u = dim H = m. To avoid the case of an overdetermined system, we assume 
m < min(p, q). Throughout this paper, the functions E, F, G, and H are assumed 
to be sufficiently smooth functions of all their arguments as required for the con- 
vergence analysis contained herein. 

Typically, the variables for which there are explicit differential equations are re- 
ferred to as state variables, while those variables appearing only algebraically will 
be called the algebraic or control variables. In system (1.6), (1.7) the 1 state vari- 
ables are y, while in system (1.8)-(1.10), the state variables are y = (v, w) with 
dim y = 1 = p+q. In both systems, the algebraic variables are u. In [1] it was proven 
that a linear, index two system and a linear, index three system corresponding to 
(1.6), (1.7) and (1.8)-(1.10), respectively, are solvable. The proofs are straightfor- 
ward and involve reducing the systems to sets of explicit ODE's by differentiating 
the algebraic equations and substituting for the state variables' derivatives from 
the DAE's. For consistent initial values, the solvability of the DAE's is then es- 
tablished by applying existence and uniqueness theorems for ODE's. Note that a 
consistent set of initial values must satisfy not only the algebraic equations given 
in the DAE, but also those equations arising in the reduction process. For the 
nonlinear DAE's (1.6), (1.7) and (1.8)-(1.10), it is technically necessary to assume 
there exist solutions satisfying the algebraic equations corresponding to the associ- 
ated index one problems, including (1.7) and (1.10), respectively. Then, solvability 
of the nonlinear DAE's may be established as in the linear case-namely, differ- 
entiate the algebraic equations and apply the implicit function theorem to solve 
for the algebraic variables, thereby reducing the DAE's to explicit ODE systems. 
This last step utilizes the assumptions on the nonsingularity of the matrix products 

(0H{(') and (H)()({a). ay au J aw TVav JVAu 
The facts that system (1.6), (1.7) and the linear system corresponding to (1.8)- 

(1.10) are index two and three, respectively, was first established in [1] by applying 
the reduction technique described in [9]. Essentially, the index is one more than the 
number of times it is necessary to differentiate the algebraic constraints before the 
algebraic variables appear explicitly. The index of the nonlinear system (1.8)-(1.10) 
follows in a similar way. 

In the following section, convergence theorems for the BDF methods approximat- 
ing the solutions to (1.6), (1.7) and (1.8)-(1.10) are stated. The rate of convergence 
is equivalent to the corresponding rate for linear, constant coefficient problems. The 
leading error term in the asymptotic expansion is given. This section also contains 
necessary definitions and a brief outline of the proofs. In particular, it is pointed 
out how this analysis differs from the corresponding theory for ODE's. The conver- 
gence proof for the index two system is given in Section 3, while the corresponding 
proof for the index three system is presented in the Supplement. 

This paper is an extension of the convergence results derived in [1], and is a 
condensed version of the earlier report [3] in which the proofs are carried out in 
somewhat greater detail. While a convergence analysis of the k-step BDF was 
done for the nonlinear, index two system (1.6), (1.7) in [1], the proof presented 
in [1] was valid for only the linear, time-varying index three system corresponding 
to the nonlinear system (1.8)-(1.10) of interest here. The analysis in this paper 
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also leads to new results concerning the leading error terms. Extensive numerical 
experiments have been conducted to verify the rates of convergence for both linear 
and nonlinear index two and three systems of these forms [1]. Numerical results 
for a particularly nonlinear, index three problem arising in trajectory control have 
already been presented in [2]. 

Using a different approach than the one employed here, convergence results for 
the BDF have been obtained in [18] for index two systems having a form equivalent 
to (1.6), (1.7) and for a subclass of the index three systems (1.8)-(1.10). The proofs 
presented there rely on local rates of convergence established in [1]. Throughout 
this paper, we will point out the key differences between the results given in [1], 
[18], and this paper. 

2. Notation, Definition, and Statement of Results. Before stating the 
convergence results obtained for systems (1.6), (1.7) and (1.8)-(1.10), it is necessary 
to present some definitions. A set of initial values (yo, uo) at to is said to be 
consistent for a DAE system if there exists at least one solution (y(t), u(t)) assuming 
those values at to. For k > 2 the k-step BDF requires not only initial values, but 
the following set of values here called starting values: 

(2.1) Yk-1 = [Yk-1,Yk-2, ... Y * o]X 

(2.2) Uk-1 = [UkiT' 1,u * u 2 O 

where the superscript T denotes the transpose. The 1 vector yj and the m vector 

uj denote the numerical solution at tj = to + jh for j = 0, 1, . . . , k - 1 and to E 

J = [to, to + T] C I. We will say these starting values are numerically consistent to 
order k + 1 if there exists a solution to the index v system such that 

