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Fricke’s Two-Valued Modular Equations

By Harvey Cohn*

Abstract. The modular equation of order b is a polynomial relation between j(z) and
j(z/b), which has astronomically large coefficients even for small values of b. Fricke
showed that a two-valued relation exists for 37 small values of b. This relation would
have much smaller coefficients and would also be convenient for finding singular moduli.
Although Fricke produced no two-valued relations explicitly (no doubt because of the
tedious amount of algebraic manipulation), they are now found by use of MACSYMA.
For 31 cases ranging from b = 2 to 49, Fricke provided the equations necessary to
generate the relations (with two corrections required). The remaining six cases (of order
39, 41, 47, 50, 59, 71) require an extension of Fricke’s methods, using the discriminant
function, theta functions, and power series approximations.

1. Introduction. The modular equation of order b is a well-known polynomial
relation between j(z) and j(2/b) for 1 < b € Z. Here we use the usual definitions

. 3
(1.1a) i) = [1+205 w8 /(1= ™| /AG),
1
(1.1b) A(z)=q[J(1—q™*,
1
(1.1c) q = exp 27wiz.

The (Weber) modular invariant j(z) is defined for z € H, the upper half plane, and
its important properties are its invariance under the modular group I' = PSL(2, Z)
and its behavior at oo:

(1.2a) I(z+1)=5(-1/2) = j(2),

(1.2b) Jj(z) =1/q+ 744+ O(q)

as z — 100 (¢ — 0), see [7], [8], [5]. The function j(z/b) is invariant under a
subgroup of the modular group, namely I'°(b), which is of index

(1.3) m=b[](1+1/p)
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788 HARVEY COHN

(over primes p|b). This is the degree of the modular equation. The compactified
quotient space H/T?(b) is a Riemann surface S, over H/T for which the genus is
shown (see [7]) to equal

(1.4) g=1+ (m —4ap — 3a; — 6¢)/12,
where

(1.5a) ap = card{zmod b: 22 + z 4+ 1 = 0},
(1.5b) a1 = card{zmod b: 22 + 1 = 0},

and (the number of cusps) ¢ is given by

(1.5¢) c=Y_ ¢(d/(d,b/d)).

dlb

Now Fricke [7] considered the extension of the group I'O(b) via the involution
z — W(z) = —b/z to form I'O(b)* = T(b) + WI'O(b), an extension with index 2.
(This involution was generalized by Atkin and Lehner [1].) Thus the compactified
quotient space H/TO(b)* = Sy is a Riemann surface over which S, is a double
covering. The genus of Sy was shown [7] to be

(1.6a) 9" =(1+g)/2 —eph(—4b)/12 (b > 4),
where h(d) is the class number for primitive quadratic forms of discriminant d and

4, b=3 mod8,
(1.6b) ep =14 6, b=7mod8,
3, otherwise.

(For b < 4, special calculations show g* = 0.)

Fricke restricts attention to the 37 cases where g* = 0 (see Table I). For such
cases a single-valued function ¢ exists on S; which becomes double-valued on S.
So a general point on Sy is determined by the pair (¢, s) where

(17) )

for Pyy19(t) a polynomial of degree 2g + 2 (with simple roots). Because j(z/b) =
J(=b/z) = j(W(z)), it follows that a rational function F(t,s) exists on S, such
that

(1.8a) i(2) = Fy(t, ),
(1.8b) j(2/b) = Fy(t, —s).

From (1.6a), the 37 cases where g* = 0 necessarily include all cases of genus
g = 0 or 1. Conversely, the cases with g > 1 are hyperelliptic. (Some hyperelliptic
cases do not occur, however, such as b = 37, and this is a matter of continuing
study; see [14], [17], [19].) For the 14 cases of genus g = 0, Fricke [7] gives only a

rational parametrization of the relation between j(z) and j(z/b), and it is neces-
sary for us to derive the relation (1.8a,b) from it (see Section 2). For 17 of his cases
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where g > 0 (listed in Table I), Fricke [7], [8] gives the function F(¢,s) explicitly
in a remarkably simple form each time (see Section 3).

TABLE 1

Fricke’s 37 Cases for Two-valued Modular Equations

b = order 2 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
g=gemus 0 0 00 0O O 0 O 1 0 O0 1 1 0 1 0 1
m=degree 3 4 6 6 12 8 12 12 18 12 24 14 24 24 24 28 36 32
remarks

b = order 20 21 23 24 25 26 27 29 31 32 35 36 39 41 47 49 50 59 71
g = genus i 1 2 1 0 2 1 2 2 1 3 1 3 3 4 1 2 5 6
m=degree 36 32 24 48 30 42 36 30 32 48 48 72 56 42 48 56 90 60 72
remarks Tc c 7T 7 7 8n 8n 8n 8n o 8n

The cases were run from data common to [7] and [8] (see Tables II and IIT), but we note these
exceptions as remarks:

7 = data offered only in (7]

8 = data offered only in [8]

¢ = corrections required (see Section 3)

n = not enough data offered by Fricke for computation

o = omitted by Fricke (no data offered)

In all 37 cases where g* =0, we then have the two-valued modular equation
(1.9a) 3(2)3(2/b) = Ne(2),

(1.9b) 7(2) = j(2/b) = Dy(t, s) [= sRy(1)),

where N, (t) is the norm and Dy(t, s) is the different, if we think of j(2) and j(z/b)
as roots of the equation

(1.10a) X2 — Sy(t)X + Ny(t) = 0.
Here, Sy(t) is the trace function defined by
(1.10b) §(2) +5(2/b) = Sp(t) = (D} (t, 8) + 4Np(t))*/?

(with positive branch at 00). It is easily seen that Ny(t) and Sp(t) as symmetric
functions are rational in ¢, and so is Ry(t). The functions Ny(t) and Dy(t,s) are
shown in Tables II and III of the Appendix.

The choice of ¢t and s for ¢ > 0 was made by Fricke, and is motivated by
the condition that z = 0 (and oo) correspond to co with the following orders
of magnitude:

(1.11a) j(2) =t + bCpt* 1 + O(t"2),
(1.11b) j(z/b) =t + Cp + 744 + O(1/t)

(see (1.2b)). For g = 0, we shall construct the functions Fp(t,s) (in Section 2)
to satisfy the same asymptotic conditions. Of course there is still an arbitrary
translation in t, as well as an arbitrary rational transformation in the choice of s.

The modular equations have astronomically large coefficients and are known
in relatively few cases (although the computation is rather straightforward [20)).
We shall note that Fricke’s two-valued form (1.9a,b) keeps coefficients small, at
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least in the factored form of the norm and the different (although not the trace).
We observe that the norm is either a cube or it has a major cubic factor whose
coefficients are “one-third” as long as otherwise. The different also must have
factors of “low degree” to correspond with the small class numbers connected with
singular moduli, defined as values of j(zg) for which 7(z0) = j(20/b). These values
are necessarily associated with roots to of Dy(t, s) (see [3], [6], and [9]). These roots
satisfy

(1.12) j(20) = 5(20/b)  [= N(to)'/?].
Such values arise from equations for zg of the type
(1.13) 20/b = M(z0)

for M(z) an element of I. This will be illustrated in Section 2 for b = 2. We should
also cite another approach [2] to modular equations (currently associated with
Ramanujan). In this approach the coefficients are kept small by using invariants
other than j(z), which determine special subgroups of the modular group.

