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A Fast Algorithm for 
Linear Complex Chebyshev Approximations* 

By Ping Tak Peter Tang 

Abstract. We propose a new algorithm for finding best minimax polynomial approx- 
imations in the complex plane. The algorithm is the first satisfactory generalization 
of the well-known Remez algorithm for real approximations. Among all available algo- 
rithms, ours is the only quadratically convergent one. Numerical examples are presented 
to illustrate rapid convergence. 

1. Introduction. Given a complex function F analytic on a specified domain 
in the complex plane, how can one construct the polynomial, of prescribed degree, 
that best approximates F in the Chebyshev (minimax) sense? Applications for 
Chebyshev polynomial approximations include 

1. approximate numerical conformal mapping [11], [20], [22], 
2. discrete antenna problems [24], 
3. matrix iterative processes [61, and 
4. system and control theory and digital filter design [12], [7]. 
In the past, complex Chebyshev polynomial approximation has been far less 

well understood than its real analogue. In particular, the quadratically convergent 
Remez algorithm ([3], [21]) for real approximation has not been satisfactorily gen- 
eralized to complex approximation. Although a few generalized Remez algorithms 
have been proposed, some do not always converge and none converges quadratically. 
One difficulty in the generalization is that a major step in the iterative Remez al- 
gorithm is solving a best approximation problem on a small, finite set of points. 
While in real approximation the correct small number of points is known, and the 
solution to that subproblem is readily obtainable, neither of these happens in the 
complex case. 

We have developed a way to choose a finite set of points together with another 
set of parameters (angles associated with the points) for which a best complex 
approximation subproblem is easily solvable. This generalizes the corresponding 
subproblem in the Remez algorithm for real approximations. The two sections 
following this introduction explain our algorithm. 

Carrying the generalization further, we have also proved that our Remez algo- 
rithm for complex approximation converges quadratically under a certain condition 
similar to the corresponding one for real approximation [27], namely, that the op- 
timal error graph has a sufficient number of alternations of sign. Our proof turns 
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out to be similar to the one for real approximation. Statements of our results on 
convergence are given in Sections 4 and 5. 

At this point, an interesting difference between real and complex approximation 
emerges naturally. Whereas the condition guaranteeing quadratic convergence is 
almost always satisfied for real approximation, we do not know yet how often it is 
satisfied for complex approximation. Discussions on related issues are presented in 
Section 6. Fortunately, computational experience shows that a weaker form of the 
condition is almost always satisfied, though no theoretical proof exists. Hence, we 
have extended our Remez algorithm to converge quadratically under that weaker 
condition. This is the subject of Section 7. 

In Section 8, we compare our algorithm with two others recently proposed for 
the same problem. We conclude the paper by discussing a few applications and 
summarizing our results. 

2. Formulation. Since the given function F is analytic, its best polynomial 
approximation on the given domain is identical to its best approximation on the 
domain's boundary. We will assume that this boundary is the range of a periodic 
function with domain [0,1]. For simplicity's sake, we further assume that the pe- 
riodic function is smooth (cf. the discussion in Section 6). Since our algorithm 
also works for linear approximations with nonpolynomial basis functions, we will 
reformulate our problem in terms of a set of general basis functions. 

Let f, pi, 2, . .. Xpn be given smooth functions mapping the unit interval [0, 1] 
into the complex plane C. 

Problem P. Find n real parameters A*, A, ... XA* such that 

n n 

max f(t)-JEAtpi(t) < max f(t)- EAlpl(t) tE[o,i]1= tE[o,1] 1= 

for all A = [A1, A2,X. ..n ]T in Rn. 

To compress the notation, we define the function 

n 

E(A,) f(= - p(), p( Al pi(.) 
1=1 

and use to denote the maximum norm taken over the interval [0,1]: 

Problem P. Find A* E Wn such that 

IIE(A*, III < IIE(A, )II for all A E R 

A simple example will be illustrative. Suppose we want to best approximate a 

function F(z) over the unit disk by a linear polynomial in z with complex coef- 

ficients; then we can define f(t) := F(ei2Xt), n := 4, p1(t) := 1, p2(t) := e 

p3(t) := i, and p4(t) := ie2t. Consequently, if solving Problem P yields A*, A* 

A, and A* as the optimal real parameters, the desired best polynomial approxima- 
tion to F(z) will be (A* + i'A) + (A* + i'A)z. 

Our first step towards solving Problem P is to examine its dual (cf. [23]). 

