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Polynomial Approximation 
of Divergence-Free Functions 

By Giovanni Sacchi Landriani and Herv6 Vandeven 

Abstract. We study the best approximation of a divergence-free function by a diver- 

gence-free algebraic or trigonometric polynomial and we prove an optimal estimate. In 

a particular case we give also an optimal result for the polynomial approximation of a 

function and its divergence. 

1. Introduction. In this paper we study the problem of the approximation of 

a divergence-free function by divergence-free polynomials. This problem is closely 

related to the analysis of the convergence of spectral methods for the incompressible 

Navier-Stokes equations in a cube with appropriate boundary conditions: Dirichlet 

in all the directions, or Dirichlet in one direction and periodic in the others. In these 

methods the discrete solution is an algebraic (or a trigonometric) polynomial which 

satisfies a discrete continuity equation. The convergence proofs are essentially based 

on the fact that the distance between the exact solution and the discrete solution 

(approximation error) is related to the distance between the exact solution and the 

space of divergence-free polynomials (projection error). This distance is in general 

associated with the H1-norm (see, e.g., [8]), but also with the H2-norm, typically 

when tau-methods are considered (see, e.g., [11], [24]). Recently, C. Bernardi, C. 

Canuto and Y. Maday [5] have analyzed an approximation of the Stokes equations 

involving Chebyshev polynomials; the approximation then involves weighted norms. 

For these reasons it appears useful to prove optimal convergence estimates in 

weighted norms for the projection error onto the space of divergence-free polyno- 

mials. Some results of this type were proven in [5] and [25] for weighted norms in 

a two-dimensional domain, in [8] for unweighted norms in a two-dimensional do- 

main, and in [7] for unweighted norms in a two- or three-dimensional domain for a 

particular set of boundary conditions. 
Some approximation results in Sobolev spaces for orthogonal polynomials can be 

found in [3], [6], [10], [14], [17], [18], [20], [22]; we shall use this kind of results for 

the analysis of the projection operator on the space of divergence-free polynomials. 

An outline of the paper is as follows. In Section 2 we define some projection 

operators on the space of divergence-free functions which are polynomial only with 

respect to one variable. These operators are useful in studying the best approx- 

imation of a divergence-free function by divergence-free polynomials. In the case 

of unweighted norms, we also define a projection operator such that, given a func- 

tion u, the divergence of this projection of u is related to the H1-projection of the 

divergence of u. This result can be useful in the analysis of problems where the 
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divergence of the solution is a given function not identically zero. In Section 3 we 
consider the case of a function which is periodic in some directions, both for Carte- 
sian and cylindrical coordinates. We present results also for these cases. These 
results can be used in the analysis of the methods presented in [13], [16], [21]. In 
Section 4 we provide an application of the preceding results; we analyze a spectral 
approximation of the Stokes problem in cylindrical coordinates and we prove an 
optimal convergence estimate. Finally, in the appendix we derive an interpolation 
result for the spaces of divergence-free functions; such a result is useful for the 
estimates of Section 3, where periodicity is assumed in some directions. 

Notations. Let A be a set in R, R2 or R3. For any nonnegative integer N we 
denote by PN (A) the space of all polynomials on A of degree < N in each variable. 

Let e be the interval (0, 2ir). For any integer d > 1, and for any nonnegative 
integer K, we denote by SK(Ed) the space of trigonometric polynomials on ed of 
degree < K. 

For any function p: R -* R and for any nonnegative integer j we denote by p(i) 
the derivative of p of order j. 

For anyk =(k1,..., kd) E Zd we set 

d d 1/2 

Ikli= > IkjI and kj2= (| 1 k2 
j=l Vj=l 

For any real number s we denote by [s] its integral part. 
Given a function space V and a nonnegative integer d, we denote by Vd the 

corresponding vector-valued function space; the norm in Vd is denoted by the 
same symbol as the norm in V. If P is an operator on V, we denote by P the 
operator on Vd defined by 

VV= (Vl,...,Vd) EVd, Vj,1 < j< d, (Pv)j =Pvj. 

The norm of a Banach space Y is denoted by 11 IIY. 

2. Projection Operators for Homogeneous Boundary Conditions. In 
this section, Q is the domain A3 in R3, with A = (-1,1). The generic point in Q is 
denoted by x = (x, y, z). 

Let p: A -+ R be either the Legendre weight function defined by p(s) = 1 or 
the Chebyshev weight function defined by p(f) = (1 - p2)-1/2. We define a weight 
function on Q by w(x) = p(x)p(y)p(z). When p and w are the Legendre (resp. 
Chebyshev) weights, we set ao = 1/2 (resp. a0 = 1/4). 

2.1. The Weighted Sobolev Spaces. We recall here briefly some definitions of 
weighted Sobolev spaces (see, e.g., [1], [2], [15]). Let 

L2(A) = {Cp: A -* R; 'p is measurable and f o2(s)p(s)ds < +oo} 

be the Lebesgue space associated with the measure p(s) df, provided with the inner 
product 

('P,4')p = f 'p( )4( )p( ) df 

and the norm Ao,P = (. .)p/2 
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A scale of weighted Sobolev spaces is defined as follows: for any integer m > 0, 
Hp (A) is the subspace of Lp(A) of the functions such that their distributional 
derivatives of order < m all belong to Lp(A); it is a Hilbert space for the inner 
product associated with the norm 

m \ 1/2 

Im,p P E IP(k)I I2 
k=OJ 

For a real number s = m + a, 0 < a < 1, we define Hp(A) to be the interpolation 
space between Hm+'1(A) and Hm (A) of index 1 - a (see [4], [15]); we denote its 
norm by 11 II,, For any real number s with s > ao, for any function 'p in Hp(A), 
and for any integer j with 0 < j < s - ao, the boundary values p(i) (?1) are well 
defined (see [15, Vol. 1, Ch. 1, Theorem 11.5] and [12, Theorem 7.1]). 

For any real number s we define Hp 0(A) to be the closure in Hp(A) of the space 
D(A) of infinitely differentiable functions with compact support in A. For a real 
number s such that s 0 N + a0 and s > ao we have (see [6]) 

(2.1) Hs,o(A) = {'p E Hp(A); Vj E N,0 < j < [s - o], p(i)(-1) - p(i)(i) = 0}. 

Let now 

L2 ,(Q= {u: Q -* R; u is measurable and U 2(x)w(x) dx < +oo} 

be the Lebesgue space associated with the measure w(x) dx, provided with the inner 
product 

(u, v) =; u(x)v(x)w(x) dx 

and the norm Ilo,w = (. )1/2 

A scale of weighted Sobolev spaces is defined as follows: for any integer m > 0, 
Hm (Q) is the subspace of L 2 (f2) of the functions such that their distributional 
derivatives of order < m all belong to L 2 (Q); it is a Hilbert space for the inner 
product associated with the norm 

1/2 

IIUIIM'W - ___~u(x) w(x) dx 
llu 

II m ,w ( E 
3 a9klayk2aZk3 

2 
) 

Ikll1<m 

For a real number s = m + a, 0 < a < 1, we define H (f2) to be the interpolation 
space between HWm+1(f2) and HWm(f2) of index 1 - a; we denote its norm by *. 

For any real number s we define HJ, (Q) to be the closure in Hs, (fQ) of the space 
D(Q) of infinitely differentiable functions with compact support in Q. 

When we treat the case of the Legendre weight, the subscripts p and w will be 
deleted. 

2.2. Projection Operators onto Divergence-Free Polynomials. We define a one- 
dimensional projection operator that we shall use in the sequel. We recall the 
following result due to Y. Maday [17]. 
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THEOREM 2. 1. Let r and s be two real numbers such that r 0 N + a0 and 

0 < s < r. For any integer N with N > 1 there exists an operator I1'r1N from 

Hr(A) n Hp,0(A) onto PN(A) n Hp,0(A) which satisfies 

(2.2) V'p E H (A) n H, 0(A), Iko-? I NPIIV,P < CN`-II(pjIa,P, 

for any real numbers v and a with 0 < v < r < a and for a positive constant C 

independent of both 'p and N. 