To complete the introduction, we make clear that the present computation serves
to create the equations (1.9a,b) from formulas given in Fricke (7], [8] (and refor-
mulated somewhat when g = 0). We do this by means of MACSYMA, a symbolic
language system which handles polynomials and substitutions in (almost) natural
language. First, the polynomial s? — Py, o(t) is read explicitly into the system so
that a rational substitution for s? is performed every time s? is encountered. Then
the rational simplification operation is performed on the explicit formulas for the
product Fy(t, s)Fy(t, —s) to produce Ny(t). Likewise, (Fy(t, s)—Fy(t, —s))/s reduces
to the rational function Dy (¢, s)/s. Finally, the factorization operation renders the
formulas in Tables II and III.

2. Genus Zero. For the cases with g = 0, Fricke [7], [8] gave implicit modular
equations by a rational function Fy(z). We shall change variables (see (2.3a,b,c)
below) to produce Fy(t,s). Thus

(2.1a) i(2) = Fy(z),
zy = 1.
(2.1b) 3(2/b) = Fo(y),

Here, z is uniquely defined by the values x =0 at 2z =00, z =1 at 2 = v/—b, and
z =00 at z = 0. Then it follows that as z — oo,

(2.2a) j(2) ~ (B/z)°,
(2.2b) j(z/b) =~ B/,

for some positive B. Thus the involution z « W(z) is expressed by z < y or
j(z) < 7(2/b). We now change variables so as to turn the symmetry of z and y
into that of (¢, s) and (¢, —s):

(2.3a) c=(1-w)/(l+w), y=(1+w)/(1-w)

(2.3b) w? = (t —2B)/(t + 2B).
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Of course, with s = (¢t + 2B)w, we can write (1.7) as
(2.3¢) s? =12 - 4B2.

Actually, Fricke’s data are not always consistent. Sometimes the roles of z and
y are interchanged and sometimes z and y are scaled to avoid radicals (say /a) so
“ry = 1” becomes “zy = a”. We do not dwell on this matter, particularly since
algebraic systems like MACSYMA can treat the radical as a symbol.

For the special cases where (b — 1)|24, we can take

(2.4) z = (A(2)b°/A(2/b)) /7Y,
since A(z) is a modular form for " of weight 12, i.e.,

(2.5) Alz) = A(z+1) = A(=1/2)z"12
Thus from the various expansions into ¢, we evaluate
(2.6a) B =%/,

(2.6b) Cp=24/(b-1).

As an illustration for b = 2,
(2.7a) Fy(z) = 64(z + 4)3 /22,
and so from (2.2a) or (2.6a), B = 64, and the result in Tables II and III follows.
Explicit use of formulas (1.10a,b) would yield
(2.8a) j(2) = [t? + 49t — 6656 + (t + 47)(t> — 128%)/2]/2,
(2.8b) 7(2/2) = [t + 49t — 6656 — (¢ + 47) (> — 128%)%/2)/2.
To find singular moduli, we take the roots of Ds(t,s) = 0, i.e., to = 128, —47,
—128, and substitute them to find j(z0) = j(20/2) = 20° [= j(vV-2)],—15%

[= 7((1 + v/=T7)/2)], 122 [= 7(3)]. The values of zo that enter here (see (1.13))
come from

(2.9&) 20/2 = -—1/20 (20 = \/——2-),
(2.90) 20/2=-1/(0-1)  (20=(1+V=-7)/2),
(2.9(:) 20/2 = (29 — 1)/20 (20 =1+1).

To find singular moduli for all b was indeed a principal goal of Fricke’s Algebra
[8] (also see [10]). Fricke could not carry it out completely, however, since he had
only the radical factor s in Dy(t, s), rather than the whole expansion into factors.

3. Higher Genus. For g > 0 but g* = 0, Fricke presented expressions of the
form

(3.1a) J(2) = Fp(t, 9),
(3.1b) J(2/b) = Fy(t, —s),
(3.1c) 52 = Pagya(t),

with rational Fj (¢, s) and polynomial Pyg12(t) (of degree 2g + 2). The derivations
of these functions are an ingenious patchwork of methods; the most interesting is
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perhaps the use of theta series of quadratic forms to define ¢ and s. Fricke does
such a derivation for b = 11 (the first case of genus 1):
4t(61t% — 368t + 352 + 60s)>

(3.2a) Fu(t,s) = (t(£2 — 21t + 88) — s(t — 11))2’

(3.2b) s = t(t® — 20t% + 56t — 44).

Here, as elsewhere, the equations (1.9a,b) are derived by using MACSYMA (see
Section 1). Fricke’s formulas for Fy(t, s) have only two errors, which we proceed to
correct (see Table I).

For b = 27, Fricke [8, p. 464] used as his starting point the formula for b = 9
(genus g = 0):

(3.3a) Fo(X) =27(X + 1)3(9X3 +27X2 + 27X + 1)/ X(X? + 3X + 3),

so that for (2.1a,b),

(3.3b) J(2) = Fo(X),

(3.3¢) 31(2/9) = Fo(Y),

but here XY = 3 (to avoid using v/3). To proceed to b = 27, Fricke needed new
variables z and y in Fy(z) and Fy(y) to write

(3.4a) 3(2) = Fo(),

(3.4b) 7(2/27) = Fo(y).

The correct values are given by

(3.5a) 23y® = 81(22 + 3z + 3)(y + 3y + 3),

(3.5b) t=3(z+3)(y+3)/(zy-9),

(3.5¢) s =27(z — y)(2zy + 3z + 3y)/(zy — 9),
(3.5d) s = (t+3)(t3 - 3t2 -9t —9).

Thus we substitute into (3.4a,b) z = G(¢,s), y = G(t, —s), where
(3.6) G(t,s) =3((t+3)2+5)/(t> -9 - s).

There is another error in Fricke 7, p. 418] for b = 23. It is necessary to replace
“—288” by “—24” in the formula (47).

4. Introduction to Remaining Cases. For six cases (of order b = 39, 41,47,
50, 59, 71), Fricke did not provide the formulas to deduce the modular equations by
direct substitution. We must therefore examine Fricke’s methods in enough detail
to extend the computations. We use the discriminant function for b = 39 and 50
and theta functions for b = 41,47,59, and 71.

We need to express j(2) in terms of these modular forms:

(4.1) j(2) = E3(2)/A(2) = 12° + E3(2)/A(2),
where
(4.2a) Ex(z) = 14240 ) n®q"/(1 - q),

(4.2b) Es(z) =1-504) n°q"/(1-q").
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When z — z/b, the parameter ¢ = exp 2me2 is replaced by

(4.3) r = g% = exp 2miz/b.

