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Polynomial Approximation
of Divergence-Free Functions

By Giovanni Sacchi Landriani and Hervé Vandeven

Abstract. We study the best approximation of a divergence-free function by a diver-
gence-free algebraic or trigonometric polynomial and we prove an optimal estimate. In
a particular case we give also an optimal result for the polynomial approximation of a
function and its divergence.

1. Introduction. In this paper we study the problem of the approximation of
a divergence-free function by divergence-free polynomials. This problem is closely
related to the analysis of the convergence of spectral methods for the incompressible
Navier-Stokes equations in a cube with appropriate boundary conditions: Dirichlet
in all the directions, or Dirichlet in one direction and periodic in the others. In these
methods the discrete solution is an algebraic (or a trigonometric) polynomial which
satisfies a discrete continuity equation. The convergence proofs are essentially based
on the fact that the distance between the exact solution and the discrete solution
(approximation error) is related to the distance between the exact solution and the
space of divergence-free polynomials {projection error). This distance is in general
associated with the H!-norm (see, e.g., [8]), but also with the H2-norm, typically
when tau-methods are considered (see, e.g., [L1], [24]). Recently, C. Bernardi, C.
Canuto and Y. Maday [5] have analyzed an approximation of the Stokes equations
involving Chebyshev polynomials; the approximation then involves weighted norms.

For these reasons it appears useful to prove optimal convergence estimates in
weighted norms for the projection error onto the space of divergence-free polyno-
mials. Some results of this type were proven in [5] and [25] for weighted norms in
a two-dimensional domain, in [8] for unweighted norms in a two-dimensional do-
main, and in [7] for unweighted norms in a two- or three-dimensional domain for a
particular set of boundary conditions.

Some approximation results in Sobolev spaces for orthogonal polynomials can be
found in 3], [6], [10], [14], [17], [18], [20], [22]; we shall use this kind of results for
the analysis of the projection operator on the space of divergence-free polynomials.

An outline of the paper is as follows. In Section 2 we define some projection
operators on the space of divergence-free functions which are polynomial only with
respect to one variable. These operators are useful in studying the best approx-
imation of a divergence-free function by divergence-free polynomials. In the case
of unweighted norms, we also define a projection operator such that, given a func-
tion u, the divergence of this projection of u is related to the H-projection of the
divergence of u. This result can be useful in the analysis of problems where the
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divergence of the solution is a given function not identically zero. In Section 3 we
consider the case of a function which is periodic in some directions, both for Carte-
sian and cylindrical coordinates. We present results also for these cases. These
results can be used in the analysis of the methods presented in [13], [16], [21]. In
Section 4 we provide an application of the preceding results; we analyze a spectral
approximation of the Stokes problem in cylindrical coordinates and we prove an
optimal convergence estimate. Finally, in the appendix we derive an interpolation
result for the spaces of divergence-free functions; such a result is useful for the
estimates of Section 3, where periodicity is assumed in some directions.

Notations. Let A be a set in R,R? or R3. For any nonnegative integer N we
denote by Py (A) the space of all polynomials on A of degree < N in each variable.

Let © be the interval (0,2x). For any integer d > 1, and for any nonnegative
integer K, we denote by Sy (6?) the space of trigonometric polynomials on ©¢ of
degree < K.

For any function ¢: R — R and for any nonnegative integer j we denote by o)
the derivative of ¢ of order j.

For any k = (ky,...,kq) € Z% we set

1/2
d /

d
[kly = |kj| and [|klz= [ &}

Jj=1 Jj=1

For any real number s we denote by [s] its integral part.

Given a function space V and a nonnegative integer d, we denote by V¢ the
corresponding vector-valued function space; the norm in V¢ is denoted by the
same symbol as the norm in V. If P is an operator on V, we denote by P the
operator on V¢ defined by

Y = (v1,...,v4) €V, Vj,1<j<d, (Pv); = Pu;.
The norm of a Banach space Y is denoted by || - ||y.

2. Projection Operators for Homogeneous Boundary Conditions. In
this section, (1 is the domain A% in R3, with A = (—1,1). The generic point in (1 is
denoted by x = (z,y, 2).

Let p: A — R be either the Legendre weight function defined by p(¢) = 1 or
the Chebyshev weight function defined by p(¢) = (1 — ¢2)~!/2. We define a weight
function on by w(x) = p(z)p(y)p(z). When p and w are the Legendre (resp.
Chebyshev) weights, we set 09 = 1/2 (resp. og = 1/4).

2.1. The Weighted Sobolev Spaces. We recall here briefly some definitions of
weighted Sobolev spaces (see, e.g., (1], [2], [15]). Let

Lf,(A) = {(p: A — R; ¢ is measurable and / ©2(¢)p(¢) ds < +oo}
A

be the Lebesgue space associated with the measure p(¢) d¢, provided with the inner
product

(%), = /A o(S)9()p(s) dg

and the norm | - [lo,, = (-, ‘),1;/2.
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A scale of weighted Sobolev spaces is defined as follows: for any integer m > 0,
H7'(A) is the subspace of L2(A) of the functions such that their distributional
derivatives of order < m all belong to L%(A); it is a Hilbert space for the inner
product associated with the norm

m 1/2
llellm,p = (Z ll®) ll%,p) :
k=0

For a real number s = m + @, 0 < a < 1, we define H;(A) to be the interpolation
space between H**1(A) and H}*(A) of index 1 — a (see [4], [15]); we denote its
norm by || - ||s. For any real number s with s > 0y, for any function ¢ in Hj(A),
and for any integer j with 0 < j < s — g, the boundary values () (+1) are well
defined (see [15, Vol. 1, Ch. 1, Theorem 11.5] and [12, Theorem 7.1]).

For any real number s we define H3 ;(A) to be the closure in H3(A) of the space
D(A) of infinitely differentiable functlons with compact support in A. For a real
number s such that s ¢ N+ 0¢ and s > 0o we have (see [6])

(2.1) H54(A) = {p € H3(A); V5 €N,0< 5 < [s - 0q), o) (—1) = pU)(1) = 0}.
Let now

LI(Q) = {u: 2 — R; u is measurable and /Qu2 (%)w(x) dx < +oo}

be the Lebesgue space associated with the measure w(x) dx, provided with the inner
product
(u,v)y =/ u(x)v(x)w(x) dx
Q

and the norm || - ||o» = (-, ‘)010/2.

A scale of weighted Sobolev spaces is defined as follows: for any integer m > 0,
HT™(Q) is the subspace of L2({1) of the functions such that their distributional
derivatives of order < m all belong to L2(Q); it is a Hilbert space for the inner

product associated with the norm

1/2
Qk1+kz+tks 2
32k ogF0F u(x)| w(x)dx

o= | & [

keN?3
|k|1<m

For a real number s =m + «, 0 < a < 1, we define H? (2) to be the interpolation
space between H™+1((2) and H™(Q2) of index 1 — a; we denote its norm by || - ||s,-

For any real number s we define HY, 5(02) to be the closure in H, ({2) of the space
D(Q) of infinitely differentiable functions with compact support in Q.

