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A Family of Gauss-Kronrod Quadrature Formulae* 

By Walter Gautschi and Theodore J. Rivlin 

Dedicated with affection to Dick Varga on his 60th birthday 

Abstract. We show, for each n > 1, that the (2n + 1)-point Kronrod extension of the 

n-point Gaussian quadrature formula for the measure 

doub(t) = (1 + _)2(1 - t2)'/2dt/((1 + _)2 - 4yt2), -1 < 'y < 1, 

has the properties that its n + 1 Kronrod nodes interlace with the n Gauss nodes and 
all its 2n + 1 weights are positive. We also produce explicit formulae for the weights. 

1. Introduction. Given a positive measure do on the real line, whose moments 
all exist, a quadrature rule 

n n+1 

R f (t) do(t) = ,f f(mr) + E u f + Rn (f) 
'=1 A=1 

is called a Gauss-Kronrod formula if v, = (n) are the Gaussian nodes for the mea- 
sure do, i.e., the zeros of the nth degree orthogonal polynomial (rn.) = (-t ;dd), 
and the nodes = n and weights a, = &(n) X a = p(n) are chosen so as to max- 
imize the degree of exactness of (1.1); thus, Rn(f) = 0 for all f E P3n+l at least. It 
is well known (see, e.g., the survey in [1]) that the "Kronrod nodes" T must be the 
zeros of the polynomial w 1 (.; du) of degree n + 1 orthogonal to all lower-degree 
polynomials relative to the (sign-variable) measure dc*(t) = 7rn(t)do(t): 

(1.2) J 7r*+w1(t;da)p(t)7rn(t; du)d(t) = 0, all P e Pn. 

While w*1+, (assumed monic) is known to exist uniquely, there is no assurance, in 
general, that its zeros * are all real and simple, and distinct from the Gaussian 
nodes rv. 

In practice, it is particularly desirable to have the following two properties sat- 
isfied: 

(i) the interlacing property, 

(1.3) < *(n) < -n) < Tn(n) < .. < *(n) < (n) < *(n) 
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with all nodes contained in the support interval of da, and 
(ii) the positivity of all weights, 

(1.4) a1(n) > ?, v = 1,2, .. . , n; a* (n) > 0 , = ,,..n + 1 V I~~~~~~~~~~~~~~~~~' 
(The inequalities oa, > 0 are actually equivalent to (1.3); see Monegato [4].) Only 
one family of measures da is presently known for which both properties (i) and (ii) 
hold for all n > 1, namely the Gegenbauer measure da (t) = (1 -t2)A-1/2 dt on 
(-1,1). For this measure, (1.3) (with -1 < rTn+ and r1 < 1) has been established 
by Szegd [7] for 0 < A < 2, and (1.4) by Monegato [5] for 0 < A < 1. In this note 
we show that the family of measures 

(1.5) du(t) = 2 (1 
_ 

t2)1/2 dt on (-1,1), -1 < 1, 

already considered by Geronimus [3] and Monegato [6], also has these same prop- 
erties, i.e., (1.3) (with -1 < rn*+ and r1 < 1) and (1.4) both hold for all n > 1. 
In addition, as is known (Monegato [6, p. 146]), the degree of precision of (1.1) for 
da = da? is exceptionally high, namely, if n > 1, exactly 4n - 1 and 4n + 1 when 
-y $ 0 and -y = 0, respectively, and 5 if n = 1. 

Note that the restriction -1 < -y < 1 in (1.5) is a natural one, since the measure 
is (1- t2)1/2 dt/(l -,it2), ,a = 4ay/(1 + _Y)2, and ,u runs through all admissible values 
-00 < ,u < 1 as -y varies from-1 to 1. 

In a sense, the results obtained here for the Geronimus measure (1.5) are more 
pleasing than those presently known for the Gegenbauer measure. Not only do 
we have higher degree of accuracy and explicit formulae, but our results cover an 
entire class of measures, in contrast to those for the Gegenbauer measure, which 
are partial at best. See, in this connection, the numerical work in [2]. 

The proofs of (i) and (ii) for the measure (1.5) are facilitated by the fact that 
both (monic) polynomials rn (.; dao,) and ir* +(.; da) are known explicitly, 

(1.6) rn (t; doa,) = 2 n [Un (t) -Un-2M], 

(1.6*) w(t;cioy) = - [T2(t)- 
rn + 1(t; da-) = 2 _[T +(t) - Tni(t)], n > 2. 

