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Convergence Results for Piecewise Linear Quadratures 
for Cauchy Principal Value Integrals 

By Philip Rabinowitz 

Abstract. Conditions on k and f are given for the pointwise and uniform convergence 
to the Cauchy principal value integral 

k(x)f(x) dx, -1 < A <1, 

of a sequence of integrals of piecewise linear approximations to f(x) or gz,(x) = 

(f(x) - f(A))/(x - A). The important special case, k(x) = (1 - x) (1 + x)X, is con- 
sidered in detail. 

1. Introduction. In a recent paper, Gerasoulis [3] proposed an algorithm for 
evaluating Cauchy principal value integrals of the form 

(1) I(wf;A) = f w(x) dx, -1<A<1, 

where w is the Jacobi weight function 

(2) W(X) = (1 - X)'( + X)16' COwn >-1 
In this algorithm, f is approximated by a piecewise linear function f" and I(wf"; A) 
is evaluated exactly. The. use of f, as an approximating function allows us to 
concentrate the evaluation points in subintervals of J = [-1,1] where f is not 
smooth. In his paper Gerasoulis asserts that if f E C [J], then I(wfn; A) converges 
to I(wf; A) uniformly for all A E (-1, 1), and refers to Stewart [6] for the proof. 
The uniform convergence is important in the numerical solution of Cauchy singular 
integral equations by quadrature methods. 

In this paper, we shall improve on this result by giving weaker conditions on f 
which insure the uniform convergence of I(wfn; A) to I(wf; A). We shall also study 
pointwise convergence for the more general situation 

(3) I(kf; A) = f k(x) dx, -1 < A - 1, 

where k is an arbitrary function subject to certain conditions insuring that (3) exists 
for some class of functions f and some or all A in (-1, 1). Finally, we shall study 
an alternative approach to the evaluation of (3) which also allows us to distribute 
evaluation points as we see fit. In this approach, we write (3) as 

(4) I(kf; A) = f k(x)gA(x) dx + f (A)I(k; A), 
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where 
x x f (x) - f ({)f x $ A, 

(5) g\(x) = g(x;A) = '(A) x = A, f'(A) exists, 

t 0, otherwise. 

We then approximate gA (x) by a piecewise linear function gn (x) and integrate 
exactly. This amounts to piecewise linear product integration of g9 with respect 
to k. We shall show that subject to certain conditions on f and k, the product 
integral 

(6) ] k(x)gA\(x) dx k(x)g,(x)dx as nf 

either pointwise or uniformly in A E (-1, 1) depending upon the conditions we 
impose. 

2. Preliminary Results. Our first task is to insure that (3) exists. To this 
end, following [1], we define, for any interval I of length l(I), a subclass of C(I) of 
functions of Dini type, DT(I), by 

DT(I) =,h : wI (h;t)t-1 dt <oo > 

where wi (h; t) is the modulus of continuity of h in I, 

w1(h;t)= sup Ih(xi)-h(x2)I. 
xI-X2 I<t 
X1 ,X2EI 

We shall write w(h;t) for wj(h;t). We now have that if A E (-1,1), and if for 
some 6 > 0 such that the closed subinterval N6 (A) = [A - 6, A + 6] c J, k E 
DT(N6 (A)) n L1 (J) and f E DT(N6 (A)) n R(J), where R(J) is the set of bounded 
Riemann-integrable functions on J, then (3) exists. This follows by writing 

(7) (kf; A)= f k(x)gA(x)dx+f(A) k(x) A() dx+f(A)k(A) x A' 
Since 

{ldx 1-A 

Ii' - =log + A 
the hypotheses on k and f ensure that the first two integrals in (7) are finite. In 
particular, since w E DT(-1, 1)fnl1(J), it follows that (1) exists for all A E (-1,1) 
provided that f E DT(-1, 1) n R(J). 

We now consider an arbitrary partition of J, 

-1 =to <tl < ... < tn-1 < tn =1 

and define for any function h on J the piecewise linear approximation hn given by 

(8) hn(X) = h(ti) + (X - ti) (h(ti+?) - h(tz)), x E [ti, ti+1] 

where di = ti+1 -ti, i = 0, ..., n-1. If we define 

n Omi<n- i 
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we shall assume that Dn -* 0 as n -* oo. Defining 

rn(x) = h(x) -hn(x), 

we have that if h E C(J), then 

(9) 11rn 11 = max |rn (x) I < w(h; Dn) 

This follows since by Newton's interpolation formula with divided differences, if 
x E [ti,ti+1] then 

h(x) - hn(x) = (x - ti) - ti+i)h[ti, ti+, x] 

= -(x - -ti)(x-ti+,)(h[tix] -h[ti+,x )ldi 

(x - ti)(x - ti+1) h(x) - h(ti) _ h(x) - h(ti+1)1 
di L x-ti x -ti+l 

= -d-'[(x - ti+,)(h(x) - h(ti)) - (x - ti)(h(x) -h(ti+))] 

Hence 

jh(x) - hn(x)l < di-w(h;di)(Ix - ti+ + Ix - til) = w(h;di) < w(h;Dn), 

where we have used the monotonicity of w(h; t). In addition, we have that 

(10) w(hn; t) < 5w (h; t) 

which implies that 

(1 1) w (rn; t) < 6w (h; t). 

