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Abstract. In this paper the construction of infinite families of polynomials with Galois 
groups Aut(M22), M22 and PSL3 (F4) 2 over Q is achieved. The determination of these 
polynomials leads to a system of nonlinear algebraic equations in 22 unknowns. The 
solutions belonging to the Galois extensions with the desired Galois groups are computed 
with a p-modular version of the Buchberger algorithm. The application of this method, 
which is described in some detail, turns out to be feasible even for relatively large systems 
of nonlinear equations. 

0. Introduction. Recently there has been a certain interest in the construction 
of polynomials having a given nonabelian simple group as Galois group. In [5] for 
example, the task of determining polynomials over Q(t) having a given nonsolvable 
group with a faithful primitive permutation representation of degree at most fif- 
teen as Galois groups was completed. Of the sporadic simple groups, the Mathieu 
groups seem to be the easiest cases, owing to their small permutation represen- 
tations. Hoyden and Matzat [3] gave polynomials having M24 and M23 (for the 
latter, see the remark in [8]) as Galois group over Q(t)(1/T2). Also in [2], poly- 
nomials with groups M24 and M23 over Q,(t)(\/Z7) were calculated. Matzat and 
Zeh [7], [8] published polynomials with Galois groups M12 and Ml over Q(t). As 
for the fifth Mathieu group, M22, in [6, Bemerkung 8.5] the existence of a regular 
Aut(M22)-extension of Q,(y) for the ramification structure ?* = (2B, 4C, 11A)* was 
proved. Moreover, in Satz 8.6 the fixed field of M22 in this extension was recog- 
nized to be a rational function field Q(t).--Since a stem field of degree 22 (i.e., the 
fixed field in the extension of the stabilizer of a point in the permutation represen- 
tation of degree 22) also is a rational function field, the method used in [2]-[7] to 
calculate a generating polynomial should be applicable to the Aut(M22)-extension. 
In this paper, infinite families of polynomials with Galois groups Aut(M22), M22 
and PSL3(F4) . 22 are constructed. Considerable computational problems arise on 
the way, coming from a system of nonlinear equations in 22 unknows for which 
solutions have to be found in a certain number field. These are determined with a 
p-modular version of the Buchberger algorithm [10], showing the feasibility of this 
p-modular approach even for relatively large systems of nonlinear equations. 

1. The Theoretical Solution. Let K be a stem field (see above) of degree 22 
of the Aut(M22)-extension N/Q(y) for T* whose existence was proved in [6]. The 
elements of the classes 2B, 4C, 11A have permutation types (2)7(1)8, (4)4(2)3, (11)2, 
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respectively, in the permutation representation of degree 22 of Aut(M22). From 
this ramification behavior of K/Q(y) the genus of K can be calculated, using the 
Hurwitz relative genus formula, as 

g(K) = 1-22+ _(7+15+20) =0. 

We can now choose the ramification of K/Q,(y) to occur. exactly in the numerator 
and denominator divisors of y and y - 1. In KQ/Q(y), by Satz B in [4], one then 
has 

(1) ~~~~~~11-11 - 
- ---- 

(1) PO pT.To Po =S T ill = 946 I 

with divisors of degrees @(D)) = 8, @(9) = 7, @(9m) = 4 and 9(6) = 3. The divisors 

'P, ?D, 9i and E are now already defined over Q and as the degree of T is odd, K is 
a rational function field. On the other hand, the normalizer YG (Zn1) 11.10 of a 
Sylow 11-subgroup of Aut(M22) acts transitively on the 22 points, so we only know 
that the product T3Toj is defined over Q. 

PROPOSITION 1. The prime divisors 'P. and ' are defined over Q(\/PT). 

Proof. Let N* = N(VA/m) and define M* = N*M22 to be the fixed field of M22 
in N*/Q(y)(f/m). Then according to [6, Satz 8.6], N*/M* has the ramification 
structure QC* = (2A, 1 1A, 1 1B)*, and the ramified prime divisors are defined over 

Q(V'TIT) by [6, Bemerkung 5.3]. The field KM* is a stem field of N*/M* of degree 
22, and in this extension the two divisors P2 and P3 of p. are ramified as follows: 

= ?3 ?4, 3 = 11 

This can be seen from the permutation types of elements of order eleven in M22. 
The normalizer XM22(Z11)- 11.5 of a Sylow 11-subgroup has two orbits on the 
22 points, consequently all the divisors ?3, ?4, ?5 and 4 are already defined over 
Q(y\ll). Finally, the divisors 'P. and ' split in KM*/K as vP.vp = ?3 * Z4 

45 * ?, with the divisors ?i of degree one on the right-hand side all defined over 
Q(fliI1). Thus the same is true for 'P. and '. O 

Now let x be a generating function of K* = K(VAiIT) over Q(V/=II) with 
(x) = 1-l'3o. As K* is a rational function field, there exist monic polynomials 
p, q, r, E Q(/)[x] with divisors 

(px)) = 
T 

MVx)) = 
il 

Nx~)) = 94, (S9(Z)) = 
5 

From (1) the following equality of divisors is deduced: 

(2) (Y) = ( )) (y -1) = ( s) 

So there are constants rl, r' E Q(\/f) such that 

x11y = r/p(x)2q(x) x 11(y -1) = q r(x)4s(x)2. 