Problem D. Find n + 1 points t1, t2, .. . Xtn+ C [0, 1], n + 1 angles a,, ,2* 

an+1 C [0, 27], and n + 1 nonnegative weights r1, r2, .. . ,rn+ E [0,1] so as to 
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maximize the inner product 
n+1 

E rj Re(f (tj)e-z0J) 
j=1 

subject to the constraints 
n+1 

E rj1 
j=1 

and 
n 

E rj Re(poi(tj)e -i) = 0 for = 1, 2,...,n. 
:7=1 

Problem D can be restated in more compact notation: 
Problem D. Find t E [0, 1]n+1, a E [0, 2ir]n+l, and r E [0, 1]n+1 so as to maximize 

h = c(t, a)Tr 

subject to the constraints 

A(t, a)r = O] 

where 

cT(t, a) :- [Re(f(tl)e-al ), Re(f(t2)e-ia2), .. , Re(f (tn+1)e-ion+ )], 

and the jth column of the n + 1 by n + 1 matrix A(t, a) is 

[1, Re(pi (t3)e- i ), Re(P2 (t,)e-ic ), . . ., Re(Pn(tj)e-%J )]T. 

How is Problem P related to Problem D? The classical paper by Rivlin and 
Shapiro [23] shows that IIE(A*, )II, the optimal (minimized) value of IIE(A, )II in 
Problem P, equals h*, the optimal (maximized) value of h in Problem D. Moreover, 
if the optimal value h* of Problem D is achieved at some t*, a*, and r* such that 

A-'(t* Ia*)[] >0, 

then h*, A*, t*, and a* satisfy 

[h* A*T ] A(t*, a*) = cT(t*, a*) 

thus allowing us to calculate h* and A* from t* and a*. 
Indeed, when the problem of real approximation is cast in this language, the 

quadratically convergent real Remez algorithm is an ascent algorithm that solves 
Problem D (instead of P itself) and yields A* also as a result. Therefore, we ask 
the following questions: Can we devise a similar ascent algorithm to solve Problem 
D in the complex case? Will such an algorithm converge? If so, will it converge 
quadratically under some moderate assumptions? We answer all these questions 
affirmatively in the rest of the paper. 

3. A Remez Algorithm. Our ascent algorithm to solve Problem D above 
goes roughly as follows: 

Step 0. Pick S = (t, a) such that 

r := A-1 (t, a) [;] > 0. 
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Step 1. Terminate the algorithm if the value h = cT (t, a)r is optimal. 
Step 2. Update S = (t, a) and r (without violating any of the constraints) to 

increase the value of the scalar product h. Go back to Step 1. 
In the rest of this section, we will describe our algorithm and present two exam- 

ples. First we will explain why each of Steps 0 through 2 is possible. 
Step 0. Suppose we can find t and a such that the matrix A(t, a) is nonsingular 

(which is almost always the case if we generate t and a at random); then one can 
construct a', where a/ = aj or aj + 7r, j =1,2,..., n + 1, such that 

A1(t,a')[]> 0. 

Step 1. Given t, ak, and r, we can define h e R and A E Rn by the equations 

[h, A ]A(t, a) = cT(t, a). 

It can be shown (see [25] for details) that 

h = cT(t, a)r and h < IIE(A*, )11 < IIE(A, )11I 

where A* is the best approximation parameter we seek. Consequently, if h = 

IIE(A, -) JJ, we know that optimality has been reached. Moreover, if the relative 
distance (IIE(A, -) 11-h)/h between IIE(A*, ) II and h is small enough, the parameter 
A at hand can be taken as the best parameter for practical purposes. For example, 

(IIE(A, )II - h)/h < .01 means that the approximation is as good as the best to 
within 1%. 

To calculate JIE(A, -) JJ, one can presumably perform a sampling of the values 

IE(A, t)I for a large number of points t in [0, 1]. However, in most practical sit- 
uations, the derivative of the function jE(A,t)l with respect to t is computable 
explicitly. Hence, solving 

d IE(A, t) I = 0 

for critical points t in [0, 1] is a better method than dense sampling, both in accuracy 
and speed. 

Step 2. This step is the heart of the algorithm. To avoid getting mired in 
algebraic details, we will use the basic theory of the simplex algorithm in linear 
programming.** 

Suppose that IIE(A, )J > h; then we could find some (x, 9) E [0, 1] x [0, 27r] such 
that 

h < IIE(A, .)jj = E(A, x)e-i. 
For these fixed t, a, x, and V, consider the following linear programming problem: 
Find a nonnegative vector r' E Rn+l and a nonnegative scalar s so as to maximize 

CT (t, a)r' + Re (f (x)e -'V)s 

subject to the constraints 

[A(t, a) Iv (x, t9)] [s] = [?] 

**For background information, refer to any standard text on linear programming; see [18] for 
example. For a self-contained derivation of the results to follow, see [25, Chapter 3]. 
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where 
v(x, V9) := Re([1, pi (x)e- i9 P2 (x)e-ilo . n . , (x) e- 0MT. 