To show (10), we consider two cases: 
Case 1. x, x + 6 E [ti, ti+1]. 
Then Ihn (x + 6) -hn (x) = I(h(ti+1) - h(ti))/di I < (S/di)w(h; di). We now 

show that (6/di)w (h; di) < 2w (h; 6). Since 

w (h; nS) < nw (h; 6) 

w(h; di) < wi(h; rdiI616) < rdil6jw(h; 6) < 2(dil6)w(h; 6), 

where the ceiling function [x] denotes the smallest integer > x. Thus, in this case, 
w(hn; S) < 2w (h; 6). 

Case 2. x E [ti, ti+l], x + 6 E [tj, t+l,] i < j. 
Then 

Ihn(x + 6) - hn(X)l 

? hhn(ti+l) - hn(x)l + Ihn(tj) - hn(ti+l)l + Ihn(x + 6) - hn(tj)I 

< 2w(h; 6) + w(h; 6) + 2w(h; 6) 

by Case 1, monotonicity of w(h; t), and the fact that h(x) = hn(x) at the partition 
points tk. 

We note that (10) implies that if h E DT(N6(A)) or DT(-1, 1), then hn E 
DT(N6 (A)) or DT(-1, 1), respectively. 

3. Convergence Results. Our first result is on pointwise convergence in the 
general case. 
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THEOREM 1 . If for any A E (-1, 1) for which there exists a 6 > 0 such that 
N6(A) C J, one has k E DT(N3 (A)) n L1(J) and f e DT(N5 (A)) n R(J), then 

(12) I(kfn;A)--I(kf;A) as n-xo. 

Proof. One has 

I(kf - kfn;A) = I (krn; A)) = f k(x) r (A) d +r (A)I(k; A), 

where I(k; A) exists by the hypotheses on k. Now, since f E DT(N6(A)), for any 
e > 0, we can choose q > 0 such that A = (A- q, A + 71) C N (A) and 

f lk(x)l lw 
; I-Al) dx < C w(f; z All) d- < E, 
Ix - Al tx-Al dx , 

where C = 6maxXEN,(,) lk(x)l. Hence, since llrnll = o(1), 

lI(krn; A)l < | lk(x)l lrn(x) - rn(A)l dx 
Q -A ~ Ix -Al 

+ [ lk(x)l lrn(x) - rn(A)l dx + Ir (A) I JI(k; A) 

< |rn| (21 ( IxI dx+lr|I(k;A)lI +kA 

<2e forn>no(c). d 

Our second result deals only with the Jacobi case treated by Gerasoulis [3]. 
Before we state our theorem, we define two function classes which are subclasses of 
DT(J): 

H, = {f: w(f;t) < Mt" for some M > 0, 0 < , < 1}, 

LV = {f: w(f; t) < M/Ilog'tl for t < 1 and some M > 0; 1 < v}. 

THEOREM 2. Let w(x) = (1 - x)a(1 + x)8 with y = min(a, 3) > -1. Then 
I(wfn; A) -- I(wf; A) as n - 0 uniformly for all Ae (-1,1) if either (a) f eHp 
and ,u + y > 0 or (b) f E L. and y0 > O. In particular, if f E H1, i.e., if f satisfies 
a Lipschitz condition, then we have uniform convergence for all w. 

Proof. As above, we write the error term I(wf; A) - I(wfn; A) as 

f w(x)rn(x ) dx + r (A)I(w; A). 

We first deal with the second term and use the fact [7, Section 4.62] that in a 
neighborhood of A = 1 

I(w; A) = I0(1 - A)a if a is not an integer, 
I 0(1 - A)c' log(1 - A)l if ca is an integer, 

and similarly, in a neighborhood of A = -1 

A'-'A 0(1 + A)f if / is not an integer, I(w; 0(j 
n1 

,A) 
illg1 +A4 

l 
iif is n i nteer, 
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while I(w; A) = 0(1) in [-1 + s, 1 - s] for any s > 0. Since r,(1) = 0, Ir,(A)l < 

w(rn; 1 - A) < 6w(f; 1 - A), and we have that in [1 -s, 1], if a is not an integer, 

lrn(A)I(w; A) J K( - A)`M(1 - A)" if (a) holds, 
K (1-A)aM/I log'(1 - A)l if (b) holds, 

while, if a is an integer, the right-hand sides must be multiplied by I log(1 - A)I. 
In either case, we see that we can make lrn(A)I(w; A)l < e for A E [1 - s, 1] by 
choosing s sufficiently small. Similarly, we can make 

Irn(A)I(w; A)I < E for A E [-1, -1 + s]. 

