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On A4 + B4 + C4 =D4 

By Noam D. Elkies 

Abstract. We use elliptic curves to find infinitely many solutions to A4 + B4 +C4 = D4 
in coprime natural numbers A, B, C, and D, starting with 

26824404 + 153656394 + 187967604 = 206156734. 

We thus disprove the n = 4 case of Euler's conjectured generalization of Fermat's 
Last Theorem. We further show that the corresponding rational points (?A/D, ?B/D, 
?C/D) on the surface r4 + s4 + t4 = 1 are dense in the real locus. We also discuss the 
smallest solution, found subsequently by Roger Frye. 

1. Introduction. Euler conjectured in 1769 that the Diophantine equation 
A4 + B4 + C4 = D4, or more generally 

AN + AN + + AN-1 = AN (N ) 4), 

has no solution in positive integers. (See [4, pp. 648ff.] for the early history of 
this and related problems, and [5, Problem D1] for more recent research.) Nearly 
two centuries later, a computer search [7] found the first and hitherto only known 
counterexample to the general conjecture, 

275 + 845 + 1105 + 1335 = 1445 

but direct computer searches found no counterexample for N = 4, even though this 
first case of the conjecture could not be proved. 

In this paper we disprove this conjecture, exhibiting several counterexamples and 
giving a recursive construction of infinitely many solutions for A4 + B4 + C4 = D4 

in relatively prime natural numbers A, B, C, D. Since that Diophantine equation 
is homogeneous, solving it is equivalent to finding a point 

(r, s, t) = 
B 

D 

on the surface r4 + s4 + t4 = 1 with rational coordinates r, s, t. In Section 2, we 
start with an analysis of a parametrization of the simpler equation r4 + s4 + t2 = 1 
as a pencil of conics. This yields a parametrization of r4 + 84 + t4 = 1 as a pencil 
of curves of genus one. We consider this parametrization in Section 3, and find 
the simplest curve in the pencil which could possibly have a rational point that 
would disprove Euler's conjecture. It happens that there is such a rational point 
of sufficiently small height to have been found by a direct computer search; this 
produced our first solution 

26824404 + 153656394 + 187967604 = 206156734. 
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(This solution was beyond the range of earlier exhaustive searches. We could only 
find it by restricting the variables to lie on an appropriate curve. The transforma- 
tion from the natural coordinates on that curve to the values of r, s, t required 
rational functions sufficiently complicated (see (6) below) to get from the 2- and 
3-digit numerator and denominator of the X-coordinate on that curve to our solu- 
tion's 7- and 8-digit numbers.) We then show, in Section 4, how to use the theory 
of elliptic curves to recursively generate arbitrarily many other solutions from our 
first one. Throughout this paper we shall assume and use basic definitions and facts 
about elliptic curves, for which a good reference is [9]. 

The author gratefully acknowledges the support of Harvard University's Society 
of Fellows and the Communications Research Division of the Institute for Defense 
Analyses for the research reported in this paper. The numerical and symbolic 
computations needed for this research were greatly facilitated by the computer 
program MACSYMA. 

2. The Surface r4 + s4 + t2 = 1. In [3, p. 135] Demjanenko expresses the 
surface 

(1) r4 +s4 +t2 = 1 

as a pencil of conics parametrized by u: 

(2a) r = x+y, s = x-y; 

(2b) (U2 + 2)y2 = -(3U2 - 8u + 6)x2 - 2(u2 - 2)x - 2u, 

(2c) (U2 + 2)t = 4(U2 - 2)x2 + 8ux + (2 - u2). 