Following Fricke [7], we express the action of the involution W: (2 — —b/z) by the
use of “primed” symbols:

(4.4a) F =F(z/b), F' =F(2)b*

for F'(z) a modular form of weight 2k, and likewise

(4.4b) 7=7z/b), 3 =3(2)

We also need the result from class field theory [7, p. 366] that for prime b = 3
(mod 4), the polynomial Pygy4(t) lies in Z[t] and has factors of degree h(—b) and
h(—4b), where h(d) is the class number for primitive quadratic forms of discriminant
d. Thus in Fricke’s cases (compare (1.6a,b) above),

(4.5) 29 + 2 = h(—b) + h(—4b) (b>3).
Also, h(—4b) = h(—b) or 3h(—b) for b =7 or 3 (mod 8), respectively.

5. The Cases b = 26, 39, and 50. We follow the pattern set by Fricke for
b = 26. We must calculate not only Pag42(t) but also Fy(t,s) for (1.8a,b). These
cases have the common property that b = kg, where the (integral) factors k£ and
g are such that the following groups determine function fields of indicated genus
(compare Newman [15], [16]):

(5.1a) I'%(k) of genus 0,

(5.1b) %) of genus g,

where

(5.1¢) (k—1)(g—1)=24/h  (he€Z).

The functions Fi(z) used in (2.1a,b) (above) are renormalized as
(5.2a) Gi(z) = Fi(KY?/x), K = k12/(k=1),

so that instead of (2.1a,b), we have

(5.2b) j(z) = Gr(z) = z*¥  (as z — o),
(5.2¢) Jj(z/b) = Gx(K/z) ~ K/z (as z — 0).
The following cases fall under (5.1a,b,c):
b k g K
26 13 2 13
39 13 3 13
50 25 2 )
Fricke (7] provides us with the formulas:
(5.2d) G13(z) = (2° + 5z + 13)(z* + 72% + 2022 + 197 + 1)%/z,

(210 + 10z° + 5528 + 2007 + 52528 + 1010z° + 1425z% + 1400z> + 87522 + 250z + 5)
z(z4 + 523 + 1522 + 25z + 25)

(5.2€) Gas(z) =
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We now define parameters invariant under I'°(b) (and indicate the leading term in
the Laurent series in r),

(5.3a) t= [————AA((’ZZ/)’Z)(A;/’ZIC/Q"))} . %
=[S
Then Wt = ¢ and Wu = Kt9%1 /u, so we have a (monic) polynomial
(5.3c) P(t)=u+ Kt9*! Ju

invariant under W, while 2u — P(t) (= s) changes sign. Thus,
(5.3d) s? = P(t)? —4Kt9t! (= Ppyy2(t)).
Finally, we have the function required for (1.8a,b):

(5.4) Fy(t,s) = G[(P(t) + s)/2t].

For our specific cases we verify that (5.3d) becomes

(5.5a) b=26: s%=(t3—4t? — 4t +1)% — 523,
(5.5b) b=39: s%=(t3-3t2 -3t+1)% - 52t
(5.5¢) b=50: s%=(t3-2t2 —2t+1)% - 203

The equations (5.5a,b,c), or more precisely, the polynomials P(t), are found by
expanding ¢ and u into Laurent series truncated to width g + 1 in r with pole at 0.
(Here “width” refers to the difference between the highest and lowest exponent.)
Then in (5.3¢), the series for P(t) has a pole of order g + 1, which can be reverted
into an expansion in ¢ (actually a polynomial). This is even easily done by hand.
The polynomial P(t) was found for b = 26 by Fricke [7] and for b = 50 by Birch [4].
(Compare Kenku [11] for b = 39.)

6. Some Special Theta Functions. For the remaining four values of b, the
relation between s and ¢ is found by using three closely related theta functions. We
start with the form

(6.1) F(m,n) = Rm? + Smn+Tn? (R>0,S? —4RT <0).
For —b = S? — 4RT, b = 3 mod 4, we define the series

(6.2a) 0(R,S,T) =) rFmn)  (n,me2Z).

For —b = S? — 4RT, b = 3 mod 8, we define the series

(6.2b) $(R,8,T) = rFmm/2(—1)®  (n,m € Z,m odd).
For —b = (S? — 4RT)/4, b= 1 mod 4, we define the series

(6.2¢) o(R,8,T) =Y rFtmm/A(—1)*  (n,m € Z,m odd).

These functions are interrelated for b = 3 mod 8, e.g.,

(6.3) +0(2R, S,T/2) — 0(2R,2S,2T).
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If we use the symbol ~ to denote 6, ¢, or o, then by Poisson’s summation method,
for each case (see (7] or [18])

(6.4) 1(z) = iVby(=b/2)/z.

This shows the action of Wz = —b/z. A more difficult analysis is required for
U(z) = (Az+ B)/(Cz + D) € T°(b) (B = 0 mod b). We summarize a result in
Fricke [7] (compare [18]): Set

(6.5) p(z) = 1(2)A(2)°,

where e = 0, 1/2, or k/4 according to v = 6, ¢, or o, respectively, with R = k
mod 4 and £ =1 or 3. Then

(66) u(z) = w(U(2))(D/)/(Cz + D)%,

with (D/b) the Legendre symbol. Thus each of the theta functions is a form of
weight 1 with multiplier dependent on U (z).

Fricke’s method (7] is to express ¢t in terms of the theta functions by taking a
ratio of linear or quadratic forms in theta functions (see Sections 8 and 9 below).
One such ratio can be chosen as t. Now for any such quadratic form 7', the function

(6.7) S = (dt/dz)/T

is invariant in T'°(b), while WS = —S. For a well-chosen T, we can choose s as S.
(This is done in Sections 8 and 9 below.)

7. Power Series Approximations. Assume that by methods of Section 6 or
7 we have the Laurent series

(7.1) t=1/r—Cy+0O(r),

(7.2) s=1/r9"t + O(1/r9).

For the computation of the polynomial Ppg2(t), we truncate both of the above
series to width 2g + 2. Then we can express

(7.3) §? =1/r?2 4. = Pygya(t).

Only the terms of nonpositive degree in the expansion of s? are required, as we
can then use (7.1) to revert the series to ¢t. The constant Cj is important for the
equations

(7.4a) Jj(2/b) =1/r + 744 + O(r) =t + Cp + 744 + O(1/1),

(7.4b) J(2) = 1/r° + 744 + O(r®) =t + bCpt* ™ + O(t*72).