When we treat the case of the Legendre weight, the subscripts p and w will be
deleted.

2.2. Projection Operators onto Divergence-Free Polynomials. We define a one-
dimensional projection operator that we shall use in the sequel. We recall the
following result due to Y. Maday [17].
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THEOREM 2.1. Let r and s be two real numbers such that r ¢ N + o9 and
0 < s <r. For any integer N with N > 1, there exzists an operator 11°7 \ from
HJ(A) NH; 4(A) onto Py (A) NHS (A) which satisfies

(2.2) Ve e H(A)NHL5(4),  ll —T1°7 yollv,p < CN*iollop,

for any real numbers v and 0 with 0 < v < r < o and for a positive constant C
independent of both ¢ and N.

For any real number r not in N + og, with r > 1, we now define a polynomial
I1, N which coincides with ¢ at the boundary with all the derivatives up to order
[r—o00]. In the next corollary, which is a direct consequence of Theorem 2.1, we show
that the operator II, ; has the same asymptotic properties as I1°7 . Naturally, if
¢ belongs to H, ;(A), then II, v is equal to I1°] yo.

COROLLARY 2.1. Let r be a real number withr > 1 and r ¢ N+ 0g. For any
integer N with N > 2[r — do| + 1, there exzists an operator I, n from HJ(A) onto
Py (A) which satisfies

(2.3) Vo €eHLA), VJEN, 0<j<[r—oo], (M np)?(£1)=p?(£1).

Moreover, for any real numbers v and o such that 0 < v < r < o there exists a
positive constant C independent of N such that

(2.4) Vo e H(A), |lo —Trnellv,, < CN*"?(iollo,p-

Proof. Let ¢ be a function in H], (A) and g be the element of Py(,_gq)41(A) such
that

(2.5) VieEN, 0<j<[r—o0), oY (£1)=q(£1).
It follows from (2.1) that ¢ — g belongs to HJ 5(A). Set
(2.6) Orve =g+ 1% N(0 — q).

From (2.5) and (2.6) we obtain (2.3).
Let now v and o be two real numbers with 0 < v < r < 7, and assume that ¢
belongs to HJ(A). We have

[r—o0]

lgllos < C D {le@ (1) + 1D (1)1}
=0

Let € = (r — 0¢) — [r — 0p]. Since r is not an element of N + o, we have € > 0.
Using the imbedding H3°+¢(A) C L*(A), we deduce

[r—0o0]

(2.7) lallo, <C Y- 1eDlzeo(ay < Cligllrp < Clillo-
3=0

Using (2.2) and (2.7), we get

le =T nellu,e = (e — @) —TI°7 N (= @llvp
<SCN""|le = qllop < C'N*"||©llop-

This completes the proof of (2.4). O
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We now define an operator with values in the space of functions which are poly-
nomial with respect to one variable.
For any real number r with » > 1, and for any function u of H,({2), we set

(2.8) (T yu)(x) = (II, yu(z,y,-))(2) for ae. (z,y) in A2

The operators I17 ; and IT¥  are defined in the same way. We remark that II7
commutes with the derivatives with respect to the z and y variables, i.e.,

0 e . _
(2.9) EEH,.’NU—

provided that the derivatives of u belong to the domain of I17 .

If u is a divergence-free function, we want to study the best approximation
of u by divergence-free polynomials. The first step of our analysis is to define a
divergence-free function which is polynomial with respect to one variable and which
is an optimal approximation of u.

Let r be a real number with » > 1. Given a function u = (u1, u2,u3) in (H7,(Q))3,
not necessarily divergence-free, we define ¢; and p2 by

Ju d du
5,N% and %Hf,N“=Hf,Na—y’

z

(2100 (%)=~ / iw(x,y,t)dt and pa(x) = / ui (2,9, ) db.

-1

We define the operator p7 y as follows:

0
(P:,Nu)l = 511:,1\/802,

r 3
(2:.11) vu & (H, (@), (p7nw)2 = _E'z'nf,mola

(Pf,Nu)Z% =117 yus.
The operators p7 y and pf.” n are defined analogously.
Remark 2.1. Assume that u is a divergence-free function. Then we get

_ Op _ 0o _0p1  0p2
(2.12) ur = 5= Uz =~ and usz = 3y 32’

and using (2.9), we deduce that p7 yu is also divergence-free.
Remark 2.2. Let r be a real number such that » > 1 and u be an element of
(H7,(Q))3 N (HL 4(€))3. Using (2.8) and (2.10), we clearly have
(p:,Nu)l(-la Y, z) = (pi,Nu)l(la% z) =0 ae. (ya Z) in A27
(pf,Nu)l(za —'1,2) = (P:’Nu)l(x, la z) =0 ae. ((E, Z) in A2a
and the same properties hold for (pZ yu)2 and (pZ yu)s. Since 7 is such that r > 1,
we have also
(p:,Nu):i(x?y, _1) = (P:,Nu):i(xayv 1) =0 ae (IE, y) in A2'
Assume now that r is such that r > 1+ 5. Using (2.3), (2.8) and (2.10), we obtain

(pZn)i(z,y,—1) = (pinu)i(e,y,1) =0 ae. (z,y) in A%,
and the same property holds for (p7 yu)2.
We now give an estimate for the quantity u — p7 yu. We will find that for any
real number r > 2 and for any function u in (H[,(Q2))® N (HY ((Q))3, the function
pZ yu also belongs to (HJ, 5(0))3.
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THEOREM 2.2. Let r be a real number withr > 1 and r ¢ N+ o9, and N be
an integer with N > 2[r — a¢) + 1. For any integer v with 0 < v < r — 1, and for
any real number o with o > r + v, there exists a positive constant C independent of
N such that

(2.13) Vue (H ()%, flu-pfyulvw < CNY77 o w.
Moreover, if r is a real number such that r > 2, then the estimate (2.13) s still

valid for any real numbers v and o such that0 < v,[v]<r—-2ando >r+1+[v].

Proof. Let r be a real number such that » > 1 and r ¢ N + 09, v be an integer
with 0 < v < r -1, o be a real number such that ¢ > v + r and u be an element
of (HZ,(Q))3.