[We also have the conic y2 = -2x - 3x2, t = 4x2 _ 1 corresponding to the limit 
u -* ox; this special case is equivalent to a parametrization given by Escott in 
the late 19th century (see [4, p. 658]) we shall say more about this, and the 
similar parametrization with u = 0, in Section 3. The parametrization (2) has been 
independently rediscovered at least three times, by Andrew Bremner, Don Zagier 
and the present author. Bremner wrote (1) as 

2(1 + r2)(1 + 82) = (1 + r2 + s2)2 + t2 

and factored both sides over Q(VZT) [1]. Zagier, generalizing from several special 
cases of (2) communicated to him by de Vogelaere, observed that Escott's parame- 
trization is equivalent to the identity 1-- s4 = Po- 2QoRo with 

PO = 4X2-1, Qo=y+3x2+2x, Ro=y+3x2 -2x 

(x,y given by (2a)), and, applying to this identity the automorphism group (iso- 
morphic to PSL2(Q)) of the ternary quadratic form p2 - 2QR, obtained infinitely 
many representations of 1 - r-4 as p2 - 2QR, and so infinitely many conics 
Q = 0 on which 1 - r4- 4 is a perfect square ([10], which also finds the conditions 
of Lemmas 1 and 2 below). The present author looked directly for an ellipse in the 
rs-plane tangent to the Fermat quartic r4 + 84 = 1 at four points.] 
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Solving (2b) for u, we find 

-1 +4x2 1 (2x4+12x2y2+2y4j 
U 3x2 + y2 + 2x 

-1 + (r +s)2+ -r4-s4 

r2 + rs + S2 + r + s 
-1 +(r+8)2? it 

r2 + rs + S2 + r + s' 

and (2c) then selects the plus sign. Thus every rational solution of (1) lies on 
the conic (2) for some rational or infinite value of u. Furthermore, the involution 
u t-4 2/u merely replaces (r, s, t, x, y) by (-s, -r, -t, -x, y) in the parametrization 
(2). Thus we may take u of the form 2m/n with m and n relatively prime integers, 
m > 0 and n odd, because otherwise 2/u is of that form and the two corresponding 
conics (2) are essentially the same. 

We may now write (2b,c) in the form 

(3b) (2m2 + n2)y2 = -(6m2 - 8mn + 3n2)x2 - 2(2m2 - n2)X - 2mn, 

(3c) (2m2 + n2)t = 4(2m2 - n2)x2 + 8mnx + (n2 - 2m2). 

If rational numbers x and y satisfy (3b) then we may recover t from (3c) and r, s 
from (2a) and thus find a rational solution to (1); so we need only consider the conic 
(3b). It will be convenient to define the functions S(k), R(k) of a nonzero integer k 
by S(k) = the largest positive integer whose square divides k and R(k) =kS2(k); 
for instance, for k = +23, +24, ?25 we have S(k) = 1, 2, 5 and R(k) = +23, +6, ?1. 
Then we have 

LEMMA 1. The conic (3b) has infinitely many rational points (x, y) if 

R(2m2 + n2), R(2m2 - 4mn + n2) 

are both products of primes congruent to 1 mod 8, and none otherwise. 

Remarks. i) In particular, 2m2 - 4mn + n2 must be positive, that is, u2 -4u + 
2 > 0 sO ju - 21 > v'-, else even the real locus of (3b) and a fortiori also the 
rational locus is empty. This is an example of a "local condition at infinity"; 
the congruence condition on the prime factors of 2m2 + n2 and 2m2 - 4mn + n2 
comes from local conditions at these finite primes. Since the curve (3b) has genus 
zero, these necessary local conditions for the existence of a rational point are also 
sufficient ("Hasse principle"). Compare this with the situation for curves of genus 
one to be encountered in the next Section. 

ii) By Quadratic Reciprocity, the prime factors of R(2m2 + n2) are already all 
congruent to 1 or 3 mod 8, and those of R(2m2 -4mn + n2) to +1 mod 8, so the 
1 mod 8 condition is not as stringent as it may first appear. 