Although it is a higher state of the art to use modular forms to calculate F(s,t),
it is possible to find the equations (1.8a,b) directly, by a crude approximation, when
b is prime. Note

(7.5) Ry(t) = [5(2) — 5 (2/b))/s,

a polynomial in ¢ of degree b—g—1 (< b— 1 when g > 0). Therefore, if s and ¢ are
known in r by series truncated to width b g — 1 (see (7.1) and (7.2)), we can then
effectively approximate both j(z) and j(z)—j(2/b) by the same approximation 1/r
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(see (7.4a,b)) and Ry(t) comprises the terms of nonpositive degree of the expansion
in t,

(7.6) 1/(rbs) = Ry(t) + O(1/1).

Finally, to find Ny (¢), we need to find s as a power series in ¢ truncated to width
b (e.g., from (7.3)). Then we approximate

(7.7) Dy(t,s) = Rp(t)s = Lyp(t) + O(1/t)
thus obtaining a polynomial L(t) of degree b. From (7.4a,b),
(7.8) Sp(t) = 7(2) +J(2/b) = Lp(t) + 2(t + 744 + Cp).
Finally, Ny(t) is found from Dy(t, s) and Sp(¢) by
(7.9) Ny(t) = (Sp(t)* — Dy(t,)*) /4.
8. A Short Arithmetic Progression. The primes b = 23,47, 71 satisfy
(8.1) b=24k—1, g=2k (k=1,23)

and can be treated by the method which Fricke (7] developed for b = 23 (see
correction in Section 3 above). We set

(8.2) t =T/To,
where the following cases arise (according to Section 6):
b=23: Ty =6(1,1,6)~1,
To = [0(1,1,6) — 0(2,1,3)]/2 ~ r;
b=47: Ty =1[0(1,1,12) — 6(3,1,4)]/2 ~ r,
Ty = [0(1,1,12) — 6(3,1,4)]/2 ~ r%;
b=71: T, =[0(2,1,9) —0(3,1,6)]/2 ~ 1%,
Ty = [0(3,1,6) — 0(4,3,5)]/2 ~ r3.

Thus, Ty ~ %=1, Ty ~ r*, and t ~ 1/r. Actually, in each case,

(8.3) To = [A(2)A(z/b)] /4.
We define (as in (6.7))

(8.4) s = —r(dt/dr)/TE ~ 1/r9*t1.
Then we compute (and factor as in (4.5))

(8.5) 8% = Pagya(t) = p1(t)p2(t),

obtaining factors each of degree g + 1. (The factors are seen in the radicands in
Table III.) Actually, Fricke found the polynomial Pyg2(t) for these three cases, but
failed to factor it for b = 71 (see [12]).

By generalizing Fricke’s method for b = 23, we write

_ (g1 () + sq2(2))°
88) ) = S s (072 = ra a0
Here, q,(t) and r,(¢t) (z = 1,2) are defined as in (4.4a,b) by

(8.7a) (By+ E2)/Tg = ai(t),  (Ey— E2)/Tg = ga(t)s,
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(8.7b) (VA +VA)/TS =ri(t)\/p1(t), (—VA + VA)/T§ = r2(t)\/p2(t),

(8.8) deggq: =29, degga=g—1, degr; =degry =5g/2—1.

To see the capacity for approximation inherent in (8.7a,b), note that with power
series truncated to width deggq, or degr,, E5 ~ b% and VA’ ~ 0, so we effectively
define g;(t) and r;(¢) by

(89a) (b + E2)/Tg = au(t) +O(1/t), (b — E2)/(Tg's) = q2(t) + O(1/1),

(8.9b) VA/(TgVpi(0)) = ri() +O(1/t),  VA/(T§V/pa(t)) = ra(t) + O(1/1).

The data for (8.6) afe given in Table IV of the appendix, and the computation
of Dy(t,s) and Np(t) proceeds as in Section 7.

9. Cases b = 41 and b = 59. In these cases we do not find Fy(t,s) directly,
but use the cruder approximation methods of Eqgs. (7.5)-(7.9).

The case b = 41 is handled similarly to b = 17 and 29 (see [7]), but there does
not seem to be a way of parametrizing all three cases, as in Section 8. We set

(9.1a) Ty =0(3,2,14)/2 = r¥/4(1 =3 — 4% 4 ...,
(9.1b) To =0(7,2,6)/2=r"4(1—r—r2 +...).
The genus g = 3. We define (see Section 6 above)

(9.2a) t=T/Ty = 1/,

(9.2b) s = —r(dt/dr)/[T3(T) — To)]'/? ~ 1/r4,

so we can obtain the eq.uation (7.3) relating s and ¢. Incidentally,
(9.3) To = [A(2)A(z/41))/%4.

We finally obtain Dy (t, s) by the approximation process of (9.6) and Ny (¢) by (7.9).
For the case b = 59, we define

(9.4a) 0o =0(1,1,15) ~1, 6, =6(3,1,5) ~ 1,
(9.4b) ¢ =¢(1,1,15) ~ 2r'/2 4 = (3,1,5) ~ 2r%/2,
(9.5a) 012 = (07 —02)/4, 022 = (01 — 00)%/4,
(9.5b) 033 = $3/4, 034 = d3a/4, Oas = ¢3/4.
A search for higher-order terms produces the combinations
(9.6a) Ty = (034 — 2022 + 012 — 033 + 044) /4 ~ 14,
(9.6b) To = (—3534 + 2052 + 019 — 033 + 044)/4 ~ 7.
Analogously to (8.3) and (9.3),

(9.7) To = [A(2)A(2/59))/12.

The genus g = 5. We have expansions

(9.8) t=T/Ty~ 1)r,

(9.9 § = —r(dt/dr)/Ty ~ 1/r5,
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and the relation between s and ¢ comes out as
(9.10) 5% = Pia(t) = pa(t)po(t)

(with factors of degree 3 and 9, see (4.5)). We could proceed with the same crude
technique of the last case, but here we can use a power series truncated to smaller
width by following Fricke’s method (7] for the cases b = 11 and 19. In the notation
of (4.4a,b),

(9.11a) (E5/VAT + Es/VA)[\/ps(t) = pas(t),
(9.11b) (E3/VA — E3/VD)[\/po(t) = pas(t),

for polynomials of degrees 28 and 23 as shown. In practical terms, we can calculate
these polynomials as

(9.12a) pag(t) + O(1/t) = 1/(r%¥?ps(t)),
(9.12b) pas(t) + O(1/t) = 1/(r®/2po(1)).

We then have Dsg(t, s) = po3(t)p2s(t)s by (4.1), and we proceed as in Section 7 to
compute Nsg(t).

Curiously, the hardest numerical case was b = 41, which was dismissed by Fricke
as not worth mentioning (“diirften kaum besondere Schwierigkeiten darbieten” [8,
p. 493]). The hardest theta function computation was for b = 59, which Fricke
failed to include in his list.

10. Concluding Remarks. The cases were run on VAX MACSYMA with
individual times ranging from one minute for b = 2 to two hours for b = 49.
Generally, the time increased with the degree, but the cases of genus zero took
much longer to run, given the same degree. Otherwise, the genus is scarcely a
major factor in the running time. Most time-consuming was the factorization of
the rational function Dy(¢, s)/s, made generally slow by the presence of very many
nonlinear factors (often of the same degree). The rest of the calculation took at
most a half-hour in each case.