For any real number r not in N + a0, with r > 1, we now define a polynomial 

Hr,NWp which coincides with 'p at the boundary with all the derivatives up to order 
[r-ao]. In the next corollary, which is a direct consequence of Theorem 2.1, we show 
that the operator 11r,N has the same asymptotic properties as 11r N Naturally, if 
'p belongs to Hr,0(A), then lr,N'p is equal to jpr 

COROLLARY 2.1. Let r be a real number with r > 1 and r 0 N + a0. For any 

integer N with N > 2[r - ao] + 1, there exists an operator 1r,N from Hr(A) onto 

PN(A) which satisfies 

(2.3) V'p E Hr(A), Vj E N, 0 < j < [r - ao], (Ilr,N(P)(j)(?1) = (j)(?l). 

Moreover, for any real numbers v and a such that 0 < v < r < a there exists a 

positive constant C independent of N such that 

(2.4) V'p E H' (A), I'p - llr,NMpjv,p < CNv-II'pII0,p. 

Proof. Let 'p be a function in Hr (A) and q be the element of P2[r,oJ+1 (A) such 
that 

(2.5) Vj E N, 0 < j < [r - ao], p(j)(?) =q(j)(). 

It follows from (2.1) that 'p - q belongs to Hr0(A). Set 

(2.6) Hr,N'p = q + l0(r - q). 

From (2.5) and (2.6) we obtain (2.3). 
Let now v and a be two real numbers with 0 < v < r < a, and assume that 'p 

belongs to Hp (A). We have 

[r-ao] 

ljqjja,p < C E {I(P(i)(-1)1 + |(P(j)(1)11. 
j=0 

Let E = (r-ao) - [r-ao]. Since r is not an element of N + ao, we have E > 0. 

Using the imbedding H'O+e(A) C L?(A), we deduce 

[r-ao] 

(2.7) jjqjja,p < C E j'(Pj)JjL?o(A) < Ch'pIr,P < clklFla,p 
j=O 

Using (2.2) and (2.7), we get 

|| p - Nlr,Np||v,p = j'p - q) _ r,Nr - q)llv,p 

< CN`1IIp - qJj0,,p < C'IN`jljpjja,p. 

This completes the proof of (2.4). 0 
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We now define an operator with values in the space of functions which are poly- 
nomial with respect to one variable. 

For any real number r with r > 1, and for any function u of Hr (Q2), we set 

(2.8) (IIZ,NU) (X) = (ILr,NU(X, Y, *)) (z) for a.e. (x, y) in A2. 

The operators 11$N and TI'N are defined in the same way. We remark that Hz 
commutes with the derivatives with respect to the x and y variables, i.e., 

(2.9) 179- u=ll and al u=17z 
9 

(2.) rI,Nu = IIr N a an 9yIIr,NU 
= 

r,N57y, 

provided that the derivatives of u belong to the domain of Izr11N. 

If u is a divergence-free function, we want to study the best approximation 
of u by divergence-free polynomials. The first step of our analysis is to define a 
divergence-free function which is polynomial with respect to one variable and which 
is an optimal approximation of u. 

Let r be a real number with r > 1. Given a function u = (ul, u2, U3) in (HI,(Q))3, 
not necessarily divergence-free, we define p, and P2 by 

rz rz 
(2.10) pl(x) - u2(x,y,t)dt and P2(x) =fui(x,y,t)dt. 

We define the operator PrZ4N as follows: 

(Prz,Nu)1 = aZ r,NP2X 

(2.11) Vu E (Hr (n))3, (PrNU)2 =-a fPr,N az r 
(Pr,NU)3 = IlrzNU3. 

The operators p4N and pyN are defined analogously. 
Remark 2.1. Assume that u is a divergence-free function. Then we get 

(2.12) U1 =y -P2 u2 =--'> and u3 = -9y' _9s2 

and using (2.9), we deduce that pzNu is also divergence-free. 

Remark 2.2. Let r be a real number such that r > 1 and u be an element of 
(Hr,(f2))3 n (H1 0())3. Using (2.8) and (2.10), we clearly have 

(Prz,Nu) (-1,Y, Z) = (r,Nu)1 (1, y, z) = 0 a.e. (y, z) in A2 

(Pr,NU) 1 (X,- 1, Z) = (PrzNU) 1 (X, 1, Z) = 0 a.e. (x, z) in A2, 

and the same properties hold for (&r,NU)2 and (Pr,NU)3. Since r is such that r > 1, 
we have also 

(prZNU)3(X, y, -1) = (pZ,NU)3(X, y, 1) = 0 a.e. (x, y) in A2. 

Assume now that r is such that r > 1 + ao. Using (2.3), (2.8) and (2.10), we obtain 

(Pz,NU)1 (x, y,-1) = (Pz,NU)1 (x, y, 1) = 0 a.e. (x, y) in A2, 

and the same property holds for (PrZ{NU)2. 

We now give an estimate for the quantity U - Prz,NU. We will find that for any 

real number r > 2 and for any function u in (Hr ,(Q))3 n (H1 0(f2))3, the function 

Pr_ ,u also belongs to (H1 0(Q))3. 
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THEOREM 2.2. Let r be a real number with r > 1 and r ? N + ao, and N be 
an integer with N > 2[r - ao] + 1. For any integer v with 0 < v < r - 1, and for 
any real number a uith a > r + v, there exists a positive constant C independent of 
N such that 

(2.13) Vu E (H'(0))3, jju - NUIL,W < CNV-HllUllow. 

Moreover, if r is a real number such that r > 2, then the estimate (2.13) is still 
valid for any real numbers v and a such that 0 < v, [v] < r-2 and a > r + 1 + [VI. 

Proof. Let r be a real number such that r > 1 and r ? N + ao, v be an integer 
with 0 < v <r - 1, a be a real number such that a > v + r and u be an element 
of (Hr (Q))3. 

(1) We estimate the first component of u - Pr4NU. Using (2.9) and (2.10), we 
obtain 

1lU1 - (Prz,NU)1llVW akk3+1 (9k - ak3 ,rN IXk ) j )|2 

Ikll1<v 

Since we have k3 + 1 < v + 1 < r and a - v + k3 + 1 > a - v + 1 > r + 1, using 
Corollary 2.1, we obtain 

||lU 1 - ( N U) 1112w, < C E N2(k3+1)-2(a-v+k3+1) 

kEN3 
IklIi<v 

x 
a 

P~~~~~~~~~~2 
O<j<a-v+k3+1 1y I O,w 

<Cl CN2(v-a) 112w + 1aP2 
2 

We note that for any k in N2, dk1+k2 2/9xkl9ayk2 vanishes for z =-1; hence, 
applying the Poincare inequality (see [9, Lemma 1.1] for the case of the Chebyshev 
weight), we obtain 

llul - (PrNu)z l 1lv,W < CNv-| | = CNv-f llul 11a,w. 

(2) The second component of u - rzNU can be estimated in the same way. 
(3) We now estimate the third component of u - rzNU. We have 

j9k3 dkl+k2u Dkl?k2u) 2 

llU3 - (Pr,NU)3l112, = E N Zk3 (ak1ayk2 - fl[r NaiaY 

Ikll<v 

Since we have k3 < v < r-1 and a- v + k3 > a- v > r, using Corollary 2.1, we 

obtain 

llU3 - (Pr,NU)3llV,W < C - N2k32(av+k3) 

kEN3 
Ikll<v 

O<j<a-v+k3 0 ,) 



POLYNOMIAL APPROXIMATION OF DIVERGENCE-FREE FUNCTIONS 109 

Thus the estimate (2.13) is established when v is an integer. 
Finally, if r and v and a are three real numbers such that r > 2, 0 < [v], 

([v] + 1) < r - 1 and r < a - ([v] + 1), we obtain (2.13) by interpolation between 

(Hlv" (Q))3 and (HLVI+l (Ql))3. This completes the proof. 0 
Remark 2.3. Let r be a real number such that r > 2 and u be an element of 

the space (Hr+1(Q2))3 n (H' (1))3. Using Remark 2.2, and applying (2.13) with 
v = 1 and a = r + 1, we obtain that pz is an element of (H1o0(Q2))3. 

Remark 2.4. Let r be a real number such that r > 1. For any function u in 
(Hr (Q))3, we have 

div pzU(X) = y- (11rN (7 divu(x, y, t) dt)) a.e. x in Q. 

Following the proof of Theorem 2.2, we obtain the following result: 
If r is a real number such that r > 1 and r 0 N + a0, then for any integer v 

such that v < r - 1 and for any real number a such that a > r + v, there exists a 
positive constant C independent of N such that 

Vu e (H' (Q))3, Ildivu - div 4,NuII,W <CN+-lzltdiv uIt<,w. 