Proof. First reduce (3b) to the standard form 

(4) X2 + ay2 + bZ2 = 0 
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with a and b squarefree integers, by "completing the square": 

[2mn + (2m2 -n2)X]2 

= 2mn[2mn + 2(2m2 - a2)x + (6m2 - 8mn + 3n2)x2] 

+ (4m4 - 12m3n + 12m2n2 - 6mna3 + n4)X2 

= -2ma(2m2 + n2)y2 + (2m2 - 2mn + a2)(2m2 - 4mn + n2)x2, 

and taking X = 2mn+(2m2 -n2)x, Y = ay, Z = 3x, where a = S (2mn(2m2+n2)) 
and 3 - S((2m2 - 2mn + n2)(2m2 - 4mn + n2)); then a = R(2mn(2m2 + n2)) and 
b = R((2m2 - 2mn + n2)(2m2 - 4mn + n2)) in (4). Note that from a nontrivial 
rational solution to (4) we may recover a rational solution to (3b) by multiplying 
X, Y, and Z by a constant factor to make X = 2mn + (2m2 - n2)x and Z = Ox 
consistent. 

But it is known that, in general, an equation (4) has a rational solution -indeed, 
infinitely many rational solutions if and only if at least one of a and b is negative 
and -a and -b are congruent to squares modulo b and a respectively (see [6, pp. 
272-275] for an effective algorithmic proof). Since n is odd and m, n are relatively 
prime, we easily show that m, n, 2mi2+n2, 2m2-2mn+na2, and 2mi2-4mn+n 2 are 
relatively prime in pairs, and thus that we need only ask that -2mn(2mi2 + n2) be 
a square modulo each prime dividing R(2mi2-2mn + a2) and R(2M2 - 4mn + nr2), 

and that (2mi2 - 2mn + n2)(2m2 - 4mn + n2) be a square modulo each prime 
dividing R(m), R(n) and R(2m2 + a2). Three of these five conditions always hold: 
(2M2 -2mn + 2)(2m2 - 4mn + n2) is congruent modulo m and n to the squares 
n4, 4mi4 respectively, and 

-2mn(2mi2 + n2) _ (2m2 -- n2)2 mod 2M2 - 2mn + n2 

The remaining two conditions yield the lemma's constraints, for 

(2m2 - 2mn + na2)(2m2 - 4mn + a2) = 2(2ma)2 mod 2M2 + n2, 

so each prime factor of R(2m2 + n2) must have not only -2 but also +2 as a 
quadratic residue; likewise 

-2mn(2m2 + n2) - -2(2mn)2 mod 2m2 - 4mn + n2 2(m - n)2 - n2, 

so each prime factor of R(2m2 - 4mn+n 2) must have both -2 and +2 as quadratic 
residues; thus all these primes must be congruent to 1 mod 8. 'Note that, since n 
is odd, so are 2i2 + n2 and 2m2 - 4mn + n2, whence 2 cannot occur as a prime 
factor.) Finally, if R(2m2 -4mn+n 2) = -b is a product of positive primes then b 
is negative in (4), so we are done. oI 

For instance, we may take u = 4, when (in) = (2,1) satisfies the hypotheses 
of Lemma 1; then (3b) becomes 9y2 - -1kX2 - 14x - 4, for which we find by 
inspection the rational solution (x, y) = (- , 6) and recover from (2) the solution 

(:,St) = (3,2, ) to (1). Furthermore, projecting from the known point (x, y) = 

(- 2, 6) we find the parametrization 

( k2+2k+17 k2+6k- 11' 
(2k2+2 22 6k2 +66 / 
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of the conic 9y2 = -11X2 -14x - 4 (this is the other point on the intersection of 
the conic with the line of slope k/3 through (- ', 6) ), from which we recover a 
parametric solution 

= 2k2?+6k+20 k2 + 31 4(2k4-3k3 + 28k2 75k + 80)\ 
,r, s, _ 3k2 + 33 '3k2 + 33' (3k2 + 33)2 

j 

to (1). In general, whenever u satisfies the hypotheses of Lemma 1 we will find a 
similar parametric solution of (1) with r and s of degree 2 and t of degree 4 with 
square denominator. 