Subtracting the second equation from the first, one gets a formal identity over the 
polynomial ring Q(V/ZT) )[x] (remember x is transcendental over Q). Comparing 
the coefficients at x22, one has ij = r' and 

(3) Xli = 7p27qj 42) 
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A further simplification can be obtained by differentiating with respect to x and 
eliminating r7 from the two equations, yielding 

-(p2qr432) = x(2-'q + p2q/ - 4-3j/7;2 - V4-9') 

This can be rewritten as 

P(11iPq - 2xpzq - pz') = -3-(112s--4x z- 2xYs'). 

By definition, p- and r33 are prime to each other. This finally allows the splitting 
into the two equalities 

43lp(x) + 17(x)3(x) - 4x;F(x)'3(x) - 2xT(x))(x)' = 0, 
41T(X)33(x) + jjp(X)q(X) - 2xp(x)'q(x) - xp(x)q(x)' = 0. 

Comparing the coefficients at the transcendental x leads to a nonlinear system of 22 
equations in the 22 unknown coefficients of the monic polynomials P, 4, 7 and s. As 

x was fixed only up to constant multiples, we can finally choose the second-highest 
coefficient of 3(x) to be equal to 3, say. (If this coefficient were equal to zero, we 
would get an imprimitive solution, i.e., an imprimitive Galois group.) 

All that is left to be done is to find the common zeros of this system of equations, 
which is possible, say, by Buchberger's algorithm. So from a theoretical point of 
view, the problem is solved. 

2. Solving the Nonlinear System of Equations. The nonlinear system of 
equations was first treated with the Buchberger algorithm [9]. But it turns out 
that the coefficients and the number of monomials in the intermediate polynomials 
grow too quickly to get through with this method over a global field. Here, as in 
other computational problems in number theory, a local version of the algorithm 
seems to be needed [10]. If p is a prime for which -11 is a square mod p, any 
solution of the original system in Q(; -1) will correspond to a solution in the 
p-adic field Qp. Moreover, reducing mod p gives a solution in the finite field Fp if 
the solution was an integer in Qp. (This last restriction can be removed if one looks 
at the homogeneous form of the equations over Fp, determining the 'solutions at 
infinity' as well.) But even over finite fields, the complexity of the polynomials is 
too large to compute a Grbbner basis by elimination. Instead, the following method 
was used: Ten of the unknowns occurred linearly in at least one of the equations 
and could be eliminated by substitution (namely all of the coefficients of P(x) and 
three of the coefficients of q(x)). This left 12 equations in 11 unknowns. Then 
the system was reduced modulo the prime 23. (This is the smallest 'good' prime 
for the problem, i.e., the smallest prime p t IAut(M22)I with (21#) = 1.) Then 
some of the unknowns were chosen such that the system of equations obtained by 
specializing these unknowns to elements of F23 could be solved entirely. This was 
done for all possible specializations of those variables, thus giving all solutions of 
the system over F23. Exactly four solutions were found: 

/5 14 /3 /2 /1 P3 P2 P1 PO CT1 0O 

8 11 2 9 11 3 1 10 12 1 19 
22 20 22 13 15 13 12 5 3 7 18 
15 0 22 4 4 3 9 9 4 14 1 
9 0 8 12 15 5 6 7 12 8 17 
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with q(x) = txi , r(x) =>pixi and 3(x) = i x'. (The variables not figuring 
in the above table were eliminated before.) This step needed 23 hours and one 
minute computing time on a SUN 3/50 (Motorola 68020 CPU at 8 MHz). On a 
larger computer like a Siemens S7880 it should have taken about 61 hours. 