(2.3) 11y3 - y(tj)II < K1hks , 

(2.4) jIH(t1,yj)II < K2h k+v- 

for some constants K1, K2, and j = 0, 1, . . . , k - 1. In general, we could use any 
vector norm and corresponding consistent matrix norm during the analysis, but it 
is convenient to restrict the analysis to the maximum norm. We shall show that the 
starting values for u are not critical in the convergence analysis for systems (1.6), 

(1.7) and (1.8)-(1.10). 
Let the BDF difference approximation (1.2) of the semiexplicit problems (1.6), 

(1.7) and (1.8)-(1.10) have the form, 

k 

(2.5) Ec jYn-i = hE(tn X ,Y n U), 
i=O 

(2.6) 0 = H(tn, Yn) X 

where E = (F, C) and y = (v, w) for the index three system (1.8) (1.10). Given 
starting values satisfying (2.3), (2.4), a numerical solution (Yn, un) of (2.5), (2.6) 
converges globally with kth order accuracy to a solution of the DAE system (1.6), 

(1.7) or (1.8)---(1.10) if 

IlYn - Y(tn)ll < K3hkI Iun - u(tn)I < K4hk 
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for tn E [to, to + T] C J where the constants K3, K4, and 0 are independent of h. 
Since instability of the BDF is a concern for fully implicit, higher index DAE's, we 

summarize some stability results derived in [1] for the linear, homogeneous systems 
corresponding to the nonlinear systems (1.6), (1.7) and (1.8)-(1.10) of interest here. 
For arbitrary starting values Yk-1, the k-step BDF is stable (or weakly stable [6]) 
for these semiexplicit systems because there exist constants K*, K**, and X such 
that the following conditions hold uniformly in n and h for tn < tn < to + T, 

11Yn11 < K eng 11Yk-1 11, ||u11 < K**|lYk-111 

where n- = 3k - 1 (i.e., after k + 1 steps) for index two systems and n- = 4k - 1 (i.e., 
after 2k + 1 steps) for index three systems. In fact, the state variables y are always 
computed stably in an index two system, but only after k + 1 steps in an index 
three problem. Moreover, the BDF produces a numerical solution for the algebraic 
variables having a boundary layer of instability of length (k + 1) steps for index two 
systems and of length (2k + 1) steps for index three systems. These weak stability 
properties have since been studied for more general linear, semiexplicit, solvable, 
index two systems in [6]. In practice, weak stability describes how the BDF are 
sensitive to roundoff errors and errors in the starting values. 

While it is true that the BDF methods are weakly stable for these semiexplicit 
systems, it is also clear that the initial steps may contain 'large' errors. In spite of 
that, we show in this paper that if the starting data is sufficiently accurate, the BDF 
does produce a numerical solution which converges to a solution of the nonlinear 
system with the expected O(hk) rate of convergence. It is precisely one point of 
this paper to determine how accurate the initial data must be in order to insure 
convergence (in particular, for index three problems). Not only is this a theoretical 
concern, but it is also of practical interest as evidenced by the application of the 
BDF methods to real problems (see numerical results given in [1] or [2]). It is 
a fact that the Backward Euler method fails to converge at the end of the first 
integration step when applied to an index three problem. Consequently, serious 
difficulties arise in practice when using state of the art software implementing the 
BDF methods (e.g., see [22]) on index three systems. It has even been observed that 
it is possible for the numerical solution to converge to a solution of the given DAE 
which is inconsistent with the given initial values for the algebraic variables [2]. 
This difficulty is due not only to the behavior of the Backward Euler method, but 
also to the nature of the nonlinear system being solved. In this particular trajectory 
problem, for a given set of initial state values, there is a nonunique solution for the 
algebraic variable. A one-step method has no memory, so the 0(1) error introduced 
into the algebraic variable during the first step may cause the numerical solution 
to jump to a different solution curve. If the initial values for the state variables are 
sufficiently accurate, this difficulty does not occur. 

Now we can state the convergence results obtained for the k-step BDF when 
applied to the semiexplicit DAE systems (1.6), (1.7) or (1.8)-(1.10). 

THEOREM 1. There exists a numerical solution of the index two system (1.6), 
(1.7) by the k-step BDF with constant stepsize h for k < 7 which converges glob- 
ally with kth order accuracy to a solution of (1.6), (1.7) if the starting values are 
numerically consistent to order k + 1. 



BACKWARD DIFFERENTIATION APPROXIMATIONS 665 

THEOREM 2. There exists a numerical solution of the index three system (1.8)- 
(1.10) by the k-step BDF with constant stepsize h for k < 7 which converges globally 
with kth order accuracy to a solution of (1.8)-(1.10) after k+ 1 steps if the starting 
values are numerically consistent to order k + 1. 