3. The Surface r4 + s4 + t4 = 1. To find a rational solution (r, s, t) of 

(5) r4 +s4 +t4 = 1 

we must solve (1) with the additional restriction that ?t be a square. Reasoning 
as before, we see that such a solution must necessarily have 

(6a) r=x+y, s=x-y; 

(6b) (2M2 + n 2)y2 =-(6m2 - 8mn + 3n2)X2 - 2(2m2 - n2)x - 2mn, 

(6c) ?(2m2 + n2)t2 = 4(2m2 - n2)x2 + 8mnx + (n2 - 2m2) 

for some relatively prime integers m, n with n odd. For example, take (m, n) = 

(0,1) to get y2 = -3x2 + 2x, ?t2 = 1 - 4x2. The first conic has the obvious point 
(x, y) = (0, 0), from which we find the parametrization 

2 
k2?3 i y=kx, 

so 
= -1 - 4x2 - k4 + 6k2 - 7 

?t =1- 4x - (k2 +3)2 

or, with the new variable z = (k2 + 3)t, 

?Z2 = k4 + 6k2 - 7. 

These are two curves of genus one with rational points (k, z) = (1,0) and are 
thus elliptic curves. To bring them into Weierstrass form, perform the change of 
coordinates k = 1 - 4/(1 p X), z = 8Y/(1 T X)2 to obtain the elliptic curves 

y2 = X3 + XpTF2. 

These curves are listed as #112A and #56C in [2, pp. 96 and 87], where we find 
that they have only two and four rational points respectively: the point at infinity, 
the 2-torsion point (X,Y) = (?1,0), and (for the curve y2 = X3 + X + 2) the 
4-torsion points (X, Y) = (1, ?2). These correspond to the trivial solutions of (5) 
which are permutations of (?1, 0, 0). 

To find nontrivial solutions we must choose different m and n. We then obtain 
other curves of genus one (the values of u for which that curve degenerates to 
genus zero are not rational); these curves will necessarily be principal homogeneous 
spaces for some elliptic curves, but need not be globally trivial homogeneous spaces 
like the two we obtained for (m, n) = (0, 1) that is, they might not contain any 
rational points. To narrow down our choices of (m, n), we first use Lemma 1 and 
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the analogous 

LEMMA 2. The conic (6c) has infinitely many rational points (x, t) if 

R(2m2 - 2mn + n2), R(2m2 + n2) and R(2m2 + 2mn + n2) 

are all products of primes congruent to 1 mod 8, and none otherwise. 

Proof. Again we complete the square to find 

[4mnx + (n2-2m 2)- 

= (n2 - 2m2)[(n 2- 2m2) + 8mnx + 4(2m2 - n2)x2] + (16m4 + n4)x2 

= F-(2m2 - n2) (2m2 + n 2)t2 

+ 4(2m2 -2mn + n 2)(2m2 + 2mn + n 2)x2. 

As in the proof of Lemma 1, we find that 2m2 + 2mn + n2 and 2M2 ? n2 are 
relatively prime in pairs and we need only ask that qF(4m4 - n4) be a square 
modulo R(2m 2-2mn+n 2) and R(2m2 + 2mn + n2) and that 4m4 +n4 be a square 
modulo R(2m2 - n2) and R(2m2 + n2). (Since 16m4 + 4n4 > 0 the negativity 
condition is automatically satisfied.) We find that 

4mn4 _ n4 8m4 _-2n4 mod 2m2 + 2mn + n2, 

so -2 and 2 must both be quadratic residues of each prime factor of 

R(2m2 - 2mn + n2); 

also 
4m4 + n4 _ 2n4 -(2mn)2 mod 2m2 + n2, 

so -1 and 2 must both be quadratic residues of each prime factor of R(2m2 + n2); 
thus all these prime factors are congruent to 1 mod 8. The remaining condition is 
always satisfied since 

4m4 + n4- (2mn)2 mod 2m2 - n2, 

so we are done. 0 
In particular, m must be divisible by 4. The first few (m, n) which satisfy the 

conditions of both Lemma 1 and Lemma 2 are the pair (0,1) already encountered, 
(4,-7), (8,-5), (8,-15), (12,5), (20,-1), and (20,-9). Taking (m,n) = (4,-7) 
fails, because then (6b) and (6c) become 

81y2 = -467x2 + 34x + 56, ?81t2 = -68X2 - 224x + 17 

which cannot simultaneously hold: the second equation forces x to have denomina- 
tor not divisible by 5 with x 4 mod 5, and the first equation then refines this to 
x _ 14 mod 25, when 

(-68X2 - 224x + 17)/25 3 mod 5 

cannot be of the form +81t2. We next try (m, n) = (8, -5) and obtain 

153y2 = -779x2 - 206x + 80, ?153t2 = 412X2 - 320x - 103. 