(Cf. Monegato [6, p. 146]; the first relation in (1.6*) is not given in this reference 
but follows from an elementary computation.) Here, Tm and Urn denote the mth 
degree Chebyshev polynomials of the first and second kind. 

2. Interlacing. If -y = 1, then duaI(t) = (1 t2)-1/2 dt is the Chebyshev measure 
of the first kind, that is, a Gegenbauer measure with A = 0, so that (1.3) and (1.4) 
hold. If -y < 1, it follows from (1.6*) that the zeros of w*1+, are all in the interior 
of [-1,1] and are separated by the extreme points of Tn+i. As -Y is continuously 
decreased from -y = 1 to -y = -1, the only way (1.3) can cease to hold is that for 

some -y = o -1 < -y < 1, the two polynomials wrn, 7r*+ have a common zero r0. 
We now show that this is impossible. 

The case n = 1 being trivial, we may assume n > 2. Suppose, then, that T0 is a 
common zero of wrn and wrn+1, 

(2.1) (Un -WUn-2)(TO) = (Tn+l--YTn-1T1)(ro) = 0 for -y = 0. 
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It is clear, first of all, that To :A 0, since otherwise, one of the two expressions on 
the left of (2.1) is zero and the other ?(1 + a) # 0. Furthermore, U -2(T0) ? 0, 
Tn (Tro) :A 0. We show only the first inequality; the other is proved similarly. 
If we had Un-2(ro) = 0, then, by (2.1), Un(ro) = 0, and the recurrence formula 

Un(rO) = 2oUn-1(ro) - UnO2(T) would imply, since T0 :A 0, that Un-1(To) = 0. 
This contradicts the well-known fact that two consecutive orthogonal polynomials 
cannot vanish at the same point. 

It now follows from (2.1) that 

Un(T0) Tn+ 1 (TO) 

I Un-2(TO) Tn-l (7o) 

hence 

(2.2) An UnTn-1-Un-2Tn+l = 0 at r0. 

Since Urn(t) and Tm(t) both satisfy 

Ym+i = (4t2 - 2)yr-i - Ym-3, 

where m > 3 for T, and m > 2 for U. there follows, for n = 3,4,5, .. ., that 

An- [(4t2 - 2)Un-2 -Un-4]Tn- -Un-2[(4t2 - 2)Tn-l-Tn-3] 

= Uln2Tn3 -Un-4Tn 

= An-2, 

hence An = Z2 for n even, and An = Al for n odd. But, for t = rO / 0, 
AL2 = Al = 2Tro 0 0, SO that An 7& 0, contrary to (2.2). This proves the interlacing 
property for -1 <y < 1 and all n > 1. 

3. Positivity. We actually derive explicit formulae for Cr, and a*, from which 
positivity can be read off; see Eqs. (3.9), (3.11). 

Let T, = cos0v, 0 < 0 < Xr, and assume first n > 2 and rv + 0, that is, 
Ov =, ir/2. Since (Jn-2(Trv) :A 0 (cf. Section 2), we have by (1.6), using Um-i(cosO) = 

sin mO/sin 0, that 

(3.1) 
~ ~ ~ ~ ~~=sin(rn + 1)Ov 

(3.1) sin(n -1)Ov 

for each v. 
It is well known (cf. Monegato [4]) that 

(3.2) (TV = AV + +l 7rf dIrv v = 1d2,... n, 

where rn ) = rn(.; da,) and Av = A$(n) are the Christoffel numbers for day; for the 
latter, we have (see, e.g., [8, Eq. (3.4.7)]) 

(3.3) A>=_ 1 7r Ider MV *2,... n. v 
rn + I (TV) rn, (Tv) 

' 

Putting t = cos 01 in (1.6*), and using Tm(cos0) = cosm0 and (3.1), one finds 

(3.4) 7r*+l,(T) = -2-n Sin 20v n ~~SInI n - i)0Oj 
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Similarly, from (1.6), replacing n by n + 1, one gets after a little computation 

(3.5) 7n 1 (TV) =-2 -n-1 sin 20, 
sin (n- i)0j' 

Interestingly, ln+l (Tv,) has precisely half the value of 7r*+ (Tvw), which, by (3.2) and 

(3.3), implies that the second term on the right of (3.2) is half as big (in modulus) 
as the first and of opposite sign. Since AM > 0, this already proves 1v, > 0. But we 
want an explicit formula for a, and therefore proceed with our computation. 