The definition of a numerically consistent set of starting values is natural in the 
following way. For a system of explicit ODE's, a unique solution exists correspond- 
ing to any set of arbitrary initial values. The numerical solution corresponding to 
a convergent difference approximation of order k applied to an ODE will gener- 
ally require starting values of accuracy O(hk). For a solvable DAE, solutions exist 
and are uniquely specified when a consistent set of initial values are given. It is 
therefore natural to require that the starting values for the numerical method also 
satisfy some consistency conditions as well. That is, we cannot expect convergence 
of the difference method for any arbitrary set of starting values located in a circle 
of radius O(hk) about a consistent set of initial values. Specifically, they must be 
chosen to be sufficiently close to the manifold containing the solution to the DAE. 

In [1] and [18] it appears that convergence of the BDF has been proven for 
these systems when the starting values are accurate only to O(hk). However, if 
these starting values are not numerically consistent, then O(hk) convergence is not 
obtained until an additional k steps are taken, where the algebraic equations are 
satisfied either exactly as in [1] or at least to some sufficiently small tolerance [18] 
(namely, to O(hk+l ) accuracy for index two systems and to O(hk+2) for index three 
problems). Hence, in [1] or [18] it is proven that the k-step BDF, given arbitrary 
starting values of accuracy 0(h k), converges with 0(hk) accuracy to the analytic 
solution after k + 1 steps for the index two system and after 2k + 1 steps for the 
(linear) index three system. During the initial steps, reduced rates of convergence, 
namely O(hk-1), may be observed in the algebraic variables [1]. If the starting 
values are numerically consistent, then O(hk) convergence is achieved immediately 
for the index two system and after k + 1 steps for the index three system. 

In [18] it is assumed the algebraic equations are solved at each step to O(hk+l) 
accuracy for the index two system and to O(hk+2) accuracy for the index three 
system. These requirements are equivalent in our analysis to the restriction (2.4) 
for the starting values. In our proofs, we will assume that the algebraic equations 
are satisfied exactly at each step, but we could instead relax this requirement by 
enforcing (2.4) on each step. Specifically, the k-step BDF will converge with 0(hk) 

accuracy if the algebraic equations are satisfied to O(hk+l) accuracy for index two 
problems and to O(hk+2) accuracy (k = 1 requires O(hk+3)) for index three sys- 
tems. If the starting values do not satisfy this requirement (i.e., are not numerically 
consistent), then an additional k steps will be required before O(hk) convergence 
is attained in all variables. 

Remark. The convergence results given in Theorems 1 and 2 are also valid, 
without lengthening the boundary layer, when the consistency relations for the 
starting values are relaxed somewhat: 

1. For the index two system, (2.4) follows immediately from (2.3), and hence is 
not a restriction. 
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2. In the convergence analysis for the index three system, we could relax (2.3) 
to 

I1wj - w(tj)II = O(hk+l) and 1Ivj - v(tj)II = O(hk). 

3. It is possible to prove Theorems 1 and 2 given starting values with error 
O(hk) providing they have the following special form: (i = 0,1,... , k - 1) 

t= y(ti) + hkC1,, + 0(hk+l) (index two), 
w= w(ti) + hkc1,? + O(hk+l) (index three), 

where c1,i is a bounded vector in the null space of the Jacobian matrix Hy or H, 
respectively. 

Conditions 2 and 3 are less restrictive than the assumed consistency conditions 
(2.3), (2.4), but since the convergence proof follows in the same way as given here 
(except for straightforward technical complications arising in the initial step of the 
proof), we omit the details. 

Before rigorously proving the theorems in Section 3 and the Supplement section, 
we outline some of the key elements of the analysis, common to the proofs for both 
the index two and index three systems. We also introduce further notation and 
state two corollaries concerning the form of the principal error terms. 

In the convergence analysis of linear multistep methods applied to explicit ODE's, 
it is common to derive the following one-step evolution equation for the numerical 
error hkVn [24]: 

n= SnWn-1 + hfn 

for wn = (Vn Vn-i X * Vn-k+) and Xn = X(tn) + hkVn. The amplification matrix 
Sn is bounded. The vector fn contains the local truncation error of the BDF 
method and the remaining nonlinear terms of Vn after linearization. 