(1) We estimate the first component of u — pZ yu. Using (2.9) and (2.10), we
obtain

lur = (pZ vl = D

keN?
k[ <v

Since we have k3 +1<v+1<rando—-v+k3+1>20—-—v+12>r+1, using
Corollary 2.1, we obtain

"ul _ (Pf,NU)lllﬁ,w <C Z N2(ks+1)=2(c—v+ka+1)
keN?
87 [ Fk1tkap,\ |2
327 (szlay’”)
02

|k|1<v
O,w
2
dz ow

x 3
0<j<o—v+ks+1

We note that for any k in N2, 9%1+kz2, /921 9y*2 vanishes for z = —1; hence,

applying the Poincaré inequality (see [9, Lemma 1.1] for the case of the Chebyshev

weight), we obtain

Pka+1 3k1+k2¢,2_nz Fk1+k2 o0\ |I?
dzkat+1 \ gzkigyk: N gk gyks

O,w

< CN*) {Ilwzllﬁ,w +

02
dz ow

(2) The second component of u — pZ yu can be estimated in the same way.
(3) We now estimate the third component of u — p7 yu. We have

2
9k (ak1+k2u3 5 ak1+k2u3>

llur = (97 yu)illvw S CNYT°

=CN" " 7|uyllow-

llus = (92 ywsll2, = Y

dzks \ dzkrgykz N grkigyks

O,w

Since we have k3 <v<r—1and 0 —v+ k3 >0 —v > r, using Corollary 2.1, we

obtain
llus — (92 yw)slZ, SC Y N2ka—2o-vika)

keNs
[kl1<v
: 2
« Z Y akl +k2 02
027 \ Ozk10yk:
0<j<o—v+ks v /llow

< ON*=jug|7 .
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Thus the estimate (2.13) is established when v is an integer.

Finally, if r and v and o are three real numbers such that » > 2, 0 < [v],
(W]+1)<r—1and r <o —([v]+1), we obtain (2.13) by interpolation between
(HY(Q))? and (HY*1(Q))3. This completes the proof. O

Remark 2.3. Let r be a real number such that » > 2 and u be an element of
the space (H7;t1(2))3 N (HY ,(Q))3. Using Remark 2.2, and applying (2.13) with
v=1and o =r+ 1, we obtain that pZ yu is an element of (HJ, ((02))3.

Remark 2.4. Let r be a real number such that » > 1. For any function u in
(H7,(€2))3, we have

z
div p7 yu(x) = % (Hf’N (/ ) divu(z,y,t) dt)) a.e. x in Q.

Following the proof of Theorem 2.2, we obtain the following result:

If r is a real number such that » > 1 and r ¢ N + o¢, then for any integer v
such that v < r — 1 and for any real number o such that o > r + v, there exists a
positive constant C' independent of NV such that

Vu e (HZ())?, [divu - divpZ yullyw < CNYT177||div ullg—1 e

Moreover, if r is such that r > 2, then the preceding estimate holds for any real
numbers v and o such that 0 < v, V] <r—2and o > r+ V] + 1.

Let r be a real number with » > 1. For any divergence-free function u in
(HL ()N (HL 5(2))3, we denote by pdi¥u the orthogonal projection of u for the
inner product of (H,(£2)) onto the space of divergence-free polynomials of degree
< N which vanish on the boundary of (2.

We now state the main theorem of this section.

THEOREM 2.3. Letr and N be two integers withr > 1 and N > 0. For any
real number o with o > 2r + 1, there exists a positive constant C independent of N
such that

(2.14) Yu € (HZ(0))*N(HL ()3 divu =0, ||u—pf’i,‘\}u||,,w < CN™7||ul|o,w-

Moreover, if r is a real number such that r > 1 and r ¢ N+ 0p, the estimate (2.14)
13 still valid for any real number o such that o > r + [r] + 3.

Proof. Let r be an integer with r > 1. In order to prove (2.14), we may assume
that N is such that N > 2[r—0p]+3. We denote by p;’ ,3*" the orthogonal projection
operator for the inner product of (HZ,((2))® onto the subspace of (H o(€2))3 of
divergence-free functions which are polynomial of degree < N in the z variable.
We define p:}siv and p,"lsi" in the same way.

Let o be a real number with ¢ > 2r + 1 and u be a divergence-free element of
(HLZ,(2))° N (HL o()2.

We have 0 > 2r+1 > r+2. Since u belongs to (HZ(Q2))3N(H} ((€2))3, we deduce
from Remarks 2.1 and 2.3 that p7,, yu is a divergence-free function which belongs
to the subspace of (HY ((€2))2 of divergence-free functions which are polynomial of
degree < N in the z variable. We deduce from the definition of p?’y" that

e = o758 ullr <l = pF41 wullro;
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hence, using Theorem 2.2, we obtain

(2.15) lu— o2 8" ullrw < CN"|lu]ls,0-

Moreover, from the definition of pf‘,?,“' we also have

(2.16) Vv € (HL(Q)° N (HL ()% divv=0, [Iv— 25" Vlrw < IVl

z,div ,div

Naturally, the estimates (2.15) and (2.16) hold also for "y and p]'y".
The divergence-free function pf,',siv pfﬁi" pf",ﬂivu is a polynomial of degree < N
which vanishes on the boundary of 2. Hence we deduce

. div_g.div_zdi
(2.17) lu - P‘ri,ll\\llu”r,w <Ju- Pf,NwPg,NWP:,NWu”r,w'

To estimate the right-hand side of (2.17), we note that

z,div_y,div_z,div__ __ z,div y,div__z,div
u-pN Py Py u=(u—pry i)+ (u— el el u)

,di ,di ,di
—(I=prn ) u=pl N el N u).

Therefore, by (2.16), we deduce

,di ,di ,di
lu— 7N 02N 7N ullrw

< Jlu - p=a ullrw + 2u — p¥ 8" 02 eVl

and proceeding in the same way, we finally obtain

,div_y,div_z,di
lu- Pf,Nw fﬂf,va P:,qu"r,w

<lu = PN ullrw + 2llu = 2 ¢V ull o + 3fu = PNV Ul 0.

From (2.15), (2.17) and (2.18) we obtain (2.14).

If r is a real number such that r ¢ N + ¢, the same proof, where the operator
97,1 n is replaced by g7, , y, gives the result for any real number o such that
o>r+[r]+3. O

Remark 2.5. For any real number s > 1, set

O 4 (0) = {u € (H3()° N (Y ()% divu = 0).

(2.18)

Let r be a real number with » > 1. Theorem 2.3 shows that for any real number o
such that ¢ > r+ [r] + 3, the operator I — i, is continuous from H°Z 4" (Q2) into
(HL,(Q))® with a norm < CN"~?. On the other hand, it is clear that I — @iy, is
continuous from H°7; 4V () into (H”,(12))3 with a norm equal to 1. Then we could
obtain the estimate (2.14) for any real number ¢ > r by using an interpolation

argument, if the following property were satisfied:
(2‘19) Vo € (0’ 1)’ H0L1—9)0+0r,div(ﬂ) C [Hog, div(Q),Ho;, div(Q)]().