The author is indebted to the Science Computation Laboratory at City College
(CUNY) and the Mathematics Department of the University of Arizona for making
MACSYMA available, to Jesse Deutsch for help in running the problem, to Martin
Hassner and Victor Miller of IBM and John McKay for challenging discussions, and
to the referees for their tireless labor.

Appendix. The norms Ny (t) and differents Dy(t, s), and data for b = 23,47, 71.
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20

21

23
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TABLE II. Norms

3
= (t + 272)

3
= (t + 54) (t + 246)

2 3
(t + 272 t + 7696) / (t + 32)

2 3
= (t + 260 t + 5380)

303 2 3 5
= (t + 18) (t + 270 t + 8292 t + 67848) / (t + 17)

2 2 3
= (t + 13) (t + 250 t + 3529)

4 3 2 3 3
= (t + 272 t + 9168 t + 109184 t + 439312) / (t + 12)

33 2 3 2
= (t + 12) (t + 252 t + 4320 t + 19200) / (t + 9)

6 5 4 3 2
= (t + 280t + 11640 t + 206240 t + 1854480 t + 8375440 t
3 7

+ 15147280) /(t + 9)

4 3 2 3
= (t + 224t =-192t - 832 t + 1024)

2 3
= (t + 18 t + 78)

2 4 3 2 3
= (t +5) (t + 254t + 5077 t + 34092 t + 75492)

2 3 6 5 4 3 2 3 9
(t - t+1) (t +229t + 494t -743 t + 254t - 11t + 1) /t

3

2 3 6 5 4 2 3 8
(t +4t-1) (t +228t +45¢t +40t -45t =-12 t - 1) /t

8 7 6 5 4 3
(b + 272t + 9776 t + 157248 t + 1410128 t + 7555200 t
2 3 2 5
+ 24131456 t + 42513920 t + 31862800) /((t + 4) (t + 6) )

6 5 4 3 2 3
(t + 236 t + 1662 t + 3092 t + 3001 t + 1080 t + 144)

3 2 3 9 8 7 6
= (t +18t + 102 t + 186) (t + 270 t + 9270 t + 147222 t
5 4 3 2
+ 1359612 t + 7920936 t + 29726220 t + 70093152 t + 94886136 t
3 11 2 3
+ 56441256) ,/ ((t + 5) (t + 9 t + 21) )

2 6 5 4 3 2 3
(t-1) (¢t +222t -1087t -96t + 8128 t - 15168 t + 9216)

12 11 10 9 8 7 6
(t + 224 t - 864 t - 320t + 9280 t - 29616 t + 53296 t
9

5 4 3 2 3 6
- 62976 t + 49920 t - 25600t + 7696 t - 1056 t + 16) /((t - 1) t )

2 2 3 2 3
(t-1) (t +t+1) (t +5¢t+1)
6 5 4

2 3 10
(t +228t -180t -34t +60t -12t + 1) /t

8 7 6 5 4 3 2
(t + 224t -864t =~ 544t + 9664 t - 26112 t + 36288 t
.3
- 27648 t + 9216)
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TABLE II (continued)

4 2 3 12 11 10 9
=(t -10t + 12t - 2) (t + 216t - 2622 t  + 13860 t
6

8 4 3

- 42906 t + 86976 t - 121408 t + 118368 t - 79236 t + 34560 t
2 11 7

- 8808 t + 1008 t - 8) /((t - 2) (t-1) t)

10 9 8 7 6 5
(t + 260 t + 6880 t + 81000 t + 542950 t + 2275760 t
4 3

3
+ 6181300 t + 10877400 t + 11958625 t + 7455500 t + 2009380)
/(t + 5t + 5)

7

2 3 12 11 10 9 8
(t -t+1) (t + 231 t + 503 t - 1236 t + 3149 t - 5859 t
6 5 4 3 2 3 15
+ 6566 t - 5619 t + 3389t -1236t + 263t -9t + 1) /t

3 2 3 9 8 7 6 5
=(t +9 t + 18 t + 12) (t + 243 t + 2889 t + 15993 t + 52650 t

4
+ 112104 t + 157896 t + 143856 t + 77760 t + 19200) /(t +3t+3)

10 9 8 7 6 5
= (t + 238 t + 1907 t + 4072 t + 3365 t - 1730 t
3

4
3707 t
2 3
=744 t + 459 t + 270 t + 225)

2 10 8 7 6 5
= (t - 3) (t + 218 t - 2199 t + 6432 t + 6656 t - 87648 t
4
+ 244416 t - 358912 t + 304576 t - 138240 t + 25600)

16 15 14 13 12 11
= (t + 224 t - 1088 t + 960 t + 11264 t - 63616 t
9

10 8 7 6 5
+ 194304 t - 416000 t + 671728 t - 835840 t + 800256 t - 578048 t
4 2

3 3 9 2 3
+ 303104 t - 107520 t + 22528 t - 2048 t + 16) /(t (t - 2 t + 2) )

N

11 10 9 8 7
- 446394 t + 797616 t - 1164096 t + 1399232 t - 1387152 t + 1129536 t
5 2 3

35

36

4 3 2 3 12 11 10 9
=(t +t +2t -t+1) (t + 235 t + 1201 t + 10t + 1175 t
7 6 5 4 3 2 3 12
-5t -5t -235t -25t -10t +t +5¢t+1) /t

6 3 2 3
(t -12t +26t -24t + 12 t - 2)
18 17 16 15 14 13
(t + 216 t - 2844 t + 17574 t - 69624 t + 200340 t
12

- 747972 t + 395712 t - 162288 t + 48936 t - 9792 t + 1008 t - 8)
5

13 10 2

/((t - 2) (t - 1) t (t -t +1))

N

N

39

41

N

47

2 2 3 4 3 2 3
=(t+1) (t -t+1) (t +4t -7t +4¢t+1)
12 11 10 9 8 7 6 5
(t +231t +282t +25t =-504t -165t + 560t + 75 t
4 3 2 3 16
-264t +25t +42t -9t + 1) /t

12

8

14 11 10 9 8
= (t + 234 t + 963 t - 1896 t - 2659 t - 1006 t + 9101 t
7 5

6 4 3 2 3
+ 3040 t - 7733 t - 2926 t + 2361 t - 672 t - 184 t + 1120 t + 400)

16 15 14 13 12 11
= (t + 232 t + 508 t - 1032 t + 7814 t - 17480 t
8

10 9 7 6 5
+ 43644 t - 76312 t + 120769 t - 152864 t + 163968 t - 143584 t
4 2

3 3
+ 102656 t - 57984 t + 25024 t - 7168 t + 1024)
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TABLE II (continued)

2 4 3 2 3 14 13
N = (t-1) (t -9t +29t -42t + 28) (t + 203 t
49 12 11 10 9 8
- 5383 t + 57708 t - 324114 t + 895426 t + 99029 t
7 6