On the first conic we find by trial and error (or by applying the algorithm in [6]) 
the small rational solution (x, y) = (3/14,1/42) and thus the parametrization 

51k2 - 34k - 5221 17k2 + 7558k - 779 
(7) X 

14(17k2+779) 
y= 

42(17k2+779) 
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Substituting this value of x into the second conic and simplifying, we find 

+ 212(17k2 + 779)2t2 

(8) =-4(31790k4 - 4267k3 + 1963180k2 - 974003k - 63237532). 

The right side of this reduces modulo 3 to (x2 _ x - 1)2, from which we easily show 

that for (8) to hold with rational x and t, the plus sign must be chosen. Using new 
coordinates X = (k + 2)/7, Y = 3(17k2 + 779)t/14, we then further simplify (8) to 

(9) y2 = -31790X4 + 36941X3 - 56158X2 + 28849X + 22030. 

We easily verify that there is no local obstruction to a rational solution for 
(9). This does not yet guarantee that such a solution exists, because (9) could 
still represent a nontrivial element of the Tate-9afarevi6 group of the elliptic curve 
which is its Jacobian. But it does encourage us to look for small rational solutions, 
and in this case a few hours' computer (VAX) search for rational X such that the 
right-hand side of (9) is a perfect square revealed the solution 

/ 31 30731278'\ 
(467' 4672]; 

retracing our changes of variable we then recover the rational solutions 

(10) (r~t)t(18796760 
2682440 15365639\ 

(10) (r~s~t) ' 20615673' 20615673' 20615673] 

for (5). Clearing denominators we obtain our first counterexample 

26824404 + 153656394 + 187967604 = 206156734 

to Euler's conjecture. 

4. More Rational Solutions of (5). From our single solution to (9) we may 
now compute arbitrarily many others: 

PROPOSITION. There are infinitely many rational X that make the right-hand 
side 

-31790X4 + 36941X3 - 56158X2 + 28849X + 22030 

of (9) a square. These yield infinitely many rational solutions (r, s, t) of (5). 

Proof. We know two rational points 

P?: (XY)= ( 31 30731278 
467' 4672/ 

on the elliptic curve (8), so we need only show that the difference Q = P -P_ 

between them is of infinite order in the group of the Jacobian of that curve, i.e., is 
not a torsion point. By [8, Theorem 2], there are only finitely many groups that 
can occur as the rational torsion subgroup of an elliptic curve, and in particular 
no torsion point can have index greater than 12; this reduces the proof to a finite, 
if tedious, computation to show n Q : 0 for n = 2,3,... ,12. (Actually, we 
need not invoke Mazur's deep theorem here; we may instead compute the Neron- 
Tate canonical height of Q and find it positive, or show directly that Q is not a 
torsion point in the p-adic completion of (9) for some p. But Mazur's theorem 
later simplifies considerably our proof that the rational points on (5) are dense 
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in its real locus, so it seems natural to use that theorem here as well.) We can 
reduce the tedium by noting that the Jacobian of (9) has a rational point of order 
2, corresponding to (x, y, t) (x, -y, -t) in (6b,c) this does not depend on our 
choice u =-16/5 or 

(X, Y) i~(323 - 535X 291716 
535 + 17X ' 17X + 535Y/ 

in (9). Thus by Mazur's theorem we need only check that nr Q gives neither 0 nor 
a 2-torsion point for n = 2,... ,6; and this indeed turns out to be the case. El 