Moreover, if r is such that r > 2, then the preceding estimate holds for any real 
numbers v and a such that 0 < v, [v] < r -2 and a > r + [v] + 1. 

Let r be a real number with r > 1. For any divergence-free function u in 
(Hr (Q2))3 n (H o0(Q))3, we denote by 4di, u the orthogonal projection of u for the 
inner product of (Hr (0))3 onto the space of divergence-free polynomials of degree 
< N which vanish on the boundary of ?2. 

We now state the main theorem of this section. 

THEOREM 2.3. Let r and N be two integers with r > 1 and N > 0. For any 
real number a with a > 2r + 1, there exists a positive constant C independent of N 
such that 

(2.14) Vu E (Ha (Q))3 n(H "o(Q2))3; div u = 0, 11U-_Pdiy4jUI < CNr-,?IU/ ,,a,. 

Moreover, if r is a real number such that r > 1 and r 0 N + ao, the estimate (2.14) 
is still valid for any real number a such that a > r + [r] + 3. 

Proof. Let r be an integer with r > 1. In order to prove (2.14), we may assume 
that N is such that N > 2[r-ao]+3. We denote by 4z,div the orthogonal projection 
operator for the inner product of (Hr (Q2))3 onto the subspace of (Hl o(Q))3 of 
divergence-free functions which are polynomial of degree < N in the z variable. 
We define p" div and py,div in the same way. 

Let a be a real number with a > 2r + 1 and u be a divergence-free element of 
(Ha (Q)) 3 n(H1o(Q))3. 

We have a > 2r+1 > r+2. Since u belongs to (Ha (f))f3n(H10o(Q))3, we deduce 
from Remarks 2.1 and 2.3 that Prz+l,NU is a divergence-free function which belongs 
to the subspace of (H",0(Q))3 of divergence-free functions which are polynomial of 
degree < N in the z variable. We deduce from the definition of pz4'lv that 

||u - r U|Vr,u < jU - Prz+1,NU11r,w; 
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hence, using Theorem 2.2, we obtain 

(2.15) || u - N4iv Ullr,w < CNr rlUla,w. 

Moreover, from the definition of )z' div we also have 

(2. 16) Vv E (Hr (Q) )3 n (H. ,o(Q) )3; div v = 0, llv - Pz' divvllr,w < lI11lr,w. 

Naturally, the estimates (2.15) and (2.16) hold also for ,, div and y, div. 

The divergence-free function x" divp y, div p z, divu is a polynomial of degree < N ~r,Nr r,N ~r,N 
which vanishes on the boundary of Q. Hence we deduce 

(2.17) Ul -divr UIrw < u_ Px,div Py,div z, divUl 11 r -UjrL r,N &r,N Pr,N U11r,w, 

To estimate the right-hand side of (2.17), we note that 

- div y, div z, divu = (U -x,div U) + (u - y,di 8, div u) 

- (I - z )x,div)(u - zNiv d,'ivU). 

Therefore, by (2.16), we deduce 

'iU - x,divPY,div z,div i 
||U Wr,N )r,N Pr,N Ullr,w 

?Iu - pxIiv ~ +211 P div z,divUIrw - 11 r, N U1|1|r,w + 21 | r - Y,Ndi Pr,Ndi Ujrw 

and proceeding in the same way, we finally obtain 

u XI, div y, div z, div i 

(2.18' rlU 
N 

KI,N Pr,N UIIr,w 
< IIU - PrN'vUjjr,w + 21|u -Pr IN U1r,W + 311U - Pr,N U11r,w. 

From (2.15), (2.17) and (2.18) we obtain (2.14). 
If r is a real number such that r ? N + ao, the same proof, where the operator 

zr+1,N is replaced by Prz+2,N' gives the result for any real number a such that 
oa>r+[r]+3. O 

Remark 2.5. For any real number s > 1, set 

Hos div(o) = {u E (H-9(0))3 n (H1,0(f2))3;divu = 0}. 

Let r be a real number with r > 1. Theorem 2.3 shows that for any real number a 
such that a > r + [r] + 3, the operator I '-vd is continuous from H?? div (Q) into 
(Hr (Q))3 with a norm < CNr-,. On the other hand, it is clear that I - p4di' is 

continuous from Ho rdiv(Q) into (Hr (Q))3 with a norm equal to 1. Then we could 

obtain the estimate (2.14) for any real number a > r by using an interpolation 

argument, if the following property were satisfied: 

(2.19) VO CE (0, 1), Ho (1-1)af+Ordiv(f2) c [Hoa,div(Q)H Hor,div(0] 

Unfortunately, even if w is the Legendre weight function, we are not able to prove 

the property (2.19). Meanwhile, when the function u is assumed to be periodic in 

some directions, we can prove the estimate (2.14) for any real number a > r by 

using an interpolation result similar to (2.19) (see Section 3 and the Appendix). 

Remark 2.6. Let r be a real number such that r ? N + ao and m be an integer 

such that 0 < m < r. For any divergence-free function u in (Hr(q))3n(H' 0(q))3, 

m,y divU orthogonal we denote by ,N u the orhgnlpro.jection of u for the inner product of 
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(Hr (Q))3 onto the space of divergence-free polynomials of degree < N which belong 
to (H, '(0))3. Using the same technique as above, we can prove the following 
result: for any real number a such that a > 2r + 1 (resp. a > r + [r] + 3) when r is 
an integer (resp. a.real number), there exists a positive constant C independent of 
N such that 

Vu E (H,(0))3 n (Hmo(F2))3; divu = 0, Ilu - m'diVUllr,w < CNr-,lIUII"T,. 

If u is a function of two variables, the estimate (2.14) can be obtained for any 
real number a > r by using a simpler technique. Precisely, the following result has 
been proved in [25] and [5]: 

THEOREM 2.4. Let r be a real number such that r > 1 and r ? N + ao. For 
any real number a with a > r, there exists a positive constant C independent of N 
such that 

Vu E (Hr (A2))2 n (H O(A2))2; divu = 0, 
(2.20) II w I, CrwII~W 

||U-r,NU11r,L, < CN lla 

2.3. A Different Approach in the Case of the Legendre Weight. In the Legendre 
case (i.e., when w = 1), we now consider the problem of the best approximation of 
both a function and its divergence. 

For any function u in (H 1(7))3 (not necessarily divergence-free), we shall define 
a polynomial IINU such that the divergence of IINU is related to the Hl-projection 
of the divergence of u. A relation of this kind is useful in the applications. For any 
integer d, the same type of result can be stated in the same way for a function u 
of (Hl(Ad))d (see Remark 2.9). 

We denote by (Ln)nEN the sequence of Legendre polynomials defined by the 
recurrence relation 

VxEAl (Lo(x) = 1, Ll(x) =x, 
'\Vn > 2, nLn(x) = (2n - 1)xn-l(x) - (n - 1)Ln-2(X) 

We recall the following relations: 

Vn > 0, Ln(1) = 1, Ln(-1) = (-l)n, 

(2.21) 2n+ 

Vv~~L2(A) _ 2k + 1 2 ~ ~ ~ 2 (V,Lk)Lk. 
k=0 

We denote by HO,N the orthogonal projection operator on PN (A) with respect to 
the L2 (A)-inner product. We recall that the operator HI 1 N introduced in Theorem 
2.1 is the projection operator on PN(A) n Ho(A) with respect to the H (A)-inner 
product, i.e., it satisfies 

(2.22) Vp E H~(A) (II 1,N9O E PN(A) l n Ho (A), 

We first state a relation between HO,N-2 and IIo1,N. 

LEMMA 2.1. For any function 'p in Ho(A), the following formula holds: 

(2.23) rIo 1 =L-2 N-2)LN-1 - (p LN_1)LN. 1,NO II,N 2 
(~ 

'2(~ 
' 
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Proof. Let Q be an element of PN-2(A) and let R be the element of PN(A) n 
H' (A) such that R" = Q. Using (2.22), for any function p in H'j(A) we have 

(H 1,NP,Q) =-((HI R') = -(Y',R') = ((p Q). 