4 3
- 10411025 t + 41837957 t - 91924154 t + 128029272 t - 115466904 t
2 3
+ 65301712 t - 21026880 t + 2937600) /(t -7 t + 14 t - 7)
30 29 28 27 26 25 24
N = (t +230t +45t - 1820t + 9470 t - 33624 t  + 94480 t
50 23 22 21 20 19
- 222580 t + 456305 t - 827530 t + 1346255 t - 1985080 t
18 17 16 15 14
+ 2668655 t - 3285730 t + 3718805 t - 3875380 t + 3718805 t
13 12 11 10 9
- 3285730 t + 2668655 t - 1985080 t + 1346255 t - 827530 t
8 7 6 5 4 3 2
+ 456305 t - 222580 t + 94480 t - 33864 t + 9710 t - 2060 t + 285 t
3 27 4 3 2 3
—10t+1) /(t (t -t +t -t +1))
20 19 18 17 16
N = (t  + 248 t + 4104 t + 30020 t + 134312 t + 421040 t
59 14 13 12 11
+ 999366 t  + 1890200 t o+ 2944888 t  + 3861732 t  + 4327848 t
9 6 5
+ 4183680 t + 3501793 t + 2541584 t + 1594800 t + 856640 t + 388832 t
2
+ 144896 t + 42432 t + 8960 t + 1024)
24 23 22 21 20 19
N = (t + 248 t + 4100 t + 29024 t + 116922 t + 288776 t
71 18 17 16 15 14 13
+ 411408 t +173048 t - 530397 t - 1123432 t - 762560 t + 443672 t
12 11 10 8 7
+ 1218682 t + 707872 t - 327500 t - 650312 t - 217407 t + 156688 t
6 5 2

4
+ 143088 t + 18976 t - 21600 t - 13952 t - 3136 t + 1792 t + 1024)

TABLE III. Differents

2 2 172
D = (t +47)(t - 128 )
2
2 2 1/2
D = (t - 10) (t + 46) (t - 54 )
3
2 1/2
D = (t + 16) (t + 31) (t + 17 t = 479) ((t - 32)/(t + 32))
4
2 1/2
D = (t - 14) (t + 4) (t + 18) (t + 22) (¢t - 500)
5
2 1/2 2 2
D = (t+ 16) (t - 128) (t +16 t - 16) (t + 27 t + 171) s
6 3 2
(t + 22t =125t - 3571)/(t + 17)
2 1/2 2
D = (t - 11) (t + 5) (t + 11) (t + 13) (t - 196) (t + 10 t - 47)
7
2 /2 3
D = (t =-4) (t+8) (t+ 11) (£ - 128) (t + 15 t - 78 t - 1369)
8
(t + 26 t + 197 t + 347)/(t + 12)
2 2 2
D = t(t+8)(t+ 10)(t -80)(t + 4t - 46)(t + 14 t + 44)
9 2 1/2
(t - 108) / (t + 9)
2 1/2 2 2
D = (t +8) (t - 80) (t +4t - 44)(t + 12 t + 28)(t + 15 t + 55)
10 3 2 4 3

(t +17t +64t-73) (t +19t + 29 t - 1175 t - 5633)/(t + 9)
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TABLE

111 (continued)

2
D = (t - 16) (t - 7) (£t -4) (£ -2) (t-1) (t - 14 t + 4)
11 2 3 2 1/2
(t - 12t +16) (t (t -20t + 56t - 44))
2 1/2 2 3 2
D = (t - 48) (t+6) (t +8¢t+8) (¢t +10t - 12 t - 232)
12 4 3 2
(t + 19 t + 116 t o+ 223) (t +21t + 132t + 126 t - 783)
5 4 4 3
(t +24t + 153 t - 429 t - 7573 t - 20329)/((t + 7) (t + 8) )
2 1 2
013 = (t - 3)(t + 2)(t + 4)(t + 5;(t +6)(t +7) (£t - 52) (t - 27)
2
(t -t -138) (t +6¢t - 3)
2 2 2
D = (t-1) (t -11t + 1) (t - 7t+1) (t -3¢t +1)
14 3 2 3 2
(t -5t +2t-1) (t - 12 t -2 t +3 t + 1)
5 4 3 2 1/2 7
(t —-10t +9t -4t -1) (t - 14 t + 19 t -14t+1) /t
2 2 2
D = (t-1) (t+1) (t -8t-1) (t -4t-1) (t -2t - 1)
15 3 2 3 2
(t - 11t +3t-1) (¢ -7t +5¢t-1)
4 3 2 2 2 1/2 5
(t -8t -16t -4t-1)((t +t-1)(t -11t-1)) /t
2 1/2 2 2 2
D = (t+2) (t +5) (t - 32) (t -20) (t +4t-28) (t +9t+ 19)
16 4 3 3 2
(t +11t -316t -815) (t + 13 t + 35t - 119 t - 461)
4 3 2 4
(t +16t + 86t + 163 t + 43)/((t + 4) (t + 6) )
2 2
D =(t-9) (t-4) (t-1) t (t+1) (t+2) (t -8t -2) (t -4t -09)
17 2 3 2 4 2 1/2
(t -2t-1) (¢t -6t -7t-4) (t -6t =-27t =-28¢t - 16)
2 1/2 2 3 2
D = (t+4) (£ - 24) (t +6t+ 6) (t + 12 t o+ 47 t + 59)
18 4 3
(t + 10t + 10 t - 99 t - 369)

4

3 2

- 160 t - 424) (t + 12 t + 30 t
5

2
(t + 12 t + 40 t -8t - 164) (t + 19 t + 135 t + 420 t + 451 t - 121)
7 4 3

(t + 24 t + 209 t + 589 t - 2347 t - 21676 t - 58736 t - 57031)
2
/((t + 5) (t +9t + 21) )
2 2
D =(t-9) (t-4) (t-3) (t-2) (¢t -1) (¢t -12 t + 16) (t - 10 t + 1)
19 2 2 2 2
(t -9 t+9) (£t -9t+16) (t -6t +4) (t -3t + 1)
3 2 1/2
(t (t - 16t + 64 t - 76))
2 3 2 3 2
D = (t-2)(t -8t+8) (t -10t +12t-4) (t -6t +8t - 4)
20 3 2 4 3 2
(t -4t +3t-1)(t -7t +8¢t -2t+1)
5 4 3 2 7 6 5 4 3
(t - 11t +17t -2t -5¢t-1) (¢t -11t +29t -37¢t + 23t
2 4 3 2 1/2 5 5
-5t -1) (t -12t +28t -32t+16) /((t-1) t)
2 2 2
D = (t-1) (t+1) (¢ -7 t+1) (t -4t +1) (£ -3t+1)
21 2 2 2 3 2
(t -t -1) (t +t - 1) (t -8t ~-1) (t°-4t -4t -1)
4 2 3 2
(t -8 t +3t + 2t + 1) (t -5t -6t +3¢t-1)
4 3 1/2 7
(t -6t =-17 t -6t + 1) /t
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TABLE III (continued)