The facts 
* A-'(t,a)[] >?0, 
* cT (t, a)r = h, and 
* Re(E(A, x)e-ilo) > h 

imply that (t, a) is a nonoptimal feasible basis. Consequently, a new (t, a) can 
be obtained by swapping an appropriate (tj, caj) in (t, a) with (x, 9) so that the 
following holds: 

new r A (new (t, a)) [ >] ?0, 

and 
cT(new (t, a)) . new r> h. 

In fact, the last ">" is actually ">" except for rare situations that need not concern 
us for the moment. 

We can now restate the algorithm. 

REMEZ ALGORITHM 

Step 0 (Initialization). Pick a stopping threshold E > 0. Find t, a such that 

r := A-' (t [ a) ] > 0. 

Step 1 (Check for optimality). Find an updating element (x, 9) E [0, 1] x [0, 27r] 
such that E(A, x)e- i = IIE(A, ) 1. If (lE(A, ) -h) < hE, terminate the algorithm. 
Otherwise, move on. 

Step 2 (Exchange). By swapping (x, 9) with an appropriate entry in (t, a), obtain 
a new (t, a), and go back to Step 1. 

We present two simple examples to give the flavor of the proposed algorithm. 
The calculations were performed on a DEC VAX in double precision (D-format) 
with 56 significant bits, roughly 16 significant decimals. 

We will count the number of iterations in terms of sweeps, where 

1 sweep = n + 1 iterations. 

Measurement in sweeps thus gives us an idea of the algorithm's performance inde- 
pendent of the problem's size. Because each iteration involves inverting a rank-one 
perturbation of a matrix whose inverse we have already computed, the work per 
sweep is approximately the same as inverting one full n + 1 by n + 1 matrix. 

Example 1 [19]. Approximate z3 on the circular sector (the little circles indicate 
the extrema of the optimal error curve E(A*, 

0\Q0 1 
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by quadratics 
2 

a, +a2z+a3z 

By symmetry, the problem is equivalent to approximating z3 on the upper half of 
the sector by quadratics with real coefficients. Thus the number of real coefficients 
n equals 3, and 1 sweep equals 4 iterations. The convergence behavior of the 
algorithm is shown in the following table: 

No. of Sweeps (IIE(A, .)II - h)/h 

1 9.2 x 10-2 
2 3.3 x 10-4 

3 1.3 x 10-6 

4 5.1 x 10-9 
5 3.0 x 1011 

The optimal parameters (8 significant digits) are 

h* = 1.8375669 x 10-2, 

p1.8479253 x 10-1- 
A* = -1.1847921 

1.8152371 

Finally, we note that 
* the number of extrema of E(A*, ) is 3, which is less than n + 1; and 
* the rate of convergence seems to be fast but linear. 
Example 2 [19]. Approximate z4 on the sector (the little circles indicate the 

extrema of the optimal error curve E(A*, )) 

? 1~~15 

by cubic polynomials 
2 3 

al +a2z+a3z +a4z 

By symmetry, the problem is equivalent to approximating z4 on the upper half of 
the sector by cubic polynomials with real coefficients. Thus the number of real 
coefficients n equals 4, and 1 sweep equals 5 iterations. The convergence behavior 
of the algorithm is shown in the following table: 

No. of Sweeps (IIE(A, )II - h)/h 

1 1.1 
2 3.0 x 1(-7 

2.6 1.6 x 10-14 
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The optimal parameters (8 significant digits) are 

h*= 2.1196498, 
-2.1196498 x 10-21 

A* - 4.8103001 x 10- 
-1.8208555 
2.3398254 

These two examples suggest that 
1. the algorithm proposed seems satisfactory (more examples confirming this 

observation will be exhibited); and 
2. when the number of extrema equals n + 1, the convergence rate may be 

quadratic. 
The next two sections substantiate these observations. 

4. Convergence of the Remez Algorithm. The kth iteration of the Remez 
algorithm generates, among other quantities, the parameter A(k) in Rn and the 
value h(k). Does the sequence 

(JIE(A(k), .)II - h(k) )/h(k) 

converge to 0? Without further assumptions on the best approximation of f, 
the answer is no. However, a weak assumption ensures that a subsequence of 
(IIE(A(k)I .)jj - h(k))/h(k) does converge to 0. 

THEOREM 1. Suppose that r(k) > 0 for all k = 1, 2,3,.... Then 

lim inf (IIE(A(k),I .)jj - 00 0. 
k--no h(k) j 

A complete, self-contained proof can be found in [25]. Theorem 1 suffices for 
practical purposes, because it means the iterations will terminate in a finite number 
of steps for any positive stopping threshold. Moreover, a stronger assumption 
implies not only that the whole sequence 

(IIE(A(k), I) 11- hk))/h(k) 

converges to 0, but that it does so quadratically, as will be explained momentarily. 
Laurent and Carasso [16] proposed a convex programming algorithm whose con- 
vergence proof is almost identical to ours for Theorem 1. However, their algorithm 
is too general to admit any estimate of its rate of convergence. 