Unfortunately, even if w is the Legendre weight function, we are not able to prove
the property (2.19). Meanwhile, when the function u is assumed to be periodic in
some directions, we can prove the estimate (2.14) for any real number o > r by
using an interpolation result similar to (2.19) (see Section 3 and the Appendix).
Remark 2.6. Let r be a real number such that r ¢ N+ 09 and m be an integer
such that 0 < m < r. For any divergence-free function u in (HZ,(2))3N(HT((Q))3,

we denote by p:',’,’vdivu the orthogonal projection of u for the inner product of
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(H7,(2))?3 onto the space of divergence-free polynomials of degree < N which belong
to (HT,(€2))%. Using the same technique as above, we can prove the following
result: for any real number o such that o > 2r +1 (resp. 0 > 7+ [r] + 3) when r is
an integer (resp. a.real number), there exists a positive constant C' independent of
N such that

Vu € (H%(2))° N (HT ()% divu=0, [lu— o3 ullrw < CN"|[ulls..

If u is a function of two variables, the estimate (2.14) can be obtained for any
real number o > r by using a simpler technique. Precisely, the following result has
been proved in [25] and [5]:

THEOREM 2.4. Let r be a real number such that r > 1 and r ¢ N+ o¢. For
any real number o with o > r, there exists a positive constant C independent of N
such that

Vu € (H,(A%))? n (H) 4(A?))?; divu=0,
lu - pdXullyw < CN"7|lullgw-

2.3. A Different Approach in the Case of the Legendre Weight. In the Legendre
case (i.e., when w = 1), we now consider the problem of the best approximation of
both a function and its divergence.

For any function u in (H}(£2))® (not necessarily divergence-free), we shall define
a polynomial ITyu such that the divergence of ITyu is related to the H!-projection
of the divergence of u. A relation of this kind is useful in the applications. For any
integer d, the same type of result can be stated in the same way for a function u
of (H}(A%))? (see Remark 2.9).

We denote by (L,)nen the sequence of Legendre polynomials defined by the
recurrence relation

Lo(fl?) =1, Ll(x) =z,
Vz e, (Vn >2, nLy(z)=(2n-1)zL,—1(z) — (n — 1)Lp_2(x).
We recall the following relations:
Vn>0, L,(1)=1, Lp(-1)=(-1)",
!’ !’

Vn > 1, Ln_+1__L_"—1=Lm

(2.20)

(2.21) 2n+1
. = 2k +1
Vv e L*(A), v= Z (v, Lg) L.
= 2

We denote by Il v the orthogonal projection operator on Py (A) with respect to
the L?(A)-inner product. We recall that the operator I1°] , introduced in Theorem
2.1 is the projection operator on Px(A) N H}(A) with respect to the H}(A)-inner
product, i.e., it satisfies

II°1 v € Pn(A) NH(A),

VY €PN(A)NHG(A), ((I°f ne),¥) = (¢',9").

We first state a relation between Ilp y_5 and II°] y.

(2.22) Vo e Hi(A), (

LEMMA 2.1. For any function ¢ in H(A), the following formula holds:

. 1 1
(2.23) M°i e =Tl N_2p — 5(30, Ly_g)Ln_1— 5(90, N-1)Ln-
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Proof. Let Q be an element of Py_2(A) and let R be the element of Pn(A) N
H{(A) such that R"” = Q. Using (2.22), for any function ¢ in H}(A) we have

(H°1 NP Q) = ((H°1 ne) R') =—(¢,R') = (p, Q).

Hence we deduce
2N -1
2

(I1°} yo, Ln)LnN.

We now compute the last two terms in the right-hand side of (2.24). Let j be
an element of {0,1}. Using (2.21), we get

(! v, Ln—;) = (I°) yo Lyii-j = L1
lN ’ =7 1,N ’ 2N_2j+1

Lynyi—j—Ln_1-5
ol ! J J
((H e 2N — 25 +1 )

We note that N +1—3 > N and that (II°] y)’ is of degree at most N — 1. Hence
we have

I°} yo =To,N_200 — (I°1 N, LN-1)LNn-1

(2.24) _2N + 1

Ln_1_x
ol N\ = ol ’ N-1-j

Using again (2.21), we obtain
N 1 ot v Inoj—Ly_g
(H le’LN—])—2N—2]+1(H l,N(p)v 2N—2J—1 .

Since the polynomial Ly_; — Ly_3—; belongs to Px(A) N HY(A), using (2.22) we
deduce

(I} o, Ly—s) = ) Iy = Ly_aj
LN®EN=3) = o o+ 1 \¥ " TaN — 25— 1

P ,—'_'LN - P "——"LN == )
2N -25+1 2N -25+1
and applying (2.24), this completes the proof of (2.23). O
We now define an operator I}, by

(2.25) Vo eH2(A), Vzed, (ITip)(z)= /_ 1 (M n—19')(t) dt.

LEMMA 2.2. For any function ¢ in H?(A) N H(A), I} is an element of
Pn(A) NHE(A) such that (I o) (£1) = ¢'(£1). Moreover, for any real numbers
v and o with 0 < v < 2 < 0, there ezists a constant C independent of N such that

(226) Vo € H°(A)NHy(A), llo —yell, < CN*~|lo|lo.

Proof. Let o be an element of HZ(A) NH}(A).
(1) Let g be an element of P;(A) such that ¢(+1) = ¢’(£1). From (2.6) we have

M n-1(¢) =q+T°] y_y (' — ).

From Lemma 2.1 we deduce

1 1
[ el -owa= [ o -ow
-1 -1
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hence . .
[ Mnae)wa= [ ea=o,
-1 -1
and IT} ¢ belongs to Pn(A) N H(A). The fact that (IT} )’ (£1) = ¢’ (1) follows
from (2.6) and (2.25).
(2) We now prove (2.26). We first observe that

le —Myells < Cll’ —Ti,n-1¢]lo
and
le —IInells < Clle’ — My N—1¢||1;
hence, from (2.4), we deduce (2.26) for v = 1 and v = 2. In order to prove (2.26)

for v = 0, we use a duality argument. For any 9 in L2(A), we denote by Ay the
element of HZ(A) N H}(A) such that —(Ay)"” = ¢. We have
* — I} )
lo —xello=sup o= lve.v)
WEL2(A) llllo
Since ¢ — IT} ¢ belongs to H}(A), we deduce
. -1 l’ Av)
(2.27) lo—Typlo= sup (L=Tne), (A4))
EL2(A) 1%1lo
Now let ¢ be the element of P;(A) such that g(£1) = ¢'(+1). We have