Now there is a problem: by constructive Galois theory, only two of the solutions 
can belong to Aut(M22)-polynomials, the other two must come from another per- 
mutation group of degree 22 having a (2, 4,11)-system. But it is known that the 
factoring of a polynomial reduced modulo a prime gives possible cycle shapes of 
the Galois group. And indeed, we already know the reduction modulo the prime 
23 of the polynomial we look for. By substituting different values (mod23) for 
the indeterminate t in the reduced polynomial and looking at the factoring, we 
can exclude the last two solutions, because they lead to cycle types not contained 
in Aut(M22) (only in S22). An application of Newton's method to the remaining 
solutions mod 23 should give approximations in Q23. It turns out that this is 
possible for both solutions (i.e., the Jacobian of the system is nonsingular), yield- 
ing the following approximations in Z23 (the 23-adic number IZ2>o aipi is given as 
aoaia2 ...): 

/15 = 8, 19 1 0 22 7 20 5 14 9 1 18 ... 
/4 = 11, 17 22 11 17 2 5 10 5 16 4 14 ... 
/13 = 2, 11 7 2 9 1 4 2 18 2 5 3 ... 
/12 = 9, 20 19 17 9 7 0 5 5 16 7 14 ... 
P1 = 11, 3 18 1 20 22 4 14 6 20 18 10 ... 
P3 = 3, 8 21 6 7 16 12 17 4 0 4 8 ... 
P2 = 1, 7 20 16 15 8 6 18 6 7 5 21 ... 
p = 10, 1 7 18 21 21 4 4 12 6 9 11 ... 
po = 12, 12 15 0 0 22 3 20 8 10 20 16 ... 
1 = 1, 10 7 7 5 11 10 14 10 2 19 1 ... 
=0 19, 13 2 16 8 4 21 0 1 19 0 5 ... 

and 

/15 = 22, 12 5 13 7 8 3 4 0 4 7 20 ... 
/4 = 20, 16 3 16 10 2 8 11 13 14 3 6 ... 
/3 = 22, 20 5 21 19 1 5 17 19 9 21 8 ... 
/2 = 13, 21 19 3 20 7 8 16 14 16 0 16 ... 
p1 = 15, 17 1 5 8 1 19 6 5 7 14 5 ... 
P3 = 13, 5 9 5 1 9 8 2 16 10 19 9 
P2 = 12, 1 18 1 19 13 12 10 9 15 8 16 
P1 = 5, 13 1 6 12 5 14 18 11 14 4 14 ... 
P0 = 3, 2 9 0 13 19 15 19 17 21 14 16 ... 
1 = 7, 3 11 22 16 17 10 19 20 0 5 5 
0 = 18, 19 13 11 5 6 15 8 19 21 3 9 

The amount of time needed for this step is negligible in comparison with the time 
needed for finding the solutions mfod 23. So we are left with two sets of 23-adic 
numbers (which must be contained in Q(-1) C Q23). How do we recognize the 
algebraic nurnbers? As the solutions must 1)e conjugate over Q(/-11), the sum 
of the two solutions for any of the variables rmiust be a rational nurllber. Rational 
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numbers can be detected by the method of continued fractions, as described in 
[10]. So we can 'guess': P3 + p' = 402/97. One finds out that the values are 
easier to handle if one replaces x by a suitable multiple such that s(X) = X3 + 

2 (17 ? 3 /-11)X2 + . Then with 0 = VtT the correct solutions are: 

-(X) = X7 + 1(19 + 50)X6 + 2 (9 + 190)X5 + 2(29 + 50)X4 

- 1(29 - 50)X3 - - (9 _ 190)X2 - 1(19 - 50)X - 1, 

q(X) = X8 + (14 + 60)X7 + (-82 + 520)X6 + (-408 - 520)X5 + 1379X4 

+ (-408 + 520)X3 + (-82 - 520)X2 + (14 - 60)X + 1, 

r(X) = X4 + (4 + 20)X3 -5X2 + (4-20)X + 1, 

s(X) = X3 + 1 (17 + 30)X2 + (17 - 30)X + 1, 

as is verified immediately by substituting the values into the original nonlinear 
equations for the coefficients. 

THEOREM 1. The polynomial p(X)2?j(X)+222yX11 has Galois group Aut(M22) 
overQ( -ll)(y). 

The only thing left to be calculated is the value of rA, but this is easily found 
from (3). 

3. Finding the Polynomial over Q. The irrationality /fiT was introduced 
by working over the field of definition of s and To. But the product of these 
two divisors is already defined over Q. So to pass to a rational polynomial we have 
to choose a new generator x such that sPOo s is the divisor of the numerator 
of x2 + 11. This means that x has the form ay-O for some constant a. It turns 

out that all polynomials become rational after the substitution X | X-0. More x+0 
precisely, one gets: 

( )P (X + 0 

-7 -6 -5 -4 -3 -2 
- 0(29X - 165X - 539X + 363X - 12705X + 3993X - 35937X - 49247) 

-: Op(X), 

(X + 0)8j (X ) = 429X8 + 3080X7 + 45012X6 - 45496X5 + 1216534X4 

- 1607848X3 -+ 10834340X2 - 8081832X + 29355205 

q(X), 

(X + 0)4( ) = 5X + 88X - 242X + 968X - 1331 =: r(X), 

- 031,X0\ -3 -2 
(X+O X a) = 19X + 33X + 121X + 363 =: s(X). 