A note on the addition law on (9), or generally an elliptic curve E given in the 
form y2 = quartic(X) with a known pair of rational points P? = (X0, ?YO): Take 
the point P_ to be the origin of our addition law, so P+ is identified with Q = P+ - 
P_. It is then possible to find coordinate functions on E which put it in Weierstrass 
form, and then compute the addition law in the usual way by "chords and tangents", 
but these coordinate functions tend to have monstrously large coefficients even 
when the coefficients of E's defining quartic are only moderately large as in (9). 
It is more convenient to compute the addition law directly in terms of the given 
coordinates X, Y, using secant and tangent parabolas Y = aX2 + bX + c. Indeed, 
if such a parabola meets E in four points P1, P2, P3, P4 counting multiplicity, then 
P1 + P2 + P3 + P4 = 2Q in E's group law, because 

(X-XO)-2(aX2 +bX+c-Y) 

is a rational function on E with divisor P1 + P2 + P3 + P4 -2 (P+ + PF). Given P1, 
P2 and P3, we can then solve the linear equations for a, b, c to make the parabola go 
through P1, P2, P3, and find the X-coordinate of P4 as the fourth zero of a quartic 
with three known roots, and the Y-coordinate as a known quadratic in X. So, for 
instance, to compute the coordinates of -Q, find a, b, c such that the parabola 
Y = aX2 + bX + C has a point of triple contact with E at P+ (i.e., take 

aX2+bX+c= Yo+a(X-Xo)+ O(X-Xo)2 

to be the beginning of the Taylor expansion of Y at X = X0), then substitute 
aX2 + bX + c for Y in the equation of E to obtain a quartic in X with a known 
triple root at X0, so the remaining zero is easily computed. For instance, for our 
curve (9), we compute 

937766474523 

467 15365639' 
2096569897386251210893331 

2 153656393 
2096569897386251210893331 

a =- 
2 .153656393 

b 334937219677623362815466 
b= -153656393 

1076124066222818157529571 
c= 2 153656393 

from which we find that -Q has X-coordinate 

127473934493966820221865642313563283 
129759559485872431282952710668698569' 
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and eventually recover our second solution 

A = 1439965710648954492268506771833175267850201426615300442218292336336633, 

B = 4417264698994538496943597489754952845854672497179047898864124209346920, 

C = 9033964577482532388059482429398457291004947925005743028147465732645880, 

D = 9161781830035436847832452398267266038227002962257243662070370888722169 

to A4 + B4 + C4 = D4 in coprime integers A, B, C, D. Likewise, we can compute 
n Q for n = 2,..., 6 to verify that Q is not a torsion point of (9); fortunately, 
this requires only the coordinates of these points as single-precision real numbers, 
since the corresponding integer solutions to A4 + B4 + C4 = D4 are too huge to be 
profitably displayed even in a Math. Comp. article! 

While we now have infinitely many rational points on the surface (5), they all 
lie on the same curve. We proceed to show how to produce rational points off that 
curve, and indeed enough rational points to comprise a dense subset of the real 
locus of (5). It will be convenient to henceforth drop the requirement that u be of 
the form 2m/n; instead of choosing between u and 2/u, we may choose the sign 
in (6c), and will use the minus sign (the reason for this choice will appear later). 
Our curve (9) then corresponds to u = 2/(-16/5) = -5/8. We now combine two 
observations: we have already seen that any rational solution of (5) necessarily 
comes from a rational 

(11) ~~~~~~~-1 + (r + 8)2 - t 

r2 + rs + 82 + r + s 

in the parametrization (6), and we have implicitly used the 48 linear symme- 
tries of the surface (5) generated by replacing each of r, s, t by their negatives 
and permuting them. Of these, only four (generated by (r, s, t) H-+ (r, s, -t) and 
(r, s, t) - (s, r, t)) preserve the value of u in (11). This leaves us with 48/4 = 12 
different curves for each of our solutions to (5), only one of which corresponds to 
u = -5/8. Thus, from each of our infinitude of solutions to (5) with u = -5/8 
we obtain a few new values of u for which we know a rational solution to (6), and 
for each such u we can expect to find infinitely more as in our proof of the above 
Proposition. With a little more work we find that these solutions suffice to prove: 

THEOREM. The rational solutions of (5) are dense in the set of real solutions. 