We shall also use a one-step evolution equation for the numerical error, but when 
such an equation is derived for the BDF methods applied to DAE's, neither the 
amplification matrix nor the vector fn is bounded independent of h. However, it is 
still possible to prove convergence for semiexplicit DAE's by utilizing the natural 
structure of these systems. In particular, it is necessary to bound certain matrix 
products such as SnSn-i Si for n sufficiently large and establish cancellation 
between different terms in the expression for the evolution of the error. It is of 
particular importance in the index three case for which even smoothness of the 
leading error term is needed to cancel terms from different time steps. We shall 
therefore express the error as a truncated asymptotic error expansion 

(2.7) n- y(tn) = hkd(tn) + hk+lrn, 

(2.8) Un - U(tn) = hke(tn) + hk+ Sn, 

where for the index three system (1.8)--(1.10) we let d(t) = (c(t),b(t)) and rn = 

(qn, Pn). In the proofs of both theorems, these expansions simplify the analysis 
(compare [26]). A similar approach is utilized by Henrici in [15] to determine 
the asymptotic behavior of the discretization error for general linear multistep 
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methods applied to explicit ODE's. When expressions (2.7), (2.8) are substituted 
into Eqs. (2.5), (2.6) and expanded by Taylor series around the analytic solution 
(y(tn), u(tn)), we obtain the following linear, index two DAE system for the leading 
error terms of the numerical solution to the index two problem (1.6), (1.7): 

(2.9) d'(t) = A(t) d(t) + B(t)e(t) + (k +1) )(t), 

(2.10) 0 = C(t) d(t), 

where A(t) = Ey(*), B(t) = Eu(*), C(t) = Hy(*), and the * denotes evaluation 
at the analytic solution (y(t), u(t)). Similarly, for the index three problem (1.8)- 
(1.10), we get the following linear, index three DAE system for the leading error 
terms: 

(2.11) c'(t) = Al1(t)c(t) + A12(t)b(t) + A13(t)e(t) + (I 1)(k+ )(t) 

(2.12) b'(t) = A21 (t)c(t) + A22 (t)b(t) + (k + 1)(wk+l) (t), 

(2.13) 0 = A32(t)b(t), 

where A11(t) = F,(*), A12(t) = Fw(*), A13(t) = Fu(*), A21(t) = Gv(*), A22(t) = 

Gw(*), and A32(t) = Hw(*). There exists a unique solution to the systems (2.9), 
(2.10) and (2.11)-(2.13) above for each set of consistent initial values [1]. The 
functions (d(t), e(t)) are smooth for smooth E and H. Note that the asymptotic 
error expansion is not only useful for the convergence proof. Such expansions are 
the basis for automatic error controls, initialization and extrapolation techniques 
[14]. 

To prove that the numerical solution converges to the true solution as h -+ 0, 
we will show that (rn, hs,), and for technical reasons sometimes that (rn isn), 
are uniformly bounded for all n > 0 where 0 is independent of n and h. After 
substituting expressions (2.7), (2.8) into the BDF difference equations (2.5), (2.6) 
and using the fact that (d(t), e(t)) is the solution to a linear DAE system, we write 
the remaining difference equations for (rn, sn) in the one-step form. An induction 
argument for i = k, . .. , n - 1 to i = n on the remainders (ri, si) is applied. Since 
the relations derived during the analysis are implicit functions of the remainders, 
it is also necessary to construct a fixed-point iteration for (rn, hsn) or (rn, Sn). 
The implicit function theorem is applied. The particular restrictions on the initial 
conditions (i.e., (2.3), (2.4)) are essential in this context. 

Throughout the analysis, certain special properties of the matrices arising must 
be utilized. For example, factors of order 0(1/h) are annihilated by projection 
matrices which appear naturally. Frequently, it is necessary to bound the product 
of time-dependent matrices having a distinctive block structure. For convenience, 
we now introduce a notation used to represent these block companion matrices. 
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Notation. Let I, be an s x s identity matrix, O, be an s x s zero matrix, and Y 
be any s x s matrix. Let Ad, P = 1, 2,... , k, be scalars. Then we define the sk x sk 
block companion matrix 

771Y 72Y ... k-lY rkY 

Is I . Os 0? 

CPM(1Y) - . 
I . ? 

08 0s ? is 08 

We shall let Hln 1 Yi denote the product of time-dependent matrices Yi = Y(ti) 
given in descending order such as 

n 

rl Yi = Ynyn-1 .. *y1* 
i=l 

To prove convergence, it is necessary only to show that (hrn, hsn) is uniformly 
bounded for all n > 0. However, we will in fact prove that (rn, hsn) is uniformly 
bounded. The convergence proof directly establishes the fact that the principal 
leading error term in Yn is smooth, but shows only that the principal leading error 
term in un is hk(e(tn) + hsn). The smoothness of the leading error term in un is 

established in the following corollaries, the proofs of which are given in Section 3 

and the Supplement section, respectively: 

COROLLARY 1. If the conditions in Theorem 1 are valid and the algebraic equa- 
tions are satisfied to O(hk+2) accuracy for the starting values Yk-1 and at the end 
of each integration step, then sn is uniformly bounded for all n > k and the principal 
leading error term in Un is hke(tn). 

COROLLARY 2. If the conditions in Theorem 2 are valid, then sn is uniformly 
bounded for all n > 3k and the principal leading error term in Un is hke(tn). 