Hence we deduce 

o 1 , = HO,N-21P - 2 ( l,N , LN-1)LN-1 

(2.24) 2= (H 1 2N(P LN )LN, 
2 

We now compute the last two terms in the right-hand side of (2.24). Let j be 
an element of {0, 1}. Using (2.21), we get 

(L -LN+ - 1-j 
1,NP ' 2N -2j+ 1 

(( 1.N(pIL_N+1-j- LN-1-j) 

We note that N+ 1-j > N and that (Hl',1 No)Y is of degree at most N- 1. Hence 
we have 

01,N L, 
j = (L(HJ1 aP)I 

L 

(fbi 1,N '2N-2j+l} 
Using again (2.21), we obtain 

( 1,N LNI) = 2N-2j + 1 ((ot2NN- 2- 1 )- 

Since the polynomial LN-j- LN-2-j belongs to PN(A) n H'(A), using (2.22) we 
deduce 

(no1 Np,LN-j) 
- 2N-2j+ 1 (p 

L 
' 

- 
N-2-i) 

= (9''2N -2j + = -(P 2N-2j+ 1) 

and applying (2.24), this completes the proof of (2.23). 0 
We now define an operator H* by 

(2.25) Vp E H2(A), Vx E A, (H*)(x) = f (H-,N-Ip)(t) dt. 

LEMMA 2.2. For any function p in H2(A) n H (A), H* p is an element of 
PN(A) n H (A) such that (HI*p)'(?l) = p'(?l). Moreover, for any real numbers 
v and a with 0 < v < 2 < a, there exists a constant C independent of N such that 

(2.26) Vp E HU (A) n H (A), jjp -IH*pjj, < CN"- jjpjjo. 
Proof. Let yp be an element of H2(A) nH H1(A). 
(1) Let q be an element of P1(A) such that q(?1) = p'(? 1). From (2.6) we have 

II1,N- 1( 6') = q + rI 1,N-1( - q) 

From Lemma 2.1 we deduce 

f 1 
l -q)(t) dt = (p q)(t) dtf 
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hence 1 

f H, N-(Vp')(t) dt = f p'(t) dt = 0, 

and HN belongs to PN(A) n H 1(A). The fact that (H )'(? 1) = '(?1) follows 
from (2.6) and (2.25). 

(2) We now prove (2.26). We first observe that 

II*p - VIil < CIV' - II1,N-1' llo 

and 

11 
- 

* 
V112 < CIW"( - I1,N-1(p1|1; 

hence, from (2.4), we deduce (2.26) for v = 1 and v = 2. In order to prove (2.26) 
for v = 0, we use a duality argument. For any k in L2(A), we denote by AO the 
element of H2 (A) n H (A) such that - (AO)" = 4. We have 

11v - HIINo =1 sup -H ,4) 
2I EL2 (A) IIlkIlo 

Since p - HN* belongs to H'(A), we deduce 

(2.27) 11k - N*PI10 = sup ( - nN9)', (A4)') 
IPEL2(A) 11kllo 

Now let q be the element of P1(A) such that q(?J1) = 9(? 1). We have 

((p - rIII*) = () - 11,N-1(V = (>p - q) - N1 - q). 

Formula (2.23) yields 

('P - HV)' = -('P q) - IIO,N-3 p - q)} + - ((p' - q, L_3)LN-2 

+ 1('p' -q L 2 _(1qLN-2)LN-1li 

and we conclude that for any 4 in L2(A) we have ((p- H )',IIo,N,3(AN )') = 0. 
Recalling (2.27), we obtain 

II~ - 114-II po = SUP ((( -I H* V)', (A4')' - HO,N- 3(A4)') 

l ip -- HN'I* | sup (kb)' -upo,NN3(A4')'ilo OEL2 (A) L(A) I4'Ib 

Since (2.26) has been established for v = 1, we deduce 

ip - II*plo < C(N1j'llVjlj) (N-1 sup IIAI 2) 

< CN-alVpjla. 

Thus, (2.26) is proved for v = 0. Finally, we obtain (2.26) for 0 < v < 2 by 
interpolation. 0 

For any function u in H2 (Q2), we set 

(II*Nu)(x) = (IIu(., y, z))(x) a.e. (y, z) in A2, 
(2.28) (I (*%u)(x) = *(Hu (z, *, z))(y) a.e. (x, z) in A2, 

(HFl*zu)(x) = (II.u(x, y,. ))(z) a.e. (x,y) in A2. 
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We note that H*` commutes with differentiation with respect to the x and y 
variables, i.e., 

(9 O~ ~~u a 99 
(2.29) fl*z u = I and HN*U H N *z 

provided that the derivatives of u belong to the domain of 11* ZN 

For any u = (ul, u2, U3) in (H4(Q))3, we define 

(2.30) (lNU)1 = H*NH ,N-1 H ,N-1u 

(|(NU)2 = 1,N-1 Nl1,N-1U2, 

(JINU)3 = 1,N-1l1,N-1 NU3. 

Remark 2.7. Set 
(9i+j+ku 

l = {u E (L , (Q))O3; V(ii j, k) E NWj i < 2,j < l,k < 1, a9ai99 E L( 

92. = U (L2 (0))3; V(i, j, k) c- N3, i < 1, j < 2, k < 1, aizaik U2 E L2 (Q)) w 
(9~~~~~~~~~xiayyiOZk CLw&f 

and 

903=u (L Lo))3 V(i,j,k)EN3, i <1,j1<, k<2,1 iayjO3k E L, 

It is easy to see that the domain of the operator I-N is the space ti n 92 n 03, 
which contains (H 4(Q))3. 

Remark 2.8. Let u be in (H4(Q))3 n (Hl (0))3. From Corollary 2.1 and Lemma 
2.2 we obtain that HINU is an element of (PN(0))3fn(Hl (q))3. Moreover, applying 
(2.25), it is clear that the divergence of IHNU is given by 

(2.31) divlnNU = 111,N-11Y1,N-111,N-1 divu. 

Hence, if u is divergence-free, so is HNU, 
We are now in a position to estimate both U - IINU and div u - div INU. 

THEOREM 2.5. For any real numbers v and a such that a > 4 and 0 < v < 1, 
there exists a positive constant C independent of N such that 

(2.32) Vu E (H`(0))3 n (Hl(O))3, IIU - INU11v < CNII-auII 

and 

(2.33) Vu E (H( n))3 n(Hl(I))3, Ildiv u - div INullv < CNv?laIIdivuII,i. 

Remark 2.9. Let d be an integer such that d > 2. For any function u in 
(Hd?l(Ad))d, we define HINU in the same way. We obtain the estimates (2.32) and 
(2.33) for any function u in (H'7(Ad))d n (Hl (Ad))d with a > d + 1. 

Proof of Theorem 2.5. To simplify the notations, we prove the estimates (2.32) 
and (2.33) for a function u in (HI (A2))2 n (Hl (A2))2 with ar > 3. 

In order to prove (2.32), we prove the following inequality: 

(2.34) IU1 - (HINU)111v < CNvUIIujII 

for a > 3 and 0 < v < 1; the estimate of u2 - (INU)2 can be obtained in the same 
way. 
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(1) We first prove (2.34) for v = 1. The following inequality holds: 

||Ul - JINU)l Ill 
': 

11(i - H N)(I -Hy,lUl| |(- NU (2.35) 
N 1 N-JUl 11 

1+ 11(1(- H N1N)u1II1. 

(la) We treat the first term in the right-hand side of (2.35). Applying the 
Poincare inequality, we observe that there exists a constant C such that 

|| I-r N (9-I 2N1)1I 
(2.36) < C -(IH 1N-1 )(I- H%N)Ul|| dz 

1~ (9 2 

+ cJ 11Z (I H* N)(I - 1i,N 1| dy. 
J- 1 ~~~~~~~~~L2 (A) 

Since Hy,N-1 is continuous for the H'(A)-norm, and H*x commutes with differen- 
tiation with respect to y, we obtain 

J || -1 N-Y N)U1|| dx < c (I 2 r| dzx f ~ ~ ~ ~~~~ ~L2 (A) of 
yI %2) (A) 

hence 
1 

(9 ~~~~~~~~~~2 
-(I riy, ~~~~dx J11Y (Iy 1,N-1)(I - r*N)Ul | d 

L2 (A) 

< c J ||(I Il r* z,A dy 
N)(yL2(A) 

From (2.26) we deduce that 

1 (9 ~~~~~~~~~2 
(2.) J (I - 1,N-1)(' - 

N)U1|| 
dx < CN2 2ff2IuII2 for or > 3. 