5. Quadratic Convergence. We now state the theorem of quadratic conver- 
gence and present an example. The necessary assumptions are first presented. The 
significance of these assumptions will be discussed in detail in the next section. The 
assumptions are as follows: 

Uniqueness. The function f has a unique best approximation. 
Smoothness. The functions f, I, ( 2 , -- n are twice continuously differen- 

tiable in [0,1]. Furthermore, we assume that whenever 

E(A,x)e-i = IJE(A, -)JI, 
then a a~~~~~~~~~~~i ) Re(E(A, t)e -) = ,- Re(E(A, t)e it) = 0 

for all A E Rn. 
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Nondegeneracy. We assume that the optimal error function E(A*, ) has exactly 
n + 1 extreme points t*, t*,. .., t*+1. Moreover, 

A-1 (t*jo*)[ i > 0O 

where a* argument of E(A*, t). 
Concavity. We assume that at each of the n+ 1 extreme points, although the first 

derivative of the function IE(A*, t) I with respect to t vanishes, the second derivative 
remains strictly negative. 

THEOREM 2. Under the assumptions above, the sequences {fA* - A(k) I} and 

{(IIE(A(k),) 11-h(k))/h(k)} converge to zero quadratically in sweeps. Precisely, there 
exist a sequence {cUk} and two constants K and M such that, for all k > K, 

IIA* - A (k) | <? Muk, 

(IIE(A(k) )II - h(k))/h(k) < Mak 

and 
Uk+n+l < MOk -' 0. 

Example. Approximate z8 on the ellipse {(x, y)Ix2 + 4y2 < 1} by lower-degree 
polynomials 

2 7 
a, + a2z + a3Z + + a8Z. 

By symmetry, the problem is equivalent to approximating z8 on the upper half of 
the ellipse by even-degree polynomials 

a, + a2Z2 + a3z4 + a4z6 

with real coefficients aj's. The convergence behavior of the algorithm is shown in 
the following table: 

No. of Sweeps (IIE(A, )II - h)/h 

1 1.6 x i0-5 
1.8 2.6 x 10-16 

The optimal parameters (8 significant digits) are 

h*= 1.0012817 x 10-1, 
--2.4719238 x 10-3- 

*- -1.0546875 x 10-I 
-7.0312500 x 10-1 

L -1.5000000 1 
6. Discussion of the Assumptions. How often are the assumptions leading to 

Theorem 2 satisfied? The uniqueness assumption is always satisfied for polynomial 
approximation on a continuum. The smoothness condition is satisfied whenever the 
boundary of the domain of approximation is smooth. Moreover, in most situations 
we have come across, the curve in which the approximation takes place is either 
smooth or piecewise smooth. Our result can be extended to the latter case by 
techniques similar to those employed in Veidinger's work [27] to handle endpoints. 
The other two assumptions, nondegeneracy and concavity, need more discussion. 
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6.1. The Concavity Assumption and Circular Error Graph. The concavity as- 
sumption is a standard one for convergence proofs of the Remez algorithm for real 
approximations (cf. [21], [27]). Moreover, even if the concavity assumption is vi- 
olated, at each extreme point there must be a first nonzero higher-order (even) 
derivative. The reason is that the optimal error graph must change sign. In such 
cases, the Remez algorithm for real approximations can be proved to converge 
superlinearly [15]. The situation, however, can be very different in complex ap- 
proximation. 

Perfectly Circular Error Graph. Suppose we are to find the best approximation 
to f(z) = z on the unit circle among the complex scalars. It is easy to see that zero 
is the best approximation. In this case, the optimal error E(A*, t) satisfies 

IE(A*,t)l = 1 and 
a 
IE(A*,t)l = 0 

for all t E [0, 1]. The concavity is clearly violated totally. In general, we can consider 
those examples with a circular optimal error graph. In those cases, 

IE(A*, t)l = constant and IIE(A*, t)l = 0 
a9t 

for all t E [0, 1]. Will the complex Remez algorithm converge at all? If it does, what 
will the rate be, and what do the optimal parameters tV and a* mean? Athough 
we have not been able to establish rigorous mathematical results in this situation, 
in what follows we will present a typical example and offer partial explanations 
of why neither the convergence rate nor the update procedure of our algorithm is 
affected by circular error graphs. 