For the state variables, the leading error terms are smooth immediately (n > 
k) if the starting values are numerically consistent and if the algebraic equations 

are satisfied as in (2.4) at the end of each integration step. However, to derive 

the leading error terms corresponding to the algebraic variables, it is necessary in 

general to require the algebraic equations to be satisfied even more accurately than 

required for convergence. This additional regularity should not be too surprising 

since even for explicit ODE's, increased accuracy of the starting values is needed 

in the derivation of the smooth leading error terms for general linear multistep 

methods [15]. 

In the analysis given in Section 3 and the Supplement section, we assume for 

technical simplicity that the difference equations are solved exactly on each integra- 

tion step. However, the convergence analysis could be modified to include residual 

terms representing the effect of terminating the iteration process. We have already 

explained how to relax the requirement of satisfying the algebraic equations ex- 

actly. Residuals could also be added to the difference equations corresponding to 
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the ODE's. A straightforward generalization of the analysis is possible by simply 
forcing these residuals to be sufficiently small so as to not affect the behavior of the 
derived error estimates (e.g., in [18] it is assumed that the residuals corresponding 
to the ODE part are O(hk) for the index two system). Slightly stronger conditions 
may have to be imposed to obtain the results derived here, in particular for those 
results concerning the leading error terms. 

Convergence has recently been proved for variable step meshes for nonlinear, 
semiexplicit, index two systems in [12]. However, the rate of convergence is not 
established. We cannot extend the convergence analysis for the index three systems 
to hold for variable stepsize meshes without loss of accuracy because each time the 
stepsize is changed, a new boundary layer of reduced convergence rates would be 
initiated. In particular, the first-order BDF would fail to converge at the end of 
the first step, following every change in the stepsize. 

3. Convergence Proof for the Index Two System (Theorem 1). We 
have already stated that there exists a unique solution (d(t), e(t)) to the linear, 
index two system (2.9), (2.10) for each set of consistent initial values, but we must 
show one can always find a set of consistent initial values for any set of starting 
values satisfying (2.3), (2.4). Clearly, from (2.10), we must select d(tkl1) in the 
nullspace of C(tk-l), denoted Y(C(tk-l)). By assumption (2.3), it follows that 

Yk-1 = Y(tkl) + hk+lClk-l for some bounded vector cl,k1l. Therefore, since we 
want (2.7) to be consistent with our initial values at tkl1, we select d(tkl1) = 0 

and rk1 = clk-l. We then select e(tk-1) to satisfy the first derivative of (2.10), 
namely 

(3.1) e(t) = -[C(t)B(t)]-lC(t)y(k+l) (t)/(k + 1) 

for t = tk1. Since (d(tk1l),e(tk-l)) is a consistent set of initial values for (2.9), 
(2.10), we can define (d(t), e(t)) for t > tk-1 to be the solution. In the more general 
case that d(tk-1) E A'(C(tk-1)) but is not zero, as discussed in an earlier remark, 
one can also always find a consistent set of initial values for the DAE system (2.9), 
(2.10). 

Since the k-step BDF requires a numerically consistent starting vector Yk-1, we 
will define d(ti) = 0 and ri = c1,i for i = 0, 1, ... , k - 2, where c1,i are bounded 
vectors such that yj = y(ti) + hk+1cl,i. Let e(ti) be defined as in (3.1) for t = til 
i = 0,1,... , k - 2. Then, there exists a constant qo such that I1rk-1 1I < qo where 
rkl = [r T TrT 

rkl4,k-1, ,0J 

After expanding by Taylor series about the analytic solution (y(t'), u(t")), and 
using the fact that (d(t), e(t)) is the solution to (2.9), (2.10) with associated initial 
conditions, Eqs. (2.5), (2.6) can be rewritten in the form, 

(3.2) S (t)[ rn Z _l] v=lirn-i + [0l(tn)] 
( * ) ~ ~ ~~~ hn~n. I - I0 n (tn)l 
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where 
S(tn) = [ AI - hA(tn) - B(tn) 

C(tn) Om J 
I = - ai/ao where ai are the BDF coefficients, 

h hk (k1 t hk+1kQl( / = --R1 (E) + d (k+l)(t) - R12() + hkQ.(t) 
(3.3) ao ao(k +1) a 

+ hk+l (W(l) (r) + W(2) (S)) + hk+2 gi(r, s) + O(h 2k), 

(3.4) 02 (t) = -hk-1Q2(t) - hkW(3) (r) - hk+l92(r) + O(h 2k), 

Q1 (t) = 2 J{d(t)T [Eyy d(t) + Euye(t)] 

+ e(t)T [Eyu d(t) + Euue(t)]} + O(hk), 

Q2 (t) = !d(t)THyy d(t) + 0(hk) 