The Galois group of the new polynomial has Aut(M22). as a subgroup. But as 
Aut(M22) is a (or1plete group (i.e., it has no outer autolnorphisnis), the Galois 
group of the transformed polynomial actually must be the sanie as the original one, 
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showing: 

THEOREM 2. The Galois group of the polynomial 

g(X, y) = llp(X)2q(X) - 222y(X2 + 11)11 

over Q(y) is isomorphic to Aut(M22). The polynomial g(X, w) obtained by special- 
izing y to w -2 (mod 17 19),w E -Z, has the same Galois group Aut(M22) over 

Q. 

Proof. Only the second statement about the specialization remains to be proved. 
The polynomial g(X,2) has decomposition type (14)(7)(1) modulo 17 and (11)2 
modulo 19 (i.e., it factors into irreducible polynomials of those degrees when reduced 
modulo the indicated primes). No proper subgroup of Aut(M22) contains elements 
of order 14 and 11. So we have Gal(g(X, 2)) = Aut(M22), and this holds true for 
all polynomials congruent to g(X, 2) as stated in the theorem. L 

THEOREM 3. The Galois group of the polynomial 

h(X x) p(X)2q(X)(z2 + 11)11 - p(X)2q(z)(X2 + 11)"1 

over (Q(x) is isomorphic to PSL3(F4) . 22. The polynomial h(X, () obtained by 
specializing x to (-2 (modl3 43), ( E Z, has the same Galois group PSL3((F4) 22 
over Q. 

Proof. The first part is just the fact that the stabilizer of a point in the per- 
mutation representation of degree 22 of Aut(M22), that is, the Galois group of 
N/K = N/(Q (x), is isomorphic to PSL3(F4) 22. (The notation for that particular 
extension of PSL3 (FF4) is taken from the Atlas [1].) For the second part one finds the 
decomposition types (5)4(1) modulo 13 and (14)(7) modulo 43 of h(X, 2). There- 
fore, the Galois group of h(X, 2) must be the full group. Obviously, this remains 
true for the stated congruences for (. O 

4. Descent to the Mathieu Group M22. Let again M denote the fixed field 
of M22 in N/Q(y). Then M/Q(y) is an extension of degree two ramified at two 
places, whence M is a rational function field. The ramification behavior of the 
three original ramified prime divisors is given by 

2 2 
POO = , Po = PoP, P1=o, 

with a(p) = 2. Here p splits over Q((-1) into P2 P3 (see Section 1). A 
generating function t of M can be chosen such that (t) = p -1po, and we conclude 

(Y) = t2 + at + b) (y-1)= (t2 +at +b) 

By calculations similar to those in the second section this forces a = 0 and y(t2+b) = 

b. As p splits over Q(V/), the function t can be fixed by taking b = 11. 

THEOREM 4. The polynomial 

f(X, t) = 222(X2 + 11)11 _ (t2 + 11)p(X)2q(X) 
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has Galois group M22 over Q(t). The polynomial f (X, T) obtained by specializing t 
to T _ 1 (mod 7 31),T E Z, has the same Galois group M22 over 9. 

Proof. f (X, 1) has decomposition types (11)2 modulo 7 and (7)3(1) modulo 31. 
But no proper subgroup of M22 has order divisible by 7 and 11, so the Galois group 
of f (X,T) is M22 for all T _ 1 (mod 217). 0L 

The stabilizer of a point in the permutation representation of degree 22 of 
Aut(M22) contains the simple group PSL3(F4) as a subgroup of index two. It 
would be interesting to get this group as a Galois group over 4; as well. From the 
ramification of L := K M one readily calculates the genus g(L) = 3, and one has: 

PROPOSITION 2. The field L = K M with Gal(N/L) = PSL3(F4) has genus 
three and is generated over K by a root T of the equation e(x, T) = T-2- q(x). 

To get Galois realizations of PSL3(F4) over 9, one has to find rational points on 
that curve of genus three. No such point was found by a first search. 

The following number theoretical result might be of interest: 

PROPOSITION 3. (a) The Galois group of q(X) over 9 is isomorphic to Hol(E8). 
(b) The Galois group of p(X) over 9 is isomorphic to PSL2(F7). 

Proof. These groups originate from the fact that the centralizer of an element in 
the class 2B in Aut(M22) is isomorphic to Hol(E8) x Z2. This centralizer must con- 
tain the decomposition group at the prime divisor po. Both Hol(E8) and PSL2(F7) 
are factor groups of the decomposition group. The correct Galois group can be 
determined from the decomposition types of the polynomials reduced modulo some 
small primes. D 
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