1 (11 1 
-)(I*N)lo 

L2 (A) 

The operator f* is not continuous for the H'(A)-norm; by (2.26) we obtain 
10 2 

J 1 Z(I ri* N)(I ril,N_)1| dy OX N 

~(I17 

N 

0Ul iNi xL2(A) 

O 2 
< CN J2 (I -1 1) Ox IL2(A) dy, 

that is, 

<u1Ox a L2(A) 

-1,N1) OX2 L2(A)J 
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Using (2.4), we deduce 
1 a ~~~~~~~~~~2 

(2.38) (1 N- 1)ul || dy < CN 2a2 ||u||2 for or > 3. 
1 ~~~~~~~~L2 (A) 

The estimates (2.36), (2.37) and (2.38) yield 

(2.39) II(I-nHN )(I-H NN-1)U1I 1 <CN1-'IIuJII for a>3. 

(lb) We now consider the second term in the right-hand side of (2.35). We 
observe that 

1 ~~~~~~2 
*x( n )U1|1 <CI|Z - N)l d 

+C | | (I II*, )U1 | dy L2(A 

+ c (I - 
dUi 

)dx, +c (I H a1) L2 (A) 

and by (2.26) we obtain 

(2.40) jj(I - H*')ulI < CN1-a'lullj for a > 3. 

(lc) The third term in the right-hand side of (2.35) can be estimated in the same 
way. Thus, (2.35), (2.39) and (2.40) yield (2.34) for v = 1. 

(2) We now prove (2.34) for v = 0. We observe that 

(4U1 - (INNu)lIIo < 11 ( -II f )(I - I,N-1)U1 11 + jj(1 - H*X)Ull 
*2-41) + jj(I - HY N1)u1 llo 

To estimate the first term in the right-hand side of (2.41), we note that 

jj(I - N~) (I - lH,N_1)U1l = 11( - I l,N-1 ) (I - 2*)u1IIl2(A) dz 

< CN2 [1 (I- N) dy 2 dx, 
L2 (A) 

that is, 

12 
a , 2 

( N)( H1, _l)lllo< CN -2 (I |- * )U | d 
-1 Y ~~~~L2 (A) d 

< CN-2oIIuiII2 for a > 3. 

Along the same lines, we estimate the last two terms in (2.41). Thus the proof of 
(2.34) for v = 0 is complete. 

Finally, using an interpolation argument, we obtain (2.34) for 0 < v < 1. 
Noting now that 

div fNU = IlN-111tN-1 div u, 

we obtain (2.33) by the same techniques as used in the proof of (2.32). 0 

3. Projection Operators for Periodic/Nonperiodic Boundary Condi- 
tions. In this section we study some approximation properties for a function of 
three variables which is periodic in two variables. The analysis of projection opera- 
tors for this type of boundary conditions is useful in studying the spectral approxi- 
mation of a flow between two parallel planes or between two cylinders. We exhibit 
the operators we choose, and we only sketch the proofs of the estimates. 
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Throughout the section, 0 is the open set 82 x A in R3 with e = (0, 2ir); the 
generic point in Q will be denoted by x = (x, y, z). 

3.1. Cartesian Coordinates. We denote by Cm (0) the space of infinitely dif- 
ferentiable functions from e into R which are periodic with period 27r. For any 
real number s we introduce the closure HI (8) of COO (0) in the space H8(8); we 
denote its norm by H *I1,#. 

Let C' (Ql) be the space of infinitely differentiable functions from Q) into R which 
are periodic with period 2ir in both directions x and y. For any nonnegative integer 
m, we introduce the closure Hm p(Q) of C# (17) under the norm 

m,#,p ( z ,Iaxk,y9yk2azk3 U(X) p(z)dx 
kEN 3 

IklI<m 

where p denotes either the Legendre or the Chebyshev weight function. 
For any real number s = m + a, 0 < a < 1, we define H' p(Q) to be the 

interpolation space between Hm+'(Q) and Hm p(0) of index 1 - a; we denote its 
norm by *II- lI,#,p. 

In addition, for any real number s we define HI p,o (0) to be the closure in 
HS p (0) of the space of functions of C' (Q) which have compact support with 
respect to the z variable. 

For any integers K and N with K > 0 and N > 2 we set 

VK,N = {SK(82) ? PN(A)} n H# p (n) 

that is, 

VK,N = f U; Vx E Q, u(x) = (1- z2) k ei(kx+k2Y)Uk(Z) Uk e PN2(A) 

I - ~~~~~~kEN 21 
t I~~~~~~kl1 <KJ 

Let QK: L2 (8) -- SK (8) be the L2(8)-orthogonal projection operator over 
SK(e). It is well known that the operator QK commutes with differentiation, i.e., 
it satisfies 

Vp E H (8), QK('P) = (QK?P)' 

We recall the following approximation results (see Pasciak [22]): 

THEOREM 3.1. For any real numbers v and a with 0 < v < a, there exists a 
positive constant C independent of K such that 

Vp E H#(8), Ik1 - QK'PIfv < CKV`II9Io, 

For any function u in L2 (0), we define 

(3.1) ((QZKU)(X) = (QKU(., Y, z))(x) a.e. (y, z) in e x A, 
(QyU)(X) = (QKU(X, ., z))(y) a.e. (x, z) in 8 x A. 
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From Theorem 3.1 we easily deduce the following corollary: 

COROLLARY 3.1. For any real numbers v and a with 0 < v < a, there exists a 
positive constant C independent of K such that 

(3.2) Vu E Ha II(Q) u - QKuII,,#,p + Ilu - QYuIIlv,#, < CKv f|IuI0,#,p. 

Let r be a real number with r > 1. For any divergence-free function u of the 

space (Hr p(Q))3 n (Hl p,0(Q))3, let pdiv u be the orthogonal projection of u, 

for the (Hr#,p(Q))3-inner product, onto the subspace of divergence-free functions of 

(VK,N )3. 

We can now state the following approximation result: 

THEOREM 3.2. Let r be a real number with r > 1 and r N N +ao. For any real 
number a such that a > r, there exists a positive constant C independent of both K 
and N such that 

vu E (H6,p(2))3 n (H' ,0(0))3 ; div u = 0, 

(3.3) jju - 
gdiV UIIr,# p< C(Kr-a + Nr o)IIUII,,#,P. 

Proof. Let u be a divergence-free function in (HO' P(Q))3 n (Hl p,O(Q))3, and 

assume first that the real number a is such that a > r + [r] + 3. Consider the 

function 
U = QKQKpr+2NU 

where PrZN is the operator introduced in (2.11). Since QK commutes with any 

derivative, we note, by using the definition of Prz4N that U is a divergence-free 

element of (VK,N)3. The inequality (2.18) (where &ox' 
div 

is replaced by Qx and 
y, divyed lv 

by QK) yields 

IIU - Ujjr,#,p < 311u - Pr+2,NUllr,#,p + 21|u - QyUIIr,#,p + I|U - Qx U r,#,p; 

hence, from the definition of ar,K ,N, and using Theorem 2.2 and Corollary 3.1, we 

get 

|U- Pr,K,N IIr,#,p ? u|U-Ir,#,p < C(Kr- + NT-)IIUI# 

In other words, the operator I - div N is continuous from the subspace of diver- 

gence-free functions of (H'7 P(Q))3 n (HI p,0())3 (with u > r + [r] + 3) into 

(Hr P(Q))3 with a norm < C(Kr-T + Nr-T). On the other hand, it is clear 

that I - pdiN is continuous from the subspace of divergence-free functions of 

(Hr P(QJ))3n (H1 p,O(Q))3 into (Hr P(Q2))3 with a norm equal to 1. Thus, Theo- 

rem A.1 gives the estimate (3.3) for any real number a > r, by using an interpolation 

argument. 

As in Section 2, we give a different approach for the case of the Legendre weight. 

To state the analog of Theorem 2.5, define an operator rIK,N as follows: 

1(HK,NU)1 = QxKQKl11,N-1Ul1, 
VU e (H# ((Q))3, |(fK,NU)2 = QKQK 1,N-1U2,u 

V(IK,NU)3 = Qx QyH*Z U3 

For any function u in (H2 (q))3 n (H#,O(Q))3, the function IIK,NU belongs to 

(VK,N)3. Moreover, the divergence of IIK,NU is given by 

divflK,NU = QxQy H',N-ldivu; 

hence, if u is divergence-free, so is HIKNU. 
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The proof of the following estimate is analogous to the proof of Theorem 2.5. 