W(1) (r) = {rT [Eyy d(t) + Euye(t)] + [d(t)TEYY + e(t)TEyu]r}, 

W(2) (s) = {8T [Eyu d(t) + Euue(t)] + [d(t)TEuy + e(t)TEuu]s}, 

W(3) (r) = {rTHyy d(t) + d(t)THyyr}, 

g, (r, s) = JrT(Eyyr + Euys) + ST(Eyur + Euus)}1 

92(r) = _r Hyyr 

for t = tn, r = rn, S = Sn and n = 'n, tn-k < ,n < tn, and where all the partial 

derivatives of E and H are evaluated at the analytic solution (y(tn),u(tn)). The 

functions R1(() and R12(,) are the remainders from the Taylor series expansions, 

and hence are bounded functions of y(k+2)(() and d(k+2)((), respectively. 

The functions Qi(t) and Q2(t) contain all the inhomogeneous terms which are 

functions only of d(t), e(t), and partial derivatives of E and H. We will carefully 

analyze the leading terms in the Taylor series part of /1 and 42 (through the 

quadratic terms in r and s). The inclusion of higher-order terms from the Taylor 

series will only introduce terms of order higher than those already present. These 

higher-order terms have no influence on the order of the estimates derived in this 

analysis, and are presented by the final terms O(h2k) in the definition of 01 and 

/02 
Since W(i) (i = 1, 2, 3) are linear, bounded functions of their arguments, there 

exist bounded matrix operators Wi such that 

W(W)(a) = Wica, IIWtI < wi for i = 1,2,3. 

Define sn = [STI ST S n-k+l]T Then, if 

Un Vn 

we can rewrite (3.2) in the one-step form, 

(3.5) rn= Fnrn-1 + flni 
(3.6) hsn = Gnrn-1 + f2,n + hHSn1, 
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where 
Fn = CPM(-7,Xn) 8=1, 2, ... ., k), 

fl,n = [(XnVl(tn) + Yn/2 (tn) )T, 0X ... I o]Tj 

Gn = (ImO, . ... I.O)T(_lUn I ... 1kUn), 

f2,n = [(Un/)l (tn) + VnlO2(tn))T, 01 X. O]T 
H = CPM(Om). 

Closed form expressions for the block elements of the matrix inverse of S(tn) can 
easily be derived, but the following approximate relations are sufficient for the 
analysis (t-dependence is suppressed): 

(3.7) X = II - B(CB)-1C + 0(h), 

(3.8) Y = B(CB)-l + 0(h), 

(3.9) U = -oo(CB)-1C + 0(h), 

(3.10) V = ao (CB)-1 + 0(h). 

Since C(t)B(t) is nonsingular for all t E I, it follows that S-1(t) is as smooth 
as S(t), and hence the block elements of S-1(t) can be bounded uniformly on I. 
Therefore, there exists a constant K such that 

jjX(t)jj1 JjY(t)jj1 JjU(t)jj1 JjV(t)jj < K 

for all t E I. In general, we will let the symbol K denote a generic constant, 
independent of n and h. 

Note that Eqs. (3.5), (3.6) are implicit in rn and hsn. We shall construct a fixed 
point iteration for their solution rn and hsn, and an induction argument concerning 
the past values of rn-1 and hS3n1 will be required. Specifically, let the induction 
assumption be the following: 

(3.11) 11rill < ?7e (i-k+l)hLX 11hsill < ?2e (i-k+l)hL 

for i = k, k + 1,... , n - 1. We will prove there exist such constants ?71,72 and L 
and the equations (3.11) are satisfied for i = n. It follows then from the induction 
assumption and the definitions of /1(t) and 02(t) given in (3.3), (3.4) that for 
i = k, k + 1, ... , n-1 

(3.12) JjV+j(tj)jj < a1h, 1102(ti)ll < Or2h-, 

where to 0(h) accuracy a, is independent of 1, 02 and L if k > 2, a, is dependent 
on ?2 and L if k = 1 (i.e., a, = &1(?72, L) + 0(h)), and U2 is independent of 1, 2 
and L for all k. 