Consider the following problem. Approximate 1/[z - (2 + i)] by a quadratic on 
the unit circle. We parametrize the circle by e'2Ut, 0 < t < 1. The convergence 
property we observed is as follows: 

No. of Sweeps (IIE(A, ) II - h)/h 

1.3 1.4 
2 2.0 x 10-2 
3 1.5 x 10-6 

3.7 1.3 x 10-14 

The optimal parameters (5 significant digits) are 

h= 5.0000 x 10-2, 

-4.0000 x 10-1 + t2.0000 x 10-1 1 
A= -1.2000 x 10-1 + tl.6000 x 10-1 

-2.0000 x 10-2 + L1.1000 x 10-li 

and a 
0.0000, 6.4350 x 10-1 

9.1370 x 10-2, -3.0969 
1.8740 x 10-1, -6.3090 

(t*,c*)= 3.1621 x 10-1, 1.8206 
4.7860 x 10-1, -1.8943 
6.7178 x 10-1, 1.0094 
8.5035 x 10-1, -2.4231 
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We first note that h* and A* are correct (cf. [1]) and that the rate of conver- 
gence seems to be quadratic. What do the parameters (t*, a*) mean? Certainly, 
t* represents seven of the continuum of extrema of the optimal error graph and 
a* represents the arguments of the error function at those seven places. That r* 
(not shown) is strictly positive also implies strong uniqueness of the best approxi- 
mation [10]. But since we have a continuum of extrema, it seems that (t*, ci*) are 
nonunique. (One can prove that is the case.) Indeed, we are able to execute the 
algorithm for the example here with different starting values and obtain the same 
h* and A* at the same convergence rate; but the (t*, a*) is different from before. 
The algorithm seems to be able to zoom in on one possible pair of (t*, a*) auto- 
matically. Thus, nonunique optimal (t*, a*) do not seem to affect the convergence 
rate. In fact, if there are only a finite number of optimal (t*, ci*), we are able to 
prove that observation. Technical difficulties prevented us from doing the same 
when there is a continuum of extrema. 

How does circularity affect the update procedure? After all, the optimality check 
of the Remez algorithm searches for the extrema by solving 

a jE(At)I = 0 

for t. To get a feeling for the iteration, we plotted the graph 

aIE(A, t) I 

for t E [0,1] during the last two iterations (not sweeps) of the example in question. 

1 1 ,12 GRAPH OF y X DERIVATIVE OF tEl w.r.t. t 
1.0 I I ' 

' I | I I I 
0._ 

0.6 _ LAST-1 ITERATION 

0.4 

0) 

LAST 
-' -0.2 ITERATION 

-0.4 - 

-0.6 \ 

-0.8 _ 

-1.0. I I . I I I I I - 1.0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t AXIS 

The behavior shown here is typical. The graphs of the error functions prior to 
the optimal one (relative to machine precision) are so noncircular that extrema 
are typically well distinguishable. For strongly unique approximations, as in this 
example, one can offer a mathematical explanation. Suppose A matches A* to half 
the machine precision; then 11A* - All is usually small enough that 

min IE(A, t) I = min IE(A*, t) - p(A - A*, t)l < JIE(A* .) 11 
t tI 
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On the other hand, strong uniqueness means that there is a c > 0 such that 

IIE(A, )II > IIE(A*, )II + cIIA* -Al 

Thus, IE(A, t)I would deviate from circularity significantly with respect to the ma- 
chine precision. In the presence of quadratic convergence, A would usually match 
A* to only roughly 80% of the machine precision before the last iteration, the case 
here. 

Nearly Circular Error Graph. Next we present two approximation problems with 
optimal error graphs circular to within machine precision. They are the approxi- 
mations on the unit circle of 

cos(z) by a, + a2z2 + + a4z , aj E R, 

and 
sin(z) by alz + a2z3 + + a5z9, a1 E R. 

(The optimal error graphs cannot be perfectly circular because sin and cos are not 
rational functions. For a succinct proof, see Trefethen [26].) Note that the effective 
machine precisions for the two problems are 11 and 9 digits, respectively, because 
the optimal errors have magnitudes of the order 10-5 and 10-7, respectively. The 
graph of t IE(A, t) I during the last two iterations of the cos example is given below. 
The graph for the sin example is similar. 

1 10 GRAPH OF y z DERIVATIVE OF 1E1 wv.t. t 
1. 1 I 1 1 I I 

-1.0 LAST-I ITERATION 

! 0 0.5 
74 

04 
w 

-J 

-0.5 

- . LAST 
ITERATION 

- i.58 I I. I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 07T 0.8 0.9 1.0 

t AXIS 

Like the perfectly circular examples, near circularity affects neither the algorithm 
nor its speed. 

6.2. Degeneracy. Unlike the assumption about concavity, which in our experience 
fails only in special and rare situations, the assumption on nondegeneracy is violated 
frequently. Experimentally, somewhere between 60%-70% of the examples we tried 
were degenerate. Moreover, whenever degeneracy occurs, the convergence rate the 
algorithm exhibits is always linear only. 