(p—Txyp) =@ —Min-1¢' = (¢ =) ~T°[ n_1 (' = 9).
Formula (2.23) yields

* 1
(p—Myp) ={(¢ —q) —Mon-3(¢' — )} + 5(90' —¢,Liy_3)Ln-2

1
+5(# =4, Ly_s)Ln-1,
and we conclude that for any % in L2(A) we have ((¢ — Iy p)’, o, n—3(A%)') = 0.
Recalling (2.27), we obtain

Tl — ((p Ty ), (AY)’ — Tlo,n—3(AY)")
"SO HN(PIIO - sup ||¢||o

YELZ(A)
* A I _ 11 _a(A !
<llp-Typl sup LAY ~Tonv-a(A¢)lo
$EL?(4) Il llo
Since (2.26) has been established for v = 1, we deduce

* _ _ A
lo = Mpllo < CN*?llgllo) (N1 sup 1AV
verz(a) 1¥llo

<SCN?ells-
Thus, (2.26) is proved for v = 0. Finally, we obtain (2.26) for 0 < v < 2 by

interpolation. 0O

For any function u in H?(Q), we set
((H‘j‘vu)(z) = (yu(,y,2))(z) ae. (y,2)in A2,
(2.28) (I*%u)(z) = (Myu(z, - 2))(y) ae. (z,2) in A?,

(T*%u)(z) = (Myu(z,9,-))(2) ae. (z,y) in A%



114 GIOVANNI SACCHI LANDRIANI AND HERVE VANDEVEN

We note that IT*% commutes with differentiation with respect to the z and y
variables, i.e.,

0 vz OU

(229) 5;1_[*7\[“ = and _Q_H*fvu — *2 au

N 6—37 8y N a_y’
provided that the derivatives of u belong to the domain of IT*%;.

For any u = (u1,ug,u3) in (H*(2))3, we define

(Myu)y = KT v 005 g,

(2.30) (Tyu)y = 10§ v TI{ 1T v qus,
(Iyu)z = Hf,N—1H11/,N—1H*sz“3-
Remark 2.7. Set

3z‘+]

191={u€(L (Q)) (zj,k)eN{isz,js1,k51,azajak (Q)}
2 3 .o 3 - . 8’+J+kU2 2
Yo =que (L(N)° Y(,5,k)eN’, 1<1,)<2,k<1, ——+ FEE R e LZ(Q)

and
95 = due (L2(Q)% V(i k) €N®, i< 1,5 <1k<2 20U o ya
3= w ) 3 Jy y 1S LS LES ’Bziayfazk w .

It is easy to see that the domain of the operator Il is the space ¥; N J2 N I3,
which contains (H*(02))3.

Remark 2.8. Let u be in (H*(Q2))3 N (H(2))3. From Corollary 2.1 and Lemma
2.2 we obtain that ITyu is an element of (P (Q2))3N(H}((2))3. Moreover, applying
(2.25), it is clear that the divergence of IIyu is given by

(2.31) divIIyu =T1I¢ y_ 1Y 115 y_ divu.

Hence, if u is divergence-free, so is IIyu.
We are now in a position to estimate both u — IIyu and divu — divIIyu.

THEOREM 2.5. For any real numbers v and o such thato >4 and 0 <v <1,
there exists a positive constant C independent of N such that

(2.32) Vu e (H°(0))° N (Hy(Q)%,  |lu - Myully < ON*||ul,
and
(2.33) Yu € (H°(Q))>N(HL(Q))3, ||divu—divIIyul, < CN**1=7||divully—;.

Remark 2.9. Let d be an integer such that d > 2. For any function u in
(H?*1(A9))4, we define ITyu in the same way. We obtain the estimates (2.32) and
(2.33) for any function u in (H?(A%))4 N (H}(A9))¢ with 0 > d + 1.

Proof of Theorem 2.5. To simplify the notations, we prove the estimates (2.32)
and (2.33) for a function u in (H?(A?))? N (H3(A?))? with o > 3.

In order to prove (2.32), we prove the following inequality:

(2.34) ller = (Anu)slly < CNY"luslo

for 0 > 3 and 0 < v < 1; the estimate of us — (IIyu)2 can be obtained in the same
way.
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(1) We first prove (2.34) for v = 1. The following inequality holds:
llur = (Tnvu)ills < (7 - TF)T =T v _y)ually + 1(7 = TR Jus 1y
+I1( =T vy Jua .

(1a) We treat the first term in the right-hand side of (2.35). Applying the
Poincaré inequality, we observe that there exists a constant C such that

(I =T5) (T =T ) |13
1
<C
(2.36) - /—1

1
+c |
-1

Since IT{ _, is continuous for the H§(A)-norm, and IT*% commutes with differen-
tiation with respect to y, we obtain

(2.35)

2

dz
L2(A)
2

0 .
'6_y(I_H¥,N—1)(I_H Mur

9 11
eI~ R Tyt dy.

L2(A)

1 6 2 1 Bul 2
/ -y ) -T%)u|  dz< c/ -2l g
—1l/9y ’ L2(A) -1 9y llz2(a)
hence
1 a 2
[ - -5
-1 Yy L2(A)
1 112
Bul
< C’/ I-1I*%)— dy.
1 ( N) ay L2()
From (2.26) we deduce that
1 a 2
(2.37) / a—(I - y_ ) - T1*% )y dz <CN?*72||y||2 for o > 3.
-9y L2(4)

The operator IT} is not continuous for the H}(A)-norm; by (2.26) we obtain

9 2

1
[ -5 -nt | a
-1 L2(A)
1 s II?
SCN‘Q/ ”(I-Hg,v_l)—_‘
-1 ’ a(ll L2(A)
62u1 2
-1 —_—
+ “( 1,N—1) 6122 L2a) dy3
that is,
1 0 2
[t -m2u-ny_gu|  a
-1 L2(A)
1 2
SCN—2/ II(I—H?{N—J%
-1 ’ 0.’11 LQ(A)
82u1

+ ”(I— 1_[zll,N—1)

2
g dz.
z? Lz(A)}
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Using (2.4), we deduce
2
dy <CN*%29||y||2 for o > 3.

(2.38) /
L2(A)
The estimates (2.36) (2.37) and (2.38) yield

(2.39) (I -T"%)( = TF y_y)uills SCN*“|jull,  for o > 3.

(1b) We now consider the second term in the right-hand side of (2.35). We
observe that

S (-5 - Ty, )

2

3 .
(7 - "% )ua |1} < 3. —IR)u dy
L2(A)
aul 2
B dz,
Y0y llzaa)

and by (2.26) we obtain
(2.40) (I - 1*%)ui|ls < CN'7||ully for o > 3.