Define the iterates as 

r - = [(r$(v))T , rTi, ,rn-k+l], 

-(v) = [(S(v))TS T * ITs)k+l]T, 

and the fixed-point iteration as 

(3.13) r({v+) = r(- ) + [Z (r(v),hsv )) , O ... I O]T, 



672 KATHRYN E. BRENAN AND BJORN E. ENGQUIST 

(3.14) hs$v+1) = hs($) + [Z2(r(v), hs(uv))T0 .. ]T 

where 

Zi(r, hs) = Xn[hk+l (Wir + W2s) + hk+2g, (r, s)] 

+ Yn-h kW3r - hk+1g2(r)] + O(h2k), 

Z2(r, hs) = Un[hk+l(Wir + W2s) + hk+2g1(r, s)] 

+ Vn[h kW3r - hk+l g2(r)] + O(h2k) 

for r = r(V) and s = Av). For starting iterates select 

(3.15) rn?) = Fnrn- 1 + fln X 

(3.16) hs($) = Gnrn-1 + f2,n + hHSin-l 

where 

fl,n = [(Xnfl (tn) + Yn'I2(tn))T?O,. 

f2, n = [ (Un 0 1 (tn) + Vn02 (tn)), .. OT 
- ~h hk hk+1 

k1 (tn) = - k+ 1) d t) - _ R12(En) + hkQi(tn) 

02(tn) = -hk1 Q2 (tn). 

The following three conditions corresponding to the implicit function theorem 
are sufficient to prove the fixed-point iteration defined in (3.13), (3.14) converges 
to a solution: 

(3.17) ||r(0)|| <? re(n-k+l)hL, Ihs$(0)jI < ?i2e(n-k+l)hL; 

(3.18) jjZ(r()), hs($))jj < 6/2, 6 >0 Z = (ZT ZT)T. 

(3.19) jJjII < 2 for any r and hs such that 1jr - r($)jt < 6 and /jhs - hs(4)jj < 6, 

where J is the Jacobian matrix of Z(r, hs) with respect to r and hs. 
If r and hs are bounded, conditions (3.18) and (3.19) are relatively straight- 

forward to verify for the iteration defined in (3.13), (3.14). The expressions for 
Z1 (r, hs) and Z2(r, hs) imply that there exists a 6, 6 = Khk, which satisfies (3.18) 
providing r = r(?) and hs = hs_?) are bounded. The Jacobian matrix J will be 
linear in r and hs, so condition (3.19) will be satisfied for sufficiently small h and 
for all r and hs such that lhr - r(?) 11 < 6 and jjhs - hs(?) 11 < 6. Hence, it only 
remains to prove condition (3.17). 

It is quite easy to see the starting iterates for the fixed point iteration as defined 
by (3.15), (3.16) are bounded for n = k. The remaining conditions for convergence 
of the fixed point iteration are also satisfied, so the induction assumption is satisfied 
at the first step. 

Now we shall assume the induction assumption (3.11) is true and prove the 
initial guesses r$(0) and hs(?) are bounded as in (3.17). We will bound hs$?) first 
because when k = 1 the constant r1 will be chosen dependent on ?72 and L. This 
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dependency is a result of our decision to bound only hsn?), and not s$?). To bound 
S(0) requires much more algebraic manipulation of the structure of the system I1]. 
This result is obtained in another way in the corollary. 

To verify (3.17), we must utilize important cancellation properties in certain 
matrix products involving the 0(1) matrices X, Y, and U defined in (3.7)-(3.9): 

(3.20) IIX(ti)Y(tj)II, IIU(ti)X(tj)JI < Kh 

for any Iti - I = 0(h) and some generic constant K independent of h. In addition, 
the proof requires that the matrix product fJji+l F3 be bounded uniformly in n 
for i = 0,1,... , n - 1. Since Fj = CPM(-yXj) where Xj is a projection matrix 
to 0(h) accuracy, it follows from a result given by Kreiss [16] and Strang [26] that 
there exist constants K* and F such that 

f Fj < K*e(n-i)hX 

j=i+l 

for all n and i = 0,1, ... , n - 1. Moreover, using the structure of the block com- 
panion matrix F. and (3.20), it follows that 

n-I-i 

Gn1 fi F3 < Nh 
j=i+1 

for all n - 1 - i - 1 > k and some constant N. In bounding the starting iterates, 
we will also need the fact that there exist constants P1 and P2 such that 

1141(tn)Il < pih, JII42(tn)ll < P2hk- 

for any tn E [tk, to + T]. Now rewrite Eq. (3.16) for the initial guess hsn?) as 

k-i n-F-1 k- k-+ 
n-n = E H'Gn-1 fl Fi) rk-1 + 1 H'f2,n-1 + f2,n 

1=0 i=k 1=1 

k-i n-1-2 n-I-1 '\ 

+ H'Gn-1 E JJ F3| fi,t + fin-1-| 
1=0 ki=k kj=i+l J-- 

It is then possible to bound hs$?) using these results in the following way: 

I~hs(?)JJ < kK max J-yK*e(n-k)h- o + K(pih + P2hk ) 

+ K(crih + a2hk-1)[(n - 2k)hkN + k2KK*e(k-l)he + (k - 1)] 

for all n > k. This bound for hs(no) is independent of 71l, 172, and L to 0(h) accuracy 
for all k. Therefore, there exists an '12 such that for sufficiently small h and L = 

we have 

|| hs(n) || <72e e(n-k+l1) h?,- 

This result is valid for n -* oo, h -* 0 and tn such that tn E [tk, to + T] C I. 