At present, we are not aware of any satisfactory explanation of the cause of 
degeneracy. The only work we know is that by Blatt [2] which discusses how 
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often degeneracy occurs. Blatt shows that in the set of continuous complex-valued 
functions on a compact set with a limited number of isolated points, the subset 
of functions with nondegenerate best approximations is dense. However, Blatt left 
open the question of whether a similar result would hold if the word "continuous" 
were replaced by "analytic." Clearly, our experiments strongly suggest the negative. 
Indeed, we are able to prove such is the case; the proof is the subject of another 
paper. 

Although degenerate problems show up frequently, they fortunately exhibit a 
typical behavior that we can exploit to restore quadratic convergence. This is the 
subject of the next section. 

7. An Extension of the Remez Algorithm. Let f be a function that satisfies 
the "uniqueness," "smoothness," and "concavity" conditions stated in the previous 
section; and let E(A*, ) be the optimal error function. However, the function 

JE(A*,t)J has only n + 1- d extreme points t*, t2,... tn+- The question is: 
can we still find the best approximation quickly? For argument's sake, suppose 
we were given the last d entries A*dl A* ..d+2X. I. A* of A*. Then, to find the 
best approximation to f, it would suffice to find the best approximation to the new 
function 

fA- (n-d+l6fn-d+1 + An*-d+2Pfn-d+2 + *+ AOn) 

from the approximants 

7//_ {= {/111 + /12(P2 + * + In-d~On-d I pj E R}. 

Clearly, the Remez algorithm will converge quadratically when applied to the new 
approximation problem just defined. The trouble is, however, that we do not know 
those values A*d+ d+2* * . A* a priori. 

Although the A*'s are unavailable for n - d + 1 < j < n a priori, we can obtain 
some approximate values: 

[X1: X2: *X * d] n [nd+1, An-d+2, ** An] 

We can, for example, use the Remez algorithm with a crude stopping threshold of 
0.5, say, to find the best approximation of f from the original set of approximants. 
Using those x 's, we can devise a plausible scheme to find A* as follows: 

1. Use the Rernez algorithm to find an approximant in the set 

{/I1i01 + P2(P2 + * * + In-d~On-d I p3 E R} 

that best approximates the function 

f - (X(n-d+l + X2(pn-d+2 + * + Xd(On)- 

2. Derive a method to improve x based upon the results obtained in (1) above. 
3. Repeat (1) and (2). 
As it turns out, provided the x 's are close to the corresponding A*'s to begin 

with, then 
* the process in (1) converges quadratically; 
* X* := [A*dl A* . . IA*]T can be characterized as the root of a certain 

function H from Rd to Rd. Hence, Newton's iteration can be used to correct the 
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x 's; and 
* the Jacobian of the function H just mentioned is nonsingular at x*. Thus, the 

iterations (1)-(2) converge quadratically. 
A complete proof can be found in [25]. 
To summarize, the method requires a few initial sweeps of Remez iterations. 

Then, some nested iterations are performed. The outer iteration of the nest is a 
Newton's iteration on a d x d-system (d = deficiency); and the inner loop requires a 
number of sweeps of Remez iterations applied to a problem with n+1-d parameters. 
Let us illustrate the scheme by a problem with deficiency 2. 

Example. Approximate F(z) = z3 by a real quadratic on the circular arc 

0 / 

After 3.3 sweeps, t(k) looks like 

[.4793, .4918,1 ,1]T I 

suggesting that the deficiency is 2. So we use the extended algorithm: 

Outer Loop Inner Loop 
Newton's Iter. No. No. of sweeps needed (IIE(A, -) II-h)lh 

1 3.7 1.9 x 10-3 
2 1.3 1.5 x 10-4 

3 1.0 2.4 x 10-8 
4 1.0 2.2 x 10- 12 

8. Comparison with Two Other Algorithms. Two recently proposed al- 
gorithms ([24] and [91) for complex polynomial approximation are so similar to our 
Remez algorithm that we would like to compare them. (For comparison with other 
algorithms such as [19], [28], [17], and [5], see [25].) 

These two algorithms try to solve Problem D in a way different from our Remez 
algorithm. Recall Problem D: 

Problem D. Find t E [0, 11n+, IIk E [0, 2irln+ 
1 and r e [0, 11n+ 

1 so as to maximize 

C(t, a)T r 

subject to the constraints 

A(t, a)r=[] 

Both [24] and [9] discretize the domain [0, 1] x [0, 27r] for (t, a) in Problem D and 
hence change it to a standard linear programmingy Droblem. This new problem, 
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Problem D', can then be solved by a standard simplex algorithm. But how can 
Problem D be solved by solving Problem D'? This is where [24] and [9] differ. 