We first incorporate the preceding remark in (3.2) and write 

(3.6) UV + - i7rn dor 

Differentiating (1.6) gives 

cOs 0 * rn(COS0) - sin 0 7r1(cOs0) 

= n7r l (cos0) + 2-n[cos(n + 1)0 + -ycos(n - 1)0]. 

Now substitute from (3.1) for -y, put 0 = Ov and use (3.4) to get 

(3.7) -ir* ?l(Tv)ir4(Tv) - 2-2n+1 sin 1, 
(3.7) -sn+1(T>)7n(T>) =sin Ov sin2(n - 1)0w [nsin 20v - sin 2n0v]. 

It remains to calculate the norm of wrn. For this, we use the fact that 

Ern IIdcT = .o.132 * **3n, 

where do = fdd da-,(t) and A3k are the recursion coefficients in 

Wrk+ 1(t) = tlk(t) - -3kk- 1(t), k = 0, 1, 2,..., 

wo(t) = 1, 1(t) = 0. 

An elementary calculation shows that 

,o0 - (1+Y), /h=-(1+B, /i2=/03= - 2 4 4 

Therefore, 

(3.8) 117 (?1)2 n> 1) 

or, alternatively, using (3.1) once again, 

(3.8') 
2 = 7r 2-2n+1 sin nOv cos20v n > 2. sin2 (nl0' n2 

With (3.7), (3.8') inserted in (3.6), one obtains 

(n) -r sin2nv=., 
(39)2 n - sin 2iO, /sin 201,' v=1,.. 

n > 2, v 2 if n is odd. 

From this, the positivity r,, > 0 follows once again, since Un-1 (cos 20) 

sin 2n0/sin 20 < n for 0 < 0 < 7r, 0 $ 7r/2. 
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It remains to consider the case r, = 0, i.e., in the ordering (1.3), v = (n + 1)/2, 
where n > 1 is odd. By (3.8), and calculating 7r*+1(0) and ir' (O) directly, from 
(3.6) one readily finds 

(3.9 ) - 

7 
2+1 ' U(n)l)/2 = 2 1-f+ (1n+f) r(odd) > 3. 

The positivity U* > 0 is a consequence of the interlacing property proved in 
Section 2. It is of interest, however, to produce formulae similar to (3.9), (3.9') for 
o*. To do so, write r, = Cos 0* and use [cf. (1.6*)] 

_cos(ri + 1)OZ 
cos(ri- 1)O X n > 2, 0 + 7r/2 if n is even. 

Then a computation very similar to the one above for aU, using the known formula 
(Monegato [4]) 

(3.10) 1rn(r)1rn+d(r) , 12 ... , n+1 

in place of (3.2), yields 

- r cos2rnOZ ( n) 7r A s2 nOj, =1,2,... ,n +1; 

n?2, 2 if n is even, 

and 

(3.11') ~ ~ 
U1 U2 

4 2+- 
*(n ) _ _ _ _ _ _ _ 

(n.2)2 a- 2 1 -fr(1 ) ri(even) > 2. 

If the points 1, in (1.1) are augmented by ?1, they become the Lobatto points 

with respect to the measure d&af (t) = (1 - t2)'-day(t), -1 < -I < 1, and together 

with the nodes r, , one obtains in 

1 n n+1 

(3.12) ] f(t)d&af(t) = &n+ f(-1) + E &vf(r,) + of(1) + E sf(rT,*) + Rn(f) 
-1 IJ=1 A=1 

the Kronrod extension of the (n + 2)-point Gauss-Lobatto formula for the measure 

day (cf. [1, Example 2.3]). Here, 

(3.13) &v = l v ) = 1, 2, ..., n; =1=1,2 ... , n+1; 

and by a formula analogous to (3.2), 

- (1) _ (1) _ ( +) 

(3.14) a( +a n ),2 

Hence, all weights in (3.12) are positive for -1 < -I < 1 and all n > 1. 
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We conclude by noting that the Gauss nodes rn for the measure (1.5) can 
be computed most conveniently as eigenvalues of the symmetric tridiagonal n x n- 
matrix having zeros on the diagonal and the quantities V/67 = 2 fix 

a = *-2 = flu-i = on the two side diagonals, if n > 2. (If n = 1 then 
(1)= 0.) Likewise, ,(n) n > 1 are computable as eigenvalues of the symmetric 

tridiagonal (n + 1) x (n + 1)-matrix with zero diagonal and V/f = W (1 + a), 

1= 2 x , V = * *-= 3 = 1 on the side diagonals, if n > 2, and 
V = 2 Hi on the side diagonals, if n = 1. 
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