(1c) The third term in the right-hand side of (2.35) can be estimated in the same
way. Thus, (2.35), (2.39) and (2.40) yield (2.34) for v = 1.
(2) We now prove (2.34) for v = 0. We observe that

ller = (Mnw)sllo < (I =X (I = 10§ y_y)uallo + |(7 = TR uallo
+ 117 = 1I§ y_1)utllo-
To estimate the first term in the right-hand side of (2.41), we note that

(2.41)

(7 -T*%)(I - 1% 5 _ 1)u1||3=/ (7 =T y_ )T = T1*% Jus |3 2(s) dz

-2 *T aul

<CN (I-m%)— dz,

-1 Oy L2(A)
that is,

_ ou

I = 5) U~ y_y)ualld < ON72 ) dy

- 9y liLa(a)

< CN‘2"||u1||a for o > 3.

Along the same lines, we estimate the last two terms in (2.41). Thus the proof of
(2.34) for v = 0 is complete.
Finally, using an interpolation argument, we obtain (2.34) for 0 < v < 1.
Noting now that
divIiyu =17 y_;I§ 5 _, divu,
we obtain (2.33) by the same techniques as used in the proof of (2.32). O

3. Projection Operators for Periodic/Nonperiodic Boundary Condi-
tions. In this section we study some approximation properties for a function of
three variables which is periodic in two variables. The analysis of projection opera-
tors for this type of boundary conditions is useful in studying the spectral approxi-
mation of a flow between two parallel planes or between two cylinders. We exhibit
the operators we choose, and we only sketch the proofs of the estimates.
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Throughout the section, () is the open set ©2 x A in R® with © = (0,27); the
generic point in 2 will be denoted by x = (z, y, 2).

3.1. Cartesian Coordinates. We denote by C;’;(é) the space of infinitely dif-
ferentiable functions from © into R which are periodic with period 27. For any
real number s we introduce the closure H (6) of C;f(@) in the space H°(8); we
denote its norm by || - ||5 .

Let C¥ (©0) be the space of infinitely differentiable functions from { into R which
are periodic with period 27 in both directions z and y. For any nonnegative integer
m, we introduce the closure H (1) of C;f(ﬁ) under the norm

1/2
gk1+ka+ks 2
Frarer el IAOLS B

b= | 3 /|

|k|1<m

where p denotes either the Legendre or the Chebyshev weight function.

For any real number s = m + o, 0 < o < 1, we define H} ,(Q2) to be the
interpolation space between H"‘"’l(ﬂ) and HY () of index 1 — a we denote its
norm by || [ls4,p-

In addition, for any real number s we define H} ,,((1) to be the closure in
H p(Q) of the space of functions of C;f(ﬁ) which have compact support with
respect to the z variable.

For any integers K and N with K > 0 and N > 2 we set

Vi, ={Sk(6%?) @ Pn(A)} NHY , (D),

that is,

Vin = uV¥x€Qu(x)=(1-2%) ) ekrothvly (2),u € Py_o(A)

keN?
ki1 <K

Let Qx: L?(6) — Sk(6) be the L?(0)-orthogonal projection operator over
Sk (8). It is well known that the operator Qx commutes with differentiation, i.e.,
it satisfies

Vo € HL(8), Qx(¢') = (Qxe).
We recall the following approximation results (see Pasciak [22]):

THEOREM 3.1. For any real numbers v and o with 0 < v < o, there ezists a
positive constant C independent of K such that

Vo € H%(0), o —Qkell. < CK" %po|ls-

For any function u in L%(Q2), we define

(3.1) ((fo")(x) = (Qku(-,y,2))(z) ae. (y,2) in O xA,
' (Q%u)(x) = (Q@ku(z,-,2))(y) ae. (z,2)in O xA.
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From Theorem 3.1 we easily deduce the following corollary:

COROLLARY 3.1. For any real numbers v and o with 0 < v < o, there exists a
positive constant C independent of K such that

(82) Vue H;é,p(n)) lu — QEully,4.,p + [lu— g{““m#,p < CK"™||ullo,#.p-
Let r be a real number with » > 1. For any divergence-free function u of the

space (HY ()3 N (HY , ()3, let p2% yu be the orthogonal projection of u,

for the (HJ, p(ﬂ))3-inner product, onto the subspace of divergence-free functions of

(Vk,n)2
We can now state the following approximation result:

THEOREM 3.2. Letr be a real number withr > 1 and r ¢ N+0¢. For any real
number o such that o > r, there exists a positive constant C independent of both K
and N such that

Yu € (5, ,(0)° N (HY, ,0(2)% diva =0, |
lu = ok vullrpp < C(E™ + N7)|[ullo, .-

Proof. Let u be a divergence-free function in (H% ,(Q2))® N (HY ,,(9))3, and
assume first that the real number o is such that o > r + [r] + 3. Consider the

function
U= Q?{Qg{wa,Nu’

where p7 v is the operator introduced in (2.11). Since Q% commutes with any
derivative, we note, by using the definition of p7 5, that U is a divergence-free
element of (Vg n)3. The inequality (2.18) (where pf,’,siv is replaced by Q% and
pUN" by Q%) yields

llu = Ullr4.p < 3llu— o745 yullrp,p + 2llu — Qkcullr 4,0 + lu — Qfullr 4,3
hence, from the definition of pf’i}’{, ~» and using Theorem 2.2 and Corollary 3.1, we
get

(3.3)

lu - o5 vullrg.p < lu = Ullrg,p < CE™™ + N"")|[ullr,4,-

In other words, the operator I — pdi¥  is continuous from the subspace of diver-
gence-free functions of (H% ,(0))° N (HY ,4(Q))® (with ¢ > r + [r] + 3) into
(HZ ,())® with a norm < C(K"~? + N"7?). On the other hand, it is clear
that I — pdi% \ is continuous from the subspace of divergence-free functions of
(Hy ()% n(HY ,0(Q))? into (H}, ,(©))® with a norm equal to 1. Thus, Theo-
rem A.1 gives the estimate (3.3) for any real number o > 7, by using an interpolation
argument.

As in Section 2, we give a different approach for the case of the Legendre weight.
To state the analog of Theorem 2.5, define an operator IIx n as follows:

(Mg, nu)1 = QL Q%I n_qu1,
Vu € (H%(Q))®, | (TIk,nu)2 = Q%Q%II} v_,us,
(Mg, nu)s = Q% Q%IT* § us.
For any function u in (HZ%(Q2))® N (H} ((©))3, the function Ik yu belongs to
(Vk,n)3. Moreover, the divergence of IIx yu is given by
divIIg yu = QK Q%I y_,divy;

hence, if u is divergence-free, so is IIx yu.
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The proof of the following estimate is analogous to the proof of Theorem 2.5.