THEOREM 3.3. For any real numbers v and a with 0 < v < 1 and a > 3, there 
exists a positive constant C independent of both K and N such that 

(3.4) Vu e (Ho(fj))3 n (H o0(f))3, 

IIU-1flK,NUjII,# < C(Kv-a + Nva)IIuIIs,# 

and 

(3.5) Vu e (Ho'(q)) 3 n (Hl o(Q))3, 

Ildiv u - div rIK,NuIIv,# < C(Kv+1- + Nv+l'-a)lIdiv ullI#. 

3.2. Cylindrical Coordinates. Let Ro, R1 and L be three real numbers such that 

0 < Ro < R1 and L > 0. In this section we set Ql = (RolR1) x (0,2) x (-L,L), 

and the generic point in Q7 will be denoted by x = (R, 0, Z). We consider functions 

which are periodic in both directions 0 and Z. We let p: (Ro, R1) -? R be either the 

Legendre weight function defined by p3(R) = 1 or the Chebyshev weight function 

defined by p3(R) = (1 - [(2R - Ro - R1)/(Ri -o)]2)-1/2 

The definitions of the spaces HI(Q) and HI p o(Q) are analogous to those of 

the spaces H#p(Q) and H' p o(Q) 
For any function ui = (01R, i6, iuz) from Q7 into R3, the divergence of ui is defined 