2
D =(t-86) (t-4) (t-3) (t-2) (E-1) t (t - 10 t + 12)
23 2 3 2 3 2
(t . 8 t " 2) (t )" 10t +20t -16) (t - 10t + 24 t - 18)
(t -8t + 18t - 16 t + 4)
2 1/2
((t - 11 t +22 t - 19) (t -3t +2¢t+1))
2 2
D = (t -6t+4) (t -4t+2) (t -3 t+ 1)
24 4 3 2 172 4
(t - 12t +32t =-24¢t + 4) (¢ - 10 t + 24 t - 20t + 4)
3 2 5 4 3 2
(t -10t +16t-8) (t -8t +20t -19t +6¢t - 1)
6 5 4 3 2
(t - 12t +39t -45¢t +12t +3 ¢t + 1)
7 6 5 4 3 2
(t - 12t +48t -84t +67t -24t +4t-1)
8 7 6 5 4 3 2
(t -15t +71t -150t + 147t -50t =-11t + 5t + 1) /
3 8 6
((t-2) (t-1) t)
2 2 2
D = (t+1) (t+2) (t+3) (t+4) (t -13) (t =5) (t - 2)
25 2 2 2 2
(t -3t-6) (t +3t=-2)(t +4¢t+1) (t +6¢t+7)
4 3 2 4 3 2
(bt +4t -12t -68t-71) (t +6t -2t - 54t - 59)
2 1/2 2
(t -20) / (t +5¢t+5)
2 2 2 3 2
D =(t-1)(t -7 t+1) (t -6t+1) (t =3 t+1)(t -2t +t-1)
26 4 3 2 4 3 2
(t -5t +4t -5¢t+ 1) (t -4t +2t -t +1)
5 4 3 2 4 2
(t -7t -t +t =2 t - 1) (t - 5 t -3t -t -1)
8 7 6 2
(t -8t +12t -13 t +8 t Jt t -2t -t + 1)
6 5 4 3 1/2 13
(t -8t +8¢t -18t + 8 t -8 t+1) st
2 2 3
D = t (t+1) (E+2) (t -6) (¢t -3t-6) (t -7t - 10)
27 3 2 3 2 3 2
(t -2t -12t-16) (¢t -t -8t - 11) (t +t -2t - 4)
3 2 3 2 6 4 3 2
(E +2t -2) (t +5t +8¢t+5) (t +4 t -11t -92¢t =214t
3 2 1/2 2 3
- 224 £t -92) ((t+3) (t =3t -9¢t=-09)) /(t +3¢t+3)
2 2
D = (t-3) (t-1)t (t+1) (t+2) (t -6t+2) (t -5t -5)
29 2 2 2 2 2
(£ -5t+3) (t =3t-9) (t -t=-3)(t -t=-1) (t +t-1)
3 2 4 3 2
(t -4t -6t-5)(t -2t -5t =-4¢t-1)
6 5 4 3 2 1/2
(t -4t -12t +2¢t +8¢t +8¢t-7)
2 2
D = (t-4) (£ =-3) (t-2) (¢t -1) t (t =10t + 20) (¢t -9 t + 10)
31 2 2 2 2
(t - 7t+4) (£t -7t+11) (t -6t +1) (t -6t + 4)
2 2 3 2 4 3
(t —4t+2) (t -3t+1) (¢ -12t + 42t -46) (t - 12 t
2 3 2 3 2 1/2
+38t -32t-4) ((t -9t +10t-3)(t -5t +6¢t+1))
2 2
D =(t-2) (t-1) (t -6t+2) (t -4t +2)
32 3 2 3 2
(t -8t +12t-8) (¢t -6t * 8 t - 8)
5 4 3 2 4 3 2
(t -8t +11t -6 t -6t -1) (t -7t +11t -8t -t -1)
5 4 3 4 3 2
(t -6t +10t -9 t + 2 t - 1) (t -5t +9.t -9t +4¢t-1)
10 9 8 5 4 3 2
(t -11t +43t - 99 t + 145 t - 138t +77t -17t -3t +1)
4 3 2 12 8 2 2
(t -8t +12t -16¢t +4) /(t (t -2t +2))
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TABLE III (continued)

2 2 2
D =(t-1) (t+1) (¢t -4t=-1) (t -3t-1) (¢t -t -1)
35 3 2 3 2 3 2
(t -6t +4t-1) (t -5t +2¢t - 1) (t -3t +t-1)
3 2 3 2 4 3
(t -2t =-1) (t +t +1) (¢t -3t -10 t -5 t - 1)
5 4 3 2 6
(t -4t -3t -7t -2t=-1)(t -3 t -3 t - t +3t-1)
2 6 5 3 1/2 1
((t +t-1) (t -5t -9t -5¢t-=-1)) /t
3 2 3 2 3 2
D = (t -6t +6t-2)(t -4t +4t-2)(t -3¢t +2¢t-1)
36 4 3 4 3 2
(t -8t +16t -16t+8) (t -6t +10t -8+t + 4)
4 3 2 6 5 4 3 2
(t -5t +6t -2t + 1) (t -10t +30t - 44t + 40t - 20 t + 4)
6 4 8 7 4