8.1. Repeated Discretization. If the set [0,1] x [0, 27r] is replaced by a discrete set 

_9AN = {(ti,a1), (t2,oa2), .-. X (tN,aN)} C [0,1] x [0,2w], 

then Problem D' is an ordinary linear programming problem with n + 1 constraints 
and N variables. As N -* ox, it can be proved (under moderate assumptions) that 
the optimal parameter Adiscrete to the discrete problem converges to A*. Hence 
Streit and Nuttall [24] suggest solving Problem D simply by solving Problem D' 
with some N large enough. 

If the domain [0, 1] were discrete, then in order to obtain an approximant close to 
the best to within a given threshold, [24] shows that a discretization on [0, 27r] can be 
chosen a priori. That will be the case, for example, when the original approximation 
problem is defined on a discrete domain in the complex plane. When, as in our 
situation, the domain of approximation is a continuum, then the discretization 
cannot be chosen a priori. Consequently, the problem may have to be resolved with 
a finer discretization whenever the initial one turns out to be too coarse. Some 
observations are in order. 

* Combining the results in [24] and [4] shows that the convergence rate of re- 
peatedly refining the discretization is of second order 0(1/N2). 

* Although the number of simplex iterations required to solve each discretized 
problem is roughly 2 to 3 times the dimension (independent of N) of the problem, 
the cost of solving each discretized problem does not remain the same as the grid 
gets refined. The reason is that the number of function evaluations at each simplex 
iteration is proportional to N and, when this number is much larger than the 
dimension of the problem, the cost will be apparent. 

* Suppose we would like to have IIE(Adiscrete, )II to within 1% of IIE(A*, )II; how 
large should N be? This cannot be determined a priori. Hence we have to solve at 
least two discretized problems. 

Example [19]. Approximate z4 on the sector 

450 

by real cubic polynomials. We first tabulate the results of repeated discretization. 



A FAST ALGORITHM FOR LINEAR COMPLEX CHEBYSHEV APPROXIMATIONS 735 

Streit/Nuttall 

No. of Points No. of Cumulative No. of (IIE(A, -)II - h)/h 
in [0,1] x [0, 2ir] Sweeps Function Evaluations 

17 x 32 2.4 204 1.5 x 10-2 
33 x 64 2.8 462 1.2 x 10-3 

65 x 128 3.6 1170 8.5 x 10-4 

129 x 256 4.2 2709 1.8 x 10-4 

257 x 512 4.0 5140 2.9 x 10-5 

513 x 1024 4.0 10260 1.5 x 10-5 

1025 x 2048 5.0 25625 1.2 x 10-6 

Using the Remez algorithm to solve the same problem, we get the following: 

Remez 

No. of Sweeps Cumulative No. of (IIE(A, -) I - h)/h 
Function Evaluations 

1.6 189 5.0 x lo-2 

2.2 267 7.9 x 10-3 

2.6 323 4.9 x 10-4 

3.2 372 1.0 x 10-5 

3.6 401 4.2 x 10-6 
4.4 428 8.8 x 10-7 

5.0 466 2.8 x 10-8 
5.4 502 1.7 x 10-9 

The example illustrates that the two methods are comparable if we need only an 
approximant within 1% to the best. It is possible, though, the algorithm in [24] has 
to be applied more than once. If an approximant that is much closer to the best is 
desired, then the size of the discretization has to be quite large. In that case, the 
Remez algorithm is much more efficient. 

8.2. Discretization and Newton's Iteration. Similar to the previous scheme is 
the one suggested by Glashoff and Roleff [9]. It is not hard to show that the best 
approximation can be characterized locally by a system of 4 x (n + 1) nonlinear 
equations (see, for example, [25]). Hence, provided a first approximation to the 
solution can be found, one may apply Newton's iteration to those 4 x (n + 1) 
equations. Indeed, Glashoff and Roleff suggest that the solution to a discretized 
problem (Problem D') be used as an initial guess (starting vector) for the Newton's 
iteration. Thus, [9] consists of two phases. Phase 1 is equivalent to the previ- 
ous scheme of Streit and Nuttall, and Phase 2 involves a number of inversions of 
4(n + 1) x 4(n + 1) matrices. Because Phase 2 is expensive, it is necessary only 
when an approximant very close to the best is needed. We will therefore compare 
the Remez algorithm with [9], assuming this to be the case. Let us consider an 
example. (More examples can be found in [25].) 
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Example [24]. Approximate z3 on the arc 

/450/ 

0 1 

by a real quadratic. Using Glashoff and Roleff's algorithm, we first solve a dis- 
cretized problem. 