Remark. In particular, it follows that there are infinitely many admissible u, 
so infinitely many pairs (m, n) of relatively prime integers with n odd and 
R(2m2 - nmn + n2) a product of primes congruent to 1 mod 8 for ,c = -2, 0, 2, 4; 
and in fact u = 2m/n can be taken arbitrarily close to any real number outside 
(2 - V's, 2 + V's). This result is hardly surprising, for on probabilistic grounds one 
expects the number of admissible (m, n) with Iml, ll < N to be asymptotically 
proportional to (N/ log N)2 for large N, but I cannot see how to simply prove the 
infinitude of admissible u, let alone obtain their asymptotic distribution. 

Proof. First note that, for any real solution (r, s, t) of (5) with rst :A 0, at least 
one of the twelve possible values of u is negative or infinite: by replacing r or s by 
their negatives if necessary, we can make r > 0 and s < 0 with r + s ) 0, when the 
denominator 

r2+ rs + s2 + r + s = r2 + (1 + s)(r + s) 
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in (11) is positive and the numerator 

-1 + (r + s)2 -t2 <t2 

is negative (this is why we chose the minus sign in (6c)!). Next we show that, by 
replacing s by -s in the family of rational solutions of (5) described in our proof 
of the Proposition, we can obtain values of u arbitrarily close to any given negative 
real number. Indeed, the real locus of (9) is connected, because the right-hand side 
is 'positive only for X between its two real roots, -.3828... and .9987..., so its 
infinite rational subgroup is dense; and the new value 

7480X2 - 18500X + 6068 
357X2 + 11286X + 1605 

of u ranges from -oo at X = -7+ to a positive value at X = 2, and so attains 
every negative value for some real solution of (9). Given a real point on (5), we 
thus obtain from the rational points Pm = m Q on (9) points Q'(Pm) on elliptic 
curves E'(Pm) that pass arbitrarily close to it. It remains to show that only all but 
a finite number of these have infinite order and that the real loci of these curves are 
connected. The former is easy: by Mazur's Theorem there are only eleven possible 
orders n = 1, 2,..., 10, 12 for a rational torsion point of an elliptic curve over Q; 
for each of these, either n Qm = 0 on Em for finitely many m, or nr Q(P) = 0 
on E(P) identically for all P in (9), rational or not. Now for n = 1, the equality 
n Q(P) = 0 means t = 0 which certainly does not hold identically; however, it 
does hold for some (complex) P, and for P' sufficiently near P, the point Q(P) is 
too close to zero to be an n-torsion point for any n < 12. Finally, to verify that the 
real locus of (6) is connected, we need only check that the values of the right-hand 
side of (6b) at the two (necessarily real) roots of the right-hand side of (6c) are of 
opposite sign, or equivalently that their product, 

- [4(<212)1 (7u4 - 48u3 + 10Ou2 - 96u + 48), 

is negative; but that is clearly true for all u < 0. 0 

Postscript. While our first counterexample 

(A, B, C; D) = (2682440,15365639,18796760; 20615673) 

to Euler's conjecture still seems beyond the range of reasonable exhaustive computer 
search, there remained the possibility that smaller solutions may be found by such a 
search. Shortly after hearing of the first solution, Roger Frye of Thinking Machines 
Corporation asked whether it was minimal; I did not know, but suggested how one 
might exhaustively search for smaller solutions: eliminating common factors and 
permuting A, B, C if necessary, we may take D odd and not divisible by 5, and 
C < D such that D4 - C4 is divisible by 625 and satisfies several other congruence 
and divisibility properties, and for each such D and C look for a representation of 
D4 - C4 as A4 + B4 with A, B divisible by 5. Frye translated this into a computer 
program and ran it on various Connection Machines for about 100 hours to find 
the minimal counterexample to Euler's conjecture: 

958004 + 2175194 + 4145604 = 4224814. 



ON A4 +B4 +C4 = D4 835 

He continued the search and found that this solution is unique in the range D < 106. 
This solution appears on the parametrization (6) with (m, n) = (20, -9). We 
include Frye's result with his permission. 
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