5 5
(t -9t +21t-16t +3t+1)(t-9t +29t-48t + 48 t
3 10 6

- 29 t +11t
4 3

+ 40t + 4t
5

-3t + 1) (t
2

-9t +2t+1) (t

4 3 2

7 5
-12t +50t-107t +137t-106t
10

9
-llt +44t -92t +120t

-106t +62t -23t +6t -t + 1) (t -8 t + 12 t -8t + 4)
9 9 2 4
J((E=-2) (t-1) t (£ =-t+1))
2 2 2 2
D =(t=-1) (t+1) (t -5t+1) (t -3t+1) (t-t-1) (t+t-1)
39 3 3 2 3 2
(t -t+1) (t -4t +2¢t=-1) (£ - z t -3¢t -1)
3 4 3
(t -4t -5t -2t -1) (t -2 t -7 t -2t +1)
4 3 2 2
(t -2t -t +2 t -1)- (t -5 t + 3 t + t -t - 1)
6 5 4 6 4 3
(t -5t +2t + t -4 t +t - 1) (t -4 t -6t +6t -1)
4 3 2 1/2 13
((t -7t +11 t -7t + 1) (t + t -t +t+ 1)) /t
2 2 2
D =(t-5) (t=-2) (t-1)t (t+1) (t-2) (t-5t+5) (t-3¢t-7)
41 2 2 2 2 3 2
(t-2t-4) (E-2t-1) (t -t -1) (t+t-1) (t- 3 t -5t -2)
3 2 4 2 4 2
(t -2t -2t=-1) (t -6 t +5 t + 2 t -1) (& - 5 t +t o+ 4)
4 3 8 7 3 1/2
(t -4t+2) (t -4t-38 t + 10 t + 20 t +8t-15 t - 20t - 8)
2 2
D = (t-4) (t-2) (t-1)t (t+1) (t -5t+2) (t -2t-1)
47 3 3 3 2 3 2
(t +t+1) (t -5t+5t-7)(t -4t+3¢t-4)(t -4t+3t
3 2 3 2 4 3 2
-1) (t -3t +2t-4)(t -2t +2t-2) (t -4 t -2t -4)
5 4 3 2 6 5 2
(t -5t +5¢t -11t+6t-4) (t -4 t + 2 t -4 t -t +4t-2)
5 4 3 2 1/2
((t -5t +5t -15t + 6t - 11) (t - t + t + t -2t + 1))
2 2
D = (t-4) (t-3) (£E=-2) (t-1) (¢t -9t +16) (t -7t +7)
49 2 2 2 2 2
(t -7t+11) (¢t -6t+4) (t -5t+3) (t -5t +5) (t
2 2 4 3 2
-4 t+1) (t -4t+2)(t -3t+1)(t -14t +66¢t - 119 t + 58)
4 3 2 4 3 2
(t -14t +67t -126t + 71) (t - 13t +53t = 78 t + 36)
4 3 2 4 3 2
(t - 12t +44t -60t+25) (t -12t + 47 t - 66 t + 22)
4 3 2 4 3 2
(t - 12t +50t -84t +46) (t -10t + 26t - 20t + 4)
4 3 2 1/2 3 2
(t -14t +63t -98¢t+21) /(t -7t +14¢t=-7)
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TABLE III (continued)
2 3 2 4 3 2
D =(t-1) (t -3t+1)(t -t -1) (t -6t +9¢t -6t+1)
4 372 4 3 4 3 2
(t -4t -t-4t+1)(t -3t-3t+1) (£t -2t+t=-2t+1)
5 4 3 2 6 5
(t -3t +2t -t +t-1) (t -4t +¢t+1)
7

6 5 4 2 8 7 6 5 4
(t -3t -t -3t -t -t-1)(t -5t +7¢t -12t + 14t
3 2 9 8 7 6 3

-12t +7t -5t+1) (t -5t +3t -3t -3t -t-1)

10 9 8 7 6 5 4 3 2
(£ -4t +5t -8t +9t -7t +5¢t -4t +2¢t -t +1)

13 12 11 10 9 8 7 6 5 4
(¢t -6t +10t =-16t +22t -19t +11t -5t -t +5¢t

3 6 5 3 1/2
-4t +2t-1)(t -4t -10t -4t +1)
25 4 3 2

3
J(t (t -t +t -t+1))

2 2 2
D =(t-1)t (t+1) (£+2) (t -2t-4) (t -t-7) (£t -t - 4)
59 2 2 3 3 2 3 2
(t -t-1) (¢ +t-1) (t-t-1) (-3¢t +t-2) (t-2¢t-2)
3 2 4 2 4 3 2
(t +2t +t+1) (t -3t -2) (t -t -5¢t -3¢t -1)
4 3 2 4 3 2
(t +t -3t -6t-4)(t +3t +3¢t +3¢t+1)
5 4 3 2 6 5 4 3 2
(t -t -4t -7t -3t-2)(t +t -5t-10t -10t -4t - 4)
3 2 9 8 7 6 5 4 3
((t +2t +1) (¢t +2¢t -4t -21t -44t -60t -61t

2 1/2
-46t -24t-11))
2 2 2
D =(t-2) (t-1)t (t+1) (t+2) (£t -2) (¢t -3t+1) (¢t -t -1)
71 2 3 2 3 2 3 2
(t +t-1) (¢t -2t -2t-2) (t -t -5t-4) (t +t-t-2)
4 2 4 2 4 3 2
(t -5t -10t-5) (¢t -4t -5t-1) (¢t -2t -5t +6t-1)
4 3 2 4 3 2 4 3
(t -t -5t -2t+4)(t -t -3t -2t+4) (t +2t -t -1)
4 3 2 6 5 4 3 2
(t +2t -3t -10t-7) (t +t -2t -5t -2t +t+ 1)
8 7 6 5 4 3 2
(t +2t -5t -18t -15t + 8¢t + 14 t - 4)
7 5 4 3 2
((t -7t -11t +5¢t + 18t + 4t - 11)
7 6 5 4 3 2 1/2
(t +4t +5¢t +t -3t -2t +1))
TABLE IV. Data for b = 23,47,71
b = 23
4 3 2
r = t - 21t + 148 t - 380 t + 212
1
4 3 2
r = t -17t + 90t - 142 t - 14
2
4 3 2
q = 530 t - 4000 t + 5440 t - 9120 t + 2880
1
q = 528 t - 768
2
2 6 5 4 3 2
s = t -14t +57t -106t +90t -16 t - 19
3 2
P = t -3¢t +2¢t+1
1
3 2
p = t -11t + 22t - 19
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TABLE IV (continued)
b = 47
9 8 7 6 5 4 3
r =t -17t + 112t - 355t + 546 t - 388 t + 149 t
1 2
+292t - 740 t + 36
9 8 7 6 5 4 3
r =t -15¢ + 84t -207t + 172t + 120t - 283 t
2 2
+ 266t - 66t - 194
8 7 6 5 4
g = 2210t - 8600 t + 14700 t - 23160 t : 17570 t
1
- 12000 £ 4 960 £ + 2720 t - 1600
3 2
q = 2208 t - 2448 t + 2256 t - 768
2
2 10 9 8 7 6 5 4
s =t -6t +11t -24t +19t -16t - 13 t
3 2
+30t -38¢t +28¢t - 11
5 4 3 2
p = t -t +t +t -2t+1
1
5 4 3 2
p = t -5t +5t -15t + 6t - 11
2
b =71
14 13 12 11 10 9 8 7 6
r =t -6t -5t +76t -8t -408t + 2t + 1231 t + 484 t
1
5 4 3 2
- 2049 t - 1575 t + 1185 t + 1570 t + 500 t - 310
14 13 12 11 10 9 8 7
r =t -8t +7t +82¢t -132t -414t + 610t + 1533 t
2
6 5 4 3 2
- 1366 t - 3829 t + 1313 t + 5207 t + 338 t - 3100 t - 612

12 11 10 9 8 7
q = 5042 t + 20408 t + 13204 t - 64592 t - 136154 t - 47104 t
1

6 5 4 3 2
+ 123316 t + 130168 t - 4814 t - 60784 t - 20240 t + 8224 t + 4256

5 4 3 2
q = 5040 t + 9840 t + 2400 t - 6480 t - 3120 t + 480

p = t

12 11 10 9 8 7 6
2 t - 38 t - 77 t - 26t + 111 t + 148 t + t

5 4 3 2
-122t -70t +30t +40t +4t-11
5 4 3 2
-7t -11t +5t +18t + 4t - 11

7 6 5 4 3 2
t +4t +5t +t -3t -2t +1
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