Glashoff/Roleff 
Phase 1: discretized problem 

No. of pts. in [0,1] x [0,27r] No. of Sweeps (IIE(A, ) 11- h*)/h* 

33 x 64 3.5 1.9 x 10-3 

Glashoff/Roleff 
Phase 2: Newton's iteration on 9 equations 

Newton's Iteration No. (IIE(A, ) I - h*)/h* No. of Sweeps-equivalents 

1 1.3 x 10-3 45 
2 5.3 x 10-6 45 
3 1.5 x 10-9 45 
4 1.6 x 10-12 45 

We can also use the extended version of the Remez algorithm to solve this problem. 
After 3.3 sweeps, (IIE(A, .)I - h)/h is 8.5 x 10-3, and t(k) is 

[.48, .49,1, 1]T 

suggesting that the degeneracy is 2. Hence, only 2 (compared to 9) equations need 
to be solved by Newton's iteration. 

Rernez: Newton's iterations for 2 equations 

Newton's Iteration No. No. of Sweeps (IIE(A, )II - h)/h 

1 3.7 1.9 x lo-3 

2 1.3 1.5 x 10-4 

3 1.2 2.5 x 10-8 
4 0.8 1.6 x 10-12 

This and the previous examples, among others, sustain the following observa- 
tions: 

* When the problem is nondegenerate, the Remez algorithm is much more eco- 
nomical than the two-stage method of Glashoff and Roleff. On the average, Remez 
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takes 4 to 5 sweeps to reduce the number (IIE(A, .)ll - h)/h to the rounding er- 
ror level. On the other hand, one Newton's iteration during Glashoff and Roleff's 
second stage involves inverting a matrix roughly four times the dimension of the 
problem. Hence, each of these iterations can cost as much as 43 sweeps. 

* The competition between the two algorithms becomes more interesting when 
the problem is degenerate, in which case an extension of the Remez algorithm 
is needed to ensure quadratic convergence. Despite this extension, the Remez 
algorithm is still much more economical because the work of each correction step is 
roughly 1 to 1.5 sweeps, as opposed to 43 sweeps in Glashoff and Roleff's algorithm. 

* Practically, it seems that an approximation whose IIE(A, ) l Ilies within a tenth 
of a percent of the best approximation is sufficient most of the time. Thus, the 
Remez algorithm without any extension seems to be the most straightforward and 
economical algorithm to use. 

9. Some Applications. 
9.1. Approximate Conformal Maps. Suppose we want to map the ellipse x2 + 

(4y/3)2 = 1 conformally to a disk. It is known that the conformal map is the 
analytic function g(z) in the set 

{g I g(0) = 0 and g'(0) = 1} 

with the smallest maximum magnitude taken on the whole ellipse. Motivated by 
this observation, we can find an approximate conformal map by calculating the 
polynomial function in the set 

{z+aiz2 +a2z3 +... +anzn+1 I a3 C} 

with the smallest norm on the ellipse (cf. [111, [20]). This is equivalent to finding 
the best approximation to the function F(z) = -z from the set 

{aiz2 ?a2Z3 + ...+ anznl} 

over the ellipse. 
We use our Remez algorithm to solve the problem with n = 8. (Because of 

symmetry, the best coefficients are real.) After 2 sweeps, the approximation is close 
to within 1% of the best. The ellipse's image under this approximate conformal 
map, as shown in the figure below, is a circle to within 0.01%. 

''' I _I_ I 
-I-x- l _-l by_ I 
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9.2. Voigt Profile. The function 

F(z)=ez (1+ a + j et dt) 

is of interest in spectroscopy and astrophysics because of its relationship to the Voigt 
function ([14], [13], [8]). We approximated this function over the square [0,1] x [0,11 
by a complex polynomial of degree 12 (13 complex coefficients). After 3 sweeps, the 
approximation is well within 1% of the best, and its error IIE(A, -)jI = 4.8 x 10-8. 

9.3. Gamma Function. Suppose we want to calculate the value of the gamma 
function for z close to the real axis, say I Im(z)j < 1/8. It suffices to be able to 
calculate F(z) for z where I Re(z) I < 1/2 and | Im(z) I < 1/8 because r(z + 1) 
= zr(z). Moreover, because 1/F(z) is an entire function, it is reasonable to ap- 
proximate r(z) by the inverse of a polynomial. Furthermore, for the sake of relative 
accuracy, we will approximate 

z(z) by l+aiz+a2z 2+ +anzn. 

We have done this for n = 7, 8, and 9, and 3 to 4 sweeps are all we need to 
obtain an approximation to well within 1% of the best. We also compare the best 
approximation to the one obtained by simply truncating the Taylor series expansion 
of 1/(zF(Z)). 

No. of Coefficients E(A .) (A .) 

7 6.2 x 10-6 3.4 x 10-7 

8 7.3 x 10-7 2.5 x 10-8 

9 1.8 x 10-7 4.7 x 10-9 
10. Conclusion. We have shown that the Remez algorithm for real linear 

Chebyshev approximations can be generalized satisfactorily to work for complex 
approximation. Our algorithm seems to be the fastest available today for such 
problems and has given us hope that a fast algorithm for rational approximation 
may also be close at hand. 
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