THEOREM 3.3. For any real numbers v and o with0 < v <1 and o > 3, there
exists a positive constant C independent of both K and N such that

(3.4) Vue (H%(D)® N (Hy o(2))°
lu— Tk nully,s < C(KY™7 + N*77)|lullo,
and
(3.5) Vue (HZ(0))® N (Hy 0()°,
ldivu — divITg yully 4 < C(K*T177 + N¥*19)||divu||o—1 4.

3.2. Cylindrical Coordinates. Let Ry, Ry and L be three real numbers such that
0 < Ry < Ry and L > 0. In this section we set ) = (Ro, Ry) % (0,2) x (=L, L),
and the generic point in ) will be denoted by x = (R, 0, Z). We consider functions
which are periodic in both directions § and Z. We let g: (Rp, R1) — R be either the
Legendre weight function defined by g(R) = 1 or the Chebyshev weight function
defined by 5(R) = (1 - [(2R — Ro — By)/(Ry — Ro)|?)~1/2.

The definitions of the spaces Hy, ﬁ(ﬁ) and HY, 5‘0(()) are analogous to those of
the spaces H} ,((2) and Hy ,,(Q).

For any function 4 = (ig, Ug, iz) from (1 into R3, the divergence of u is defined

by
.~ 10(Rug) A 10uy L Oug
(3.6) Wi=%2"3r TEa0 "9z
For any integers K and N with K > 0 and N > 2, we define the space {’K, N as
follows:

Vi =3 V% € Q,i(%) = Z ik (R)ei(k16+kaZm/L)

keN?
k|1 <K

ix € Pn([Ro, Ri1]),uk(Ro) = @k (R1) =0

Consider the affine change of variables
o _ _2R-Ry—- R,
(3.7) 2=77, y=0, 2="p—p—,
which maps  onto Q. N
For any function @i: {} — R3 we define u:  — R? as follows:

68) wl) =R, w)= i), uk) = g ie®).
Letting
_ Rt B
" Ri-Ry’
(3.9) vxe, a(x)=z-aq
Du=34 10U 1 Otaus)

oz dy 0z
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we have
(3.10) divi(x) = Du(x).
The following lemma will be useful in the sequel.

LEMMA 3.1. Let b be a strictly positive function in C*®(A). Let Iy be an
operator such that for any real numbers v and o with 0 < v < o there exists a
positive constant C tndependent of N such that

(3.11) Vu e HY(A), [lu—Tnullp < CN*fullo,.
Setting
(3.12) Yue Hj(A), (IIn)pu= b~ My (bu),

for any real numbers v and o with 0 < v < o there exists a positive constant C'
independent of N such that

(3.13) Vu e Hy(A), |lu— (TIN)oullv,p < C'N*"|ullo,p.

Proof. If v is an integer, it is clear that the mapping u — ||bu||,,, is a norm on
H}(A) which is equivalent to the norm ||-||,,,. If v is a real number, we know that
there exist four positive constants C;, Cz,C3 and Cy4 such that

(Vu cHY(4), Cullbullpy,p < lbull) p < Callbulle) o
1

Vue HY™(A),  Callbullivray,p < I0ullp1)o < Callbulyray o
Hence, by using an interpolation argument, we deduce that the mapping u —
l|bull,,, is @ norm on H}(A) which is equivalent to the norm || - [|,,,. In the same
way we prove that for any real number v the mapping u — [|b=1u||,, p 18 a norm on
HY(A) which is equivalent to the norm || -||,,. Thus {3.13) is a direct consequence
of (3.12). O

Let r be a real number with r > 1. For any divergence-free function @ of the
space (HY ( )3 N (HY, po(ﬂ))3 let B3 yi be the orthogonal projection of @
for the (H % p(Q)) -inner product on the subspace of divergence-free functions of
(V K, N)3-

We have the following approximation result:

THEOREM 3.4. Let r be a real number withr > 1 and r ¢ N+o0¢. For any real
number o such that o > r, there exists a positive constant C independent of both K
and N such that

Vi € (H 5())% N (Hy 50(Q))% divi =

(3.14) R - -
6 — 68% nallrg,5 < CK™™ + N™%) lii]|o, ,5-

Proof. Let @ be a divergence-free function which belongs to (H;’ié’ﬁ(ﬁ))3
(H}#’ﬁ’o(ﬁ))"’. We use the change of variables (3.7) and the function u defined
by (3.8). Since the change of variables is a C*°-diffeomorphism 2 — (), the func-
tion u belongs to the space (H% ,(Q))% N (HY ,,(Q))3. Moreover, by (3.10), u is
such that Du = 0.
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Denote by p,. k,nU the orthogonal projection of u, for the (HJ, p(Q))3-inner
product, on the subspace of the functions v of (Vi n)3 such that Dv = 0. Hence,
in order to prove (3.14), we are led to derive

(3.15) v — 7k nullrg,p < CK™™ + N")|ullo, 4,0

for a positive constant C independent of K, N and u.

We get the estimate (3.15) following the technique of the proof of Theorem 3.2:
we begin by proving it for any real number o such that o > r + [r] + 3; here we
replace the operator p? +2,v Dy an operator 7, y which takes into account the
new structure of the divergence operator.

(1) For any real number ¢ such that ¢ > 1 and q ¢ N + 0o, we now define the
operator R?

For any function v in (H}, p(ﬂ))3, first introduce the functions:

ni)=- [ wErod amd we= [ @-gud
-1 -1
Recalling (3.9) and (3.12), we then set
2
RNV = a_l’a—z[(HZ,N—l)a‘ﬁ(¢2)]a

R v)a = — oo (a2 (1))
(mz,NV):% = (HZ,N—1)a-l (v3).
(1a) It is easy to see that the function RZ NV is polynomial in 2 of degree < N.
(1b) Using Lemma 3.1 and the technique of the proof of Theorem 2.2, we prove
the following result: if q is a real number such that ¢ > 1 and g ¢ N + 09, then
for any integer v such that 0 < v < ¢ — 1 and for any real number s such that
8 > g+ v, there exists a positive constant C independent of N such that

Vv € (Hy ()%, IV =R NVllvgp < ONY72|1V]ls4,p.

Moreover, the preceding estimate is still valid if ¢, v and s are real numbers such
that ¢ > 2, ¢N+00,0<v,[v]<g—2and s> g+ 1+ ]

(1c) Let now g be a real number such that ¢ > 2, and v be an element of the
space (Hq+1(ﬂ))3 n(HY, 0(€))3. We prove that R Nv belongs to (HJ, ’\ o())3.
In view of the preceding estimate, we know that R? yv belongs to (H}, p(ﬂ))
hence it is sufficient to prove that R} \v is such tha.t

(RZ Nv)(z,y,£1) =0 ae. (z,y) in 62

We first compute (R yv)2(x):

* va(z,y,t)d
(R NV)2(x) = 2a(x)(TIF v ;) (L—I;%)—gg)

+a)? {( v (I*szt)df)} ae. x in 62.

a(x)

Moreover, according to Corollary 2.1, for any function v in (Hi p(Q))s we have

. L v . A2
Vj € {0, l}a a_z?(nq,N—lv)(zv yvil) = Eg(zayail) a.e. (21, y) in ©°.
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Thus we deduce

z Y, d
Vz = il, (m;.Nv)Q(I,ya Z) = 2a(X) (L_I—V‘Z_E'z)g—t)_‘f>

Z va(z,y,t)d
+a(x)2% (—f_l :Ex)g 9 t)

a.e. (z,y) in 62,

that is,
(R: nV)2(z,y,£1) = vo(z,y,£1) =0 ae. (z,y) in e?.