by 

dv_1 9(RiiR) 1 aiioe aiTz 
(3.6) div u = - (u + _ Au + -u (3.6) 

~~~~~~R 9R R 90 19Z 
For any integers K and N with K > 0 and N > 2, we define the space VK,N as 

follows: 

VK,N = {U;VX E Q,i(X) = E Uk(R)eC(k1 '+k2Z/L) 

kEN2 
lkl I <K 

Uk e PN([Ro,Rl]),iik(Ro) = Uk(R,) = 01. 

Consider the affine change of variables 

37r Z, =0 Z=2R-Ro-RI 
L R - Ro 

which maps Q onto Ql. 

For any function ui: Q _ R3 we define u: Ql -_ R3 as follows: 

(3.8) ul(x) = -uz(x), u2(x)= R 2 s(x), U3(X) 
2 
2 iUR(X). 

L R - Ro R - Ro 
Letting 

Ro + R, 
a 

R, - Ro ' 
(3.9) Vx e Q, a(x) = z- a, 

Du = au, + a-1 aU2 al{au3} 
Ax ay az 
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we have 

(3.10) div ii() = Du(x). 

The following lemma will be useful in the sequel. 

LEMMA 3. 1. Let b be a strictly positive function in C? (A). Let HN be an 
operator such that for any real numbers v and a with 0 < v < a there exists a 
positive constant C independent of N such that 

(3.11) Vu E Hp(A), IIU - HNuII,,p < CN"-'IulIJ,,p. 

Setting 

(3.12) Vu E Hp(A), (HN)bU = b-lIN(bu), 

for any real numbers v and a with 0 < v < a there exists a positive constant C' 
independent of N such that 

(3.13) Vu E HW(A), IIu - (IN)buII,,p < C'NVfllulla,p. 

Proof. If v is an integer, it is clear that the mapping u -* Ilbull,p is a norm on 
Hp(A) which is equivalent to the norm 11 II- P If v is a real number, we know that 
there exist four positive constants C1, C2, C3 and C4 such that 

( Vu E Hpv](A), C1l1bull[VJ,p < Ilbull[vJ ,p < C21IbuII[vl,p, 

Vu E Hp,+lv (A), C3IIbullIv+i],p < 1IbullI(v+1,p < C4I1bullj[,+l],p. 

Hence, by using an interpolation argument, we deduce that the mapping u 

IIbuI1,,p is a norm on Hv(A) which is equivalent to the norm 11 * IIV,P In the same 

way we prove that for any real number v the mapping u -- lb-lull,p is a norm on 
Hp (A) which is equivalent to the norm 11 II VP. Thus t3.13) is a direct consequence 
of (3.12). 0 

Let r be a real number with r > 1. For any divergence-free function u of the 
space (HI p(Q))3 n (Hl p(Q))3, let odiv fu be the orthogonal projection of ui 

for the (Hr p0(Q))3-inner product on the subspace of divergence-free functions of 

(VK,N)3. 

We have the following approximation result: 

THEOREM 3.4. Let r be a real number with r > 1 and r 0 N + ao. For any real 
number a such that a > r, there exists a positive constant C independent of both K 
and N such that 

Vfi E (HO(f))3 n (H ,(f))3,div i = 0, 
(1iy 

_ C.,KNUII7# 
? 

0(Kr-o N7+)IIuI,,#,p. 

Proof. Let iu be a divergence-free function which belongs to (H#,p(Q))3 n 
(Hlpo(Q))3. We use the change of variables (3.7) and the function u defined 

by (3.8). Since the change of variables is a C?-diffeomorphism Q -> Q7, the func- 

tion u belongs to the space (H1,p(fQ))3 n (H1,p o(Q))3. Moreover, by (3.10), u is 

such that Du= 0. 
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Denote by pDK NU the orthogonal projection of u, for the (H' p(Q))3-inner 
product, on the subspace of the functions v of (VK,N)3 such that Dv = 0. Hence, 
in order to prove (3.14), we are led to derive 

(3.15) IIu -rDK,NUIIr,#,p < C(K r-a + N)r-a)IIuI| 
for a positive constant C independent of K, N and u. 

We get the estimate (3.15) following the technique of the proof of Theorem 3.2: 
we begin by proving it for any real number a such that a > r + [r] + 3; here we 
replace the operator pr+2,N by an operator Nr+2,N which takes into account the 
new structure of the divergence operator. 

(1) For any real number q such that q > 1 and q 0 N + ao, we now define the 
operator qz,N 

For any function v in (H qp(Q))3, first introduce the functions: 

{z {z 

1(X)-j V2 (X y, t) dt and 2 (X) =f(t- a)vl (x, y, t) dt. 
-1 -1 

Recalling (3.9) and (3.12), we then set 

E (q,NV)1 = a pz [(q,N-1)a2 (b2)] 

q(9,NV)2 
= -A [(Ha ,- _)a-2 (k1 )]I 

(9qzNV)3 = (1qz,N-1)a- 1 (V3). 

(la) It is easy to see that the function zq NV is polynomial in z of degree < N. 
(lb) Using Lemma 3.1 and the technique of the proof of Theorem 2.2, we prove 

the following result: if q is a real number such that q > 1 and q 0 N + ao, then 
for any integer v such that 0 < v < q - 1 and for any real number 8 such that 
8 > q + v, there exists a positive constant C independent of N such that 

Vv E (H,9 p(Q))3, jv - q,NVIIv,#,p < CNV`SIvIIs,#,p. 

Moreover, the preceding estimate is still valid if q, v and s are real numbers such 
that q > 2, q 0 N + ao, 0 < v, [I] < q-2 and s > q + 1 + [v]. 

(1c) Let now q be a real number such that q > 2, and v be an element of the 
space (Hq#+I (Q)))3 f (HI p O0(Q))3. We prove that 9qz,NV belongs to (HI p O(Q))3. 
In view of the preceding estimate, we know that 9qz,NV belongs to (HI p(Q))3; 
hence it is sufficient to prove that 9qz,NV is such that 

(9q, N V)(X, Y, ? 1) = O a. e. (x, y) in 92. 

We first compute (9,q NV)2(X): 

(9q,NV)2(X) = 2a(x)(HIqN1) ( a(X)2 

+a(x)28 {(Hlq ) (fZiv(xj2 ) )} a.e. x in e2 

Moreover, according to Corollary 2.1, for any function v in (H2 p(Q))3 we have 

Vj E {0, 1}1 (yI(H,Nl-V)(X, Y, ?1) = A - (x, y, +1) a.e. (x, y) in e2. 
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Thus we deduce 

VZ = +1, (9,q NV)2(X,Y,Z) = 2a(x) (f a(Xj2t)d 

+ a(x)2 
9 

(f-Z1 V2(X y, t) dt) 

a.e. (x, y) in e2, 

that is, 

(?,NV)2(X, y, ?1) = V2(x, y, ?1) = 0 a.e. (x, y) in e2. 
In the same way we finally prove that (9 NV) belongs to (H' p O(Q))3_ 

(1d) We now prove that for any function v such that Dv = 0, 9i,NV is such that 

D9Rqv =0O. 

Since the operators (rIqN-2)a-, and (r,NI-2)a-2 commute with differentiation 

with respect to x and y, we have 

D9z v = _NV)_ I+ a1 q, NV)2 a-1 q{a(NV3)} 

=ala (( + 2)a-2 ++a(aq,N-2)a-IV3 

Since the function v is such that Dv = 0, we have 

V3 = a-( '1 _ 2) 

hence, using (3.12), we conclude that D91z,NV = O. 

(2) Using the operator 91+2,N just defined, and proceeding as in the proof of 

Theorem 3.2, we obtain (3.15). This completes the proof of the theorem. 0 

The analog of Theorem 2.5 reads as follows: 

THEOREM 3.5. There exists an operator HK,N: (H2 (Q))3 n (H#O(Q))3 - 

(VK,N)3 such that for any real numbers Iv and a with 0 < v < 1 and a> 3 there 

exists a positive constant C independent of both K and N such that 

V( f E (H (Q))3 n(H#,O(Q)) , 

ll(.6- fK,NfJUIIJ,,# < C(Kv-U + N-a)lIIIIl,# 

and 

VUi E (H (Q))3 n(H#,O (Q) 3, 

Ildivii - div flK,NUIJ,# < C(Kv+R'-1 + Nv+l-a)lldiviull,,#. 

Proof. As in the proof of Theorem 3.4, we are led to prove that there exists 

an operator HIK,N: (H2#(Q))3 n (H# O(Q2))3 
__ (VK,N)3 such that for any real 

numbers v and a with 0 < v < 1 and a > 2 there exists a positive constant C 

independent of both K and N such that 

Vu E (H#(Q))3 n(Hl,O(Q)), 

(lu 
- 

nK,NUIIv,# 
? 

C(K-'. + 
Nv-)IIlull,# 
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and 

Vu E (Ho (Q)) n(Hl,O(Q))3 
IIDu - DHK,NUIIv,# < C(KV+1- + Nv+l'-O)lIdiv uIIi,#. 

Recalling the definitions (2.6), (3.1), (3.9) and (3.10), we introduce two operators 
TN and rlK,N as follows: 

VuEH2(Q),VxEQ, (TNu)(x)= AZ [(H ,N-2)a2 (J U(x,Y, t)dt)], 

((HK,NU)l = Qx QK (TN)aUl, 
Vu E (H2 (0))3, (HK,NU)2 = QxQ TNU2, 

k (HK,NU)3 = QxQK (2z,N)a-1U3- 

(1) Arguing as in the proof of Theorem 3.4, we prove that for any element u of 
the space (H2 (Q))3 n (H# 0(Q))3, IIK,Nu belongs to (VK,N )3. 

(2) Let now v and a be two real numbers such that 0 < v < 1, a > 2, and let u 
be an element of (Ho (Q))3 n (H ,0(Q))3. In order to prove the estimates (3.18) 
and (3.19), we follow the proof of Theorem 2.5. Since we have 

DHK,NU = QxKQY (TN)aDU, 

it is sufficient to prove that for any function u in H" (Q) we have 

IIu - TNuIIv,# < CNV jIIUIIjy,#, IIU - (TNU)allv,# < CNV IIUIIcy,# 

and 

IIu - (II2,N)8-1UIIv,# < CNjIjuIIj,,,# 
where C is a positive constant independent of both N and u. 

We follow the proof of Theorem 2.2: In view of Corollary 2.1 and Lemma 3.1 it 
is sufficient to prove that for any real numbers A and ,u with 0 < A < 1 < ,u there 
exists a positive constant C such that 

V~p E Hm(A), - [( ' 2 (f p ((t) dt)] < CNAM-8IIp1j.. 

This estimate follows from Corollary 2.1 and Lemma 3.1. Thus, (3.18) and (3.19) 
are proved. This completes the proof of Theorem 3.5. O 

4. An Application. For some applications of our results we refer the reader 
to F. Pasquarelli, A. Quarteroni and G. Sacchi Landriani [23]. In this section we 
consider the Legendre spectral approximation of the Stokes system between two 
cylinders. This approximation scheme has been introduced and implemented by N. 
Mac Giolla Mhuiris (see [16] and the references therein for other methods of this 
type). Using the notations of Section 3, the variational formulation of the Stokes 