Finally, for A E [-1 + a,1 - a], 

Irn(A)I(w; A)I = 0(rn(A)) = o(1), 

so that given any e > 0, there exists no = no(e) such that for all A E (-1, 1) and 
all n > no, Irn(A)I(w; A)l < e. 

We now write the integral 

A w ( )n(x )rn(A) d( 

as the sum of three integrals, 

J + 
/ 

+ 
I 

x-XU>Dn xJ-AU<Dn 

where U = [-1, -1 + r] U [1 - r, 1] for some r to be chosen below. For the first 
integral, we have that 

r 
J k w x) A -rn (A) dx 

-l+r 

?1 f (I + x)lx - All'-' dx 

-1r 

C2 1 (1 + x)l'+I1 dx < e for some r if (a) holds, 

1r(x) rn (x) rn (A) d ]WkXJ 
~~~A 

dx 

r-+r 
< C3 llog-'(1 + x)l dx < E for some r if (b) holds. 

-1 

Similarly, I I < for some r if (a) or (b) holds. Hence, we can choose an r > 0 
such that fu < 2e. For the second integral, 

J11 W(X) rn ()-rn (A) dx 
x-;\ |> Dn X -A 

-lrx1rwx).2?UI x-~D x1 d 
-1+r<x<lr - D Al 

X~u 
< KjjrnI1logDl = o(1) since IlrnII ? w(f;Dn). 
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Finally, 

nX)-r(A) wx-f?D Ix - Al) ];x?Df 2(()- r ( ) dx < K w(fI)d = o(l) 

XLtu Lotu 

independent of A if (a) or (b) holds. This completes the proof. L 
We now consider a second approach based on (4) in which we approximate aA 

by the piecewise linear function Om, so that the approximation to I(kf; A) is given 
by 

i1 
(13) ] k(X)gn(x) dx + f(A)I(k; A) 

and the error in the approximation, En (A), is given by 

En (A) = f k(x) (gA (x) - n (x)) dx. 

We note that if k E DT(N8 (A)), then I(k; A) is finite and can either be found in a 
table of Hilbert transforms, e.g. [2], or evaluated numerically as 

)'k(x) -k(A) 1k(x) -k(A) 1 -A 
I(k;A) 

A 
A dx + f A dx + k(A) log 1 + A' 

We shall say that a function f E D(I) for a closed interval I if f'(x) exists for every 
x in the interior of I and the right-hand and left-hand derivatives exist at the left 
and right endpoints, respectively. If f E D(J), then g(x; A) is uniformly continuous 
for all pairs (x; A) E J x J. We now state two theorems on the convergence of En(A) 
to zero as n -+ ox, one on pointwise convergence and one on uniform convergence. 

THEOREM 3. If for some A E (-1,1), k E L1(J) and f E H1(N8(A)) n R(J), 
then En(A) -+ 0 as n -+ x0. 

Proof. If f E H1 (N8(A)) n R(J), then g9 E R(J), and we can apply Theorem 1 
in [5, p. 6]. ? 

THEOREM 4. If k E L1( J) and f E D(J), then En(A) -+ 0 as n x-+ o uniformly 
in A. Hence, if k E DT(-1, 1)nfl1(J) and f E D(J), then (13) converges uniformly 
to I(kf;A). 

Proof. For any A, Irn(x;A)I = IA(X) - gfn,(X)I < w (g\;Dn). But W(gA\;Dn) is 
independent of A by the uniform continuity of g(x; A) in A. Hence 

IEn(A)l < llrn(x; A)II f Ik(x) I dx = o(1) uniformly in A. 

If k E DT(-1, 1), then I(k; A) exists for all A E (-1,1), which yields the uniform 
convergence of (13). L 

Remark. The two approaches (12) and (13) correspond to the two methods for 
evaluating I(wf; A) based on interpolation at the zeros of the Jacobi polynomial 
P( ':)(x), and analogous results exist for pointwise convergence. See [1, Theorem 
2.1] and [4, Theorem 7(1)]. In both situations, the more accurate approach requires 
more stringent conditions on f to insure pointwise convergence. 
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