In the same way we finally prove that (R? yv) belongs to (HY p,o(Q))3~

(1d) We now prove that for any function v such that Dv = 0,77 v is such that
DRZ yv=0.

Since the operators (II7 y_5),-1 and (II5 y_,),-2 commute with differentiation
with respect to z and y, we have
ORI NV g O(R7 NV)2 +a_13{a(9“3,~\'a)}’

oz dy 0z

0 Oy 0y

=a l‘a—z <(HZ,N—2)a—7 (% - 6_311 +a(Mlf n_3)a-1V3 |-

Since the function v is such that Dv = 0, we have

v=a_l aﬁl-?ﬂ .
8 dy oz )’

hence, using (3.12), we conclude that DR yv = 0.

(2) Using the operator R, y just defined, and proceeding as in the proof of
Theorem 3.2, we obtain (3.15). This completes the proof of the theorem. O

The analog of Theorem 2.5 reads as follows:

DmZ)NV =

THEOREM 3.5. There ezists an operator i n: (HZ(Q)) N (HY 5(Q))® —
(VK,N)a such that for any real numbers v and o with 0 < v <1 and o > 3 there
exists a positive constant C independent of both K and N such that

Vi € (H%(D))® N (H (),

(3.16) L s o
[G — g nuflo, < C(KY™° + NY77)|4]|o,#
and
Vi € (H2 ()3 N (HL ()3,
(3.17) (H%(Q))° N (Hy ()

|div @ — div g nii]], 4 < C(K*+179 + NYF179)||div it]|o—1,4-

Proof. As in the proof of Theorem 3.4, we are led to prove that there exists
an operator g v: (HZ(0Q))% N (HY o(Q))® — (Vi n)® such that for any real
numbers v and o with 0 < v < 1 and ¢ > 2 there exists a positive constant C
independent of both K and N such that

Vu € (H%(2))% N (HY o())?,

(3.18) veo o
lu— Mg nullog <CKY™7 + N7%)|lullo, 4
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and

Vu € (H5(0))® N (HY 0(Q))3,

3.19
( ) ||Du - DHK,Nu”u,# < C(KV-H—U + NU+1—U)"diV u||a._1,#.

Recalling the definitions (2.6), (3.1), (3.9) and (3.10), we introduce two operators
Txn and IIk n as follows:

z

-1

o).

Mk, nvu)1 = Q4 Q% (Tn)au1,
Yu e (Hi(ﬂ))s, ((HK,Nu)g = Q}:(Q:‘;(TNU%
(Mk,nu)3 = Q% Q% (15 N)a-1us.
(1) Arguing as in the proof of Theorem 3.4, we prove that for any element u of
the space (HZ(02))® N (H (©))3, Ik yu belongs to (Vi n)3.
(2) Let now v and o be two real numbers such that 0 < v < 1,0 > 2, and let u
be an element of (H%(1))® N (Hy (Q2))3. In order to prove the estimates (3.18)
and (3.19), we follow the proof of Theorem 2.5. Since we have

Dl—IK,Nu = Q?{Q!;{(TN)aDU,

it is sufficient to prove that for any function u in H%(Q) we have

Ve HL(@) Ve 0, (Tv) = 5o (M- ( [

llu — Tnullv,g < CN*"ullon,  llu— (TNu)allv,# < CNY77||ulo,4
and
lu— (T3 &)s-1ullv,4 < CNY"|ulls,4,

where C is a positive constant independent of both N and w.

We follow the proof of Theorem 2.2: In view of Corollary 2.1 and Lemma 3.1 it
is sufficient to prove that for any real numbers A and p with 0 < A <1 < u there
exists a positive constant C such that

< CN* o]y

o [(né,N)a—z ( / zl o(t) dt)]l A

This estimate follows from Corollary 2.1 and Lemma 3.1. Thus, (3.18) and (3.19)
are proved. This completes the proof of Theorem 3.5. O

Vo € Hy(A),

4. An Application. For some applications of our results we refer the reader
to F. Pasquarelli, A. Quarteroni and G. Sacchi Landriani [23]. In this section we
consider the Legendre spectral approximation of the Stokes system between two
cylinders. This approximation scheme has been introduced and implemented by N.
Mac Giolla Mhuiris (see [16] and the references therein for other methods of this
type). Using the notations of Section 3, the variational formulation of the Stokes
problem between two cylinders is as follows: given a function f in (L2({1))3, find @&
in the space ((H;‘;(ﬁ))“ n (Hal,,e,o(ﬁ))3 such that

wp (Y€ W) dive =0, [, 9AGRARd9dZ = [ FRARd9 4z,
) divia=0in Q.
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Here, the operators div and A are defined by
. . 10(Rog) 1 0% Bﬁz
divy = = =4 ==
Vv = (g, U, Vz), . lRa R ov R 99 32~ 32
AV=RoR (%ﬁ) R 007 T 922
We consider the following spectral approximation of problem (4.1): find @k,~
in (Vg n)2 such that

VWkN € (VK,N)a;diVVK’N =0,
(4.2)

- JaVr.NAik NRARAOdZ = [, 9k nRdRd dZ,
diviag vy =0 in Q.

We have the following convergence result for the solution of problem (4.2).

THEOREM 4.1. Let 0 > 1 be a real number. If the solution @ of problem (4.1)
belongs to (Hg(Q2))3, there exists a positive constant C independent of G, K and N
such that

(4.3) I8 — A il g < CE' ™ + N7 iflo4.

Proof. Let p‘}‘}’( nU be the orthogonal projection of @ for the inner product of

(H#(Q)) on the subspace of divergence-free functions of (Vg nv)3. Using (4.1)
and (4.2), we deduce

(44) (va,Ne(VK,N) sdivig,y =0, [5 Ve nAliky — §8% yiE)RIRdIdZ
' =[5 VrnA(E - g8y yG)RIRdIAZ.

Choosing Vi Ny = Uk N — p‘lh}’( N1 in (4.4) and using the following rule of integra-
tion by parts:

—/_ VAWRdRd0dZ = /~