Next we bound r$?) defined by (3.15), which can be rewritten as 

- n f n-1 + nf, 

(0?) = IF. rk- + |r F3 fl, t+ fl, n 
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Using relation (3.20), the structure of Fj, and the bounds (3.12), it is possible to 
show that there exists a constant Al dependent on 272 and L if k = 1, such that 

II(H7= +1 Fj)fiiII < Alh for n - i > k. Then it follows from this and earlier 
bounds that 

r( 11 < K*e(nk+)h7o + (n - 2k + 1)hAl 
+ (k - 1)K(rlh + u2hk-l)K*e(k-l)hg + K(pih + p2hk-l) 

for all n > k. If k = 1 the bound depends on 72 and ' (through Al), and hence a 
constant i7l must be chosen dependent on 2 and 9' such that 

j|r(0)jj <7 ie(n-k+l)hg'. 

If k > 2, 277 may be chosen independent of 72 and A. 
Since both hs$10) and r$?) are uniformly bounded as in (3.17), it follows im- 

mediately that conditions (3.18) and (3.19) of the implicit function theorem are 
satisfied. Therefore, there exists a solution rn and hsn satisfying Eqs. (3.5) and 
(3.6), which can be computed by straightforward iteration. Moreover, there exists 
a 6, 6 = 0(hk), such that ||rn -r(?)| = IIZ,(rnhsn)II < 6 and |1h8ns- hs- ) = 

Z2 (rn, hsn) II < 6. For sufficiently small h, it follows that 

Orn | < IIr(0) II + 6 < qle (n-k+l)h, 

||hsn 11 < |Ihs$?0)I + 6 ?q2e(n-k+l)hE 
This concludes the induction argument. The global rate of convergence is 0(hk), 
since 

IIYn - Y(tn)II < h kIld(tn) II + hk+llIrnII, 

jun - u(tn)jI < hk(IIe(tn)II + llhsn11) 

for all n > k. 
Proof of Corollary 1. Since the algebraic equations are satisfied to 0(hk+2) 

accuracy, both at the starting values and at the end of each integration step, it 
follows that C(ti)ri = i02(t4) + 0(h) for i = 0, 1 ..F. rom the difference equations 
(3.2) corresponding to the ODE part, we have 

[II--A(tn)] rn--B(tn)8n = E yjrn-i+V(tn) 
ao ao ~~~~~i=1 

Let these equations also be solved to accuracy 0(hk+2). Then the residual error 
may be included as a term of 0(h) accuracy in i1. Multiply by C(tn), an m x n 
matrix of rank m, and invert C(tn)B(tn) to obtain a relation for 8n: 

Sn 
ao 

(C(tn)B(tn)) lC~tn) E -irn-i + 01(tn) 
(3.21) l 

- [II- iA(tn)] rn). 

In the proof of Theorem 1, it is shown that rn and hsn are uniformly bounded for 
n > k. Then, IIjl4(tn)ll < Kh for some constant K independent of n and h for all 
n > k. For k > 2 we have 

||C(tn)rn-iII < IIC(tn-i)rn-iII + 0(h) < 1102(tn-i)I + 0(h) = 0(h) 
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for all n > k and i = 0,1, 2,.. ., k - 1. Thus, for k > 2 it follows that the 1/h factor 
in (3.21) is annihilated, leaving only terms of order 0(1). If k = 1 we must be a bit 
more careful and utilize a cancellation property. The expression (3.21) simplifies to 

=n Ij(C(tn)B(tn))-YC(tn) (rn- +'V1(tn) - [II - a A(tn)] rn) 

Using the smoothness of Q2(t), the lowest order (i.e., 0(1)) term in b2(t), it follows 
that 

-C(tn)rn-1 + C(tn)rn = -C(tnl)rn-1 + C(tn)rn + 0(h) 

=-'0b2(tn-1) + 42(tn) + 0(h) = 0(h). 

As for k > 2 then, it follows that Sn is bounded for all n > k, and these bounds 
can be chosen uniformly since they depend on the uniform bounds for rn and hsn. 
Therefore, Eqs. (2.7), (2.8) accurately reflect the relation of the numerical solution 
to the true solution for all n > k. The functions d(t) and e(t) in the principal 
leading error terms are the unique solutions to the linear, index two DAE system 
with consistent initial conditions described earlier. 

Remark. Note that the algebraic equations must be satisfied more closely to 
prove that Sn is bounded, than required in the proof of convergence. If they are 
satisfied only to 0(hk+l) accuracy, convergence is still obtained but the error is 
proportional to e(tn) + hsn. 
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