problem between two cylinders is as follows: given a function f in (L2(Q))3, find ui 
in the space ((H2(Q))3 n (Hl ,0())3 such that 

(4.1) (V E (L2())3; diviv = 0,- f f AuR dR dO dZ = f fNR dR dO dZ, 
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Here, the operators div and A are defined by 

dv-1 d(RiiR) 1 E9V9 di5z 
V = (RiR, 9,viz), 1 aR R d2+ d2i' 

Ali= 
(_ aR R2 -5702 +aZ2 

We consider the following spectral approximation of problem (4.1): find UK,N 

in (VK, N) 3 such that 

/VVK,N E (VK,N) ;divVrK,N = 0, 
(4.2) | - ff VK,NAUK,NR dR dO dZ = f6 fVK,NR dR dO dZ, 

tdiv uK, N = 0 in 6. 

We have the following convergence result for the solution of problem (4.2). 

THEOREM 4. 1. Let a > 1 be a real number. If the solution ui of problem (4.1) 
belongs to (H;4(0))3, there exists a positive constant C independent of ui, K and N 
such that 

(4.3) ||Ud 
- 

1iK,NII1,# < C(K1 a + N1 1)IIi|Ia,# 

Proof. Let odivj NU be the orthogonal projection of ui for the inner product of 

(Hl(Q))3 on the subspace of divergence-free functions of (VK,N)3. Using (4.1) 
and (4.2), we deduce 

(4.4) (VViK,N E (VK, N)3; diviK,N = 0 ,f6iK,NLA(fiK,N - diK Nu)R dR dO dZ 

= fhVK,N~i -\ (U-div,N i)RdRdOdZ. 

Choosing i'K,N = UK,N -1,KNU in (4.4) and using the following rule of integra- 
tion by parts: 

- J AwR dR dO dZ = grad grad iiR dR dO dZ, 

we obtain 

- dR - dUdZ NR dR dO dZ 
Igrad(fgrad(i1KKNNla/ 

= rd (fK,N- 1,K,Nfi) * 1,a pdK,Nf)R dR dO dZ. 

By using the Cauchy-Schwarz inequality, the preceding formula yields 

J Igrad(iiK,zv - '_Ndi)I2RdRdOdZ < f grad(i - div 12NU)IRdRdOdZ; 

hence there exists a positive constant c independent of ui, K and N such that 

IIUK,N 1-K, NKlNuII1 ,# ? c1u- Pl ,K,NUIII1,#. 

Using the triangular inequality, we deduce 

i - UK,N II 1,# < (1+ c) -|u-1,K,NUII1,#, 

and by using Theorem 3.4, we obtain (4.3). 0 
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Appendix. The proof of the estimate (3.3) requires an interpolation result that 
we state in this appendix. To simplify the notations, for any real number s with 
s> 1 we set 

# p(Q) = H p(Q) nfH l po(Q) 
and 

Ho sdiv (Q) = {u E (HO9 p(Q2))3; div u = O}. 
We want to prove the following theorem. 

THEOREM A. 1. For any real numbers a, r and O with 1 < r < a and O < O < 1, 
we have 

(A.1) [Ho#pv (0), Hordiv ()]@ = Ho (1-p)+r,di(Q) 

For the notations of interpolated spaces we refer to Lions and Magenes [15]. This 
theorem is valid when p is either the Legendre weight or the Chebyshev weight. We 
give its proof for the Chebyshev case. 

We first recall an interpolation result for the spaces Ho' 'p(Q). 

THEOREM A.2. For any real numbers a, r and O with 1 < r < a and O < 0 < 1, 
we have 

(A.2) [(Ho# p(2))3, (H(# (2))3]o = (Ho(#,j)'f+OT(Q 3* 

This result has been proved by Y. Maday [18, Theorem 11.5] for the spaces 
(Ho" (A3))3; the same proof gives (A.2) for the periodic/nonperiodic spaces 

(Ho #,p (Q))3 
We first prove several lemmas. We find it convenient to introduce the following 

notations: for any real number A with A 54 0, set 

(ax(Z) = sh(Az), 

(A.3) A(z) = ch(Az), 

9=A lla \112aA\ 113A\ ii2 
LEMMA A. 1. For any real number A with A $ 0, the following estimates hold: 

(A.4) 01A1/2eA ? IIoCAIIo? I ? 02A1/4eA, 

(A.5) CJA-1/e \110lo< l.xl < C2A-1/2 e\ 

and 

(A.6) IlaX\Ilo,p-1 < 11AIIOp_1 < C2A-3/4e\, 

where Ci and C2 are positive constants independent of A. 

Proof. Setting I; - f/2 cos2j (0) dO, we recall that 

I3 - Ij+1 = I3/(2j + 2) and Ij - 17r/(4j)31/2; 

hence there exists a positive constant A such that 

(A.7) Vj E N, 2) 
< I < A(2j + 12 

-1/2 (2j + 1) -. 

It is clear that 
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and a direct calculation gives (A.5). To obtain (A.4) and (A.6), we note that 

I 2III, Pt = 2[ch(Az)]2[p(z)]?1 dz = [1 + ch(2Az)][p(z)]J' dz 

and 
fl0 (2 A)2j f'2 J ch(2Az)[p(z)]?' dz = : (2j)! | z2 [p(z)]l dz. 

Using (A.7), we get 
1 

J z2'p(z) dz - Ij < A(2j + 1)-1/2 

and 

f z2i[p(z)]-l dz = Ij -1+1 < A(2j + 2)2(2j + 1)1; 

hence we deduce 
1 00 ~~~~~~(2A ) 2 

ch(2Az)p(z) dz < A Ei 2)(2 )/ 1? ^~~~~~3=0 (2j)! (2j + 1)12 

( ?? 2j ) 1/2 1/2 

A 
E (2j)! EJ~ Z (2j + 1)!) 

< A[ch(2A)sh(2A)/A]1/2. 

This proves (A.4). We also have 

|ch(2Az)[p(z)]"1 dz < A 
0 

(2j + 1)!(2j + 2)1/2 

_=0 __2j _ (2A)2j2 2 

( A (2A)2' 1/2 1/2 
j= (2j + 1)! (2j +2)! 

< A[sh(2A)ch(2A)/(8A3)]1/2 

which gives (A.6). 0 

LEMMA A.2. For any real number A with A > 1, and for E = +1, the iolution 
, of the problem 

( (~xx)"/ - A2A,e = g9 in A, 
SA,e(1) = (1 + E)/2, 1 ,(1) = (1-)/2 

satisfies 

(A.8) 6\'(-1) = <(1) = 0 

and 

(A.9) Vj E N, 11gl j,\j-1/4~ 

where Cj are positive constants independent of A. 

Proof. We prove the lemma for E = 1; the case E = -1 is analogous. We first 
remark that if p is such that pl - A2_2 = 0 we have 

(6 1 p - A,1 '\')P = g,\ P, 
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and then 

4~~~~~~ l0 ()P)- (-)p-)='(1) + g(t) Wp(t) dt. 
-1 

Applying this relation with p = a, and 'p = ,f3, we obtain 

6\,1 (1) + X,1(_-1) = X,'1 (1) - 6\,1 (_1) = ?, 

and this gives (A.8). Then S; 1 is the solution of the problem 

- A21 =g 

tA,ll) =A,1(1) =0; 

hence we obtain the classical estimates 

(A. 1 0) 1 lo <C-11. o., 11f lo <C-11g 119.x'p.P 

On the other hand, 

IllgIIo, 1 <A {ch(A) II&la,P +1sh(A) 11l\Io2} 

and 

llg II0o,p < A2 {ch(A)1," lo, + sh( )I "a'I llO'P 
0 Ti 0-\IIfII 

Using (A.4) and (A.5), we deduce I11Ao,P < CA7/4 and IIg>IIo,p ? CA1/4; hence 
from (A.10) we get 

(A.11) Ik~,el 110', < CA3/41 IAIIo,p < CA7/4 

Using now the inequality 

ll\,6110p < A-2{111gA110, + l'k,eIIo1p}, 

we obtain 

(A.12) I, o110,p < CA-114 

By virtue of (A.11) and (A.12) we have (A.9) for j E {0, 1, 2}. By using the equality 
/= A2~ + g, we finally obtain (A.9) for j > 3 by induction. O 

LEMMA A .3. For any real number A with A $ 0 and any function f in Lp (A), 
the solution 'p of the problem 

( _-A2p = f in A, 

'p(1) = 'p(-1) = 0, 

satisfies 

(A.13) k0'(-1)I + ko'(1)l < CA-3/411fIIo,p, 

where C is a positive constant independent of A, 'p and f. 

Proof. Setting 

x()=sh(A{z + 1}) 
X(z) = sh(2A) 

we have the relation ('p'x - pX')' = fx; hence 

p(1) = /f fz(z) dz. 
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This gives the estimate 

(A.14) ko'(1)I < lIf IIo0pIIXIIo,p-i 

On the other hand, 

= ch(A)a,\ + sh(A)f3A 
sh(2A) 

and from (A.6) and (A.14) we get 

I"'(1)I < CA -3/411f IIo,0. 

In the same way we obtain Ip'(-1)1 < CA-3/411fI1o0p. O 
We are now in a position to state the following theorem. 

THEOREM A.3. Let r be a nonnegative real number. For any function p in 
Hr 'p(Q) with f0 p(x) dx = 0, there exists a function u in (Hr+l (Q))3 n(H",pO(Q))3 
such that 

(A.15) divu=p 

and 

(A. 16) IIUIlr+l,#,p < CrIIPIIr,#,p, 

where Cr is a positive constant independent of p. 

Proof. We prove (A.16) when r is an integer. The general case will follow by 
using an interpolation argument. 

We look for u in the form u = grad 'p+w, where p is the solution of the problem 

(A =p inQ, 
p E H#,P,o(Q) 

To this end we write p and p in the form 

p(x) = ke pk(z)eC(1x+k2Y) with f po(z) dz = 0, 

WO(X) = S Ok(z)ez(kx+k2Y). 
kEZ2 

For any k in Z2, (Ok is the solution of the problem 
( 

(0'pk) 
- 

-k2Ok = Pk, 

Pkl(-1) = k(1) = 0. 

Since f1 po(z) dz = 0, we have f1 (po)"(z) dz = 0, hence 

(A.17) (0 = fo(1) 

Moreover, 

(A.18) 1c'{(-1)1 + Il'(')I < CJJI0012,p < C0IPO1O,p. 

Using (A.13), we also get 

(A.19) Vk E Z2, k 0 O, Jp' (-1)1 + Jko(1)1 < Clkl 3/4IpkII4,p. 

We now set 
v = grad p = (vl, v2, v3). 
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It is easy to show that (see, e.g., [7, Lemma 11.3]) 

IIVIIr+l,#,p ? CIIPIIT,#,p, 
div v = p, 
(Vl iV2) E (Hlp (0))2. 

Moreover, 

(A.20) V3 (x) = k (z)ei(k1x+k2Y) 

kEZ2 

We now define the divergence-free function w as follows: 

W(X) = ( Wkz)e(klx+k2Y) 

kEZ2 

where the functions Wk are defined as follows: 
(1) 

WO(Z) =( ). 

(2) For any k in Z2 with k 5 0, we set 

(A.21) Pk = pk(1)MkJ2,1 + k 

(where , is defined in Lemma A.2) and 

-ik,V)' (z) 

Wk(Z) = klk2 2 -ik2V{ (Z) 

Using (A.17) and Lemma A.2, we have 

v + w E (Hl,p,O (Q)) 

Finally, using (A.7), we deduce 

IIWI12+I,#,P ? kc{(1)12 + Ej {Jkl2r+2Il/kII2 ,#,p + Ikl2T11k 112 
kZ2 

(A.22) k$AO 

+ I||k||+l,#,p + IkI2 IkkII+2,#,p}. 

Using (A.9), (A.19) and (A.21), we obtain the estimates 

Vj E N |I|+kllj,#,p <Clklj-lllPkIo,#,pi 

which, using (A.18) and (A.22), give the estimate 

IIWIIr+1,#,p < CIIPIIr,#,p 

Theorem A.3 is then proved with u = v + w. Ol 
Proof of Theorem A.1. Theorem A.1 follows from Theorems A.2 and A.3, using 

[15, Vol. 1, Theorem 14.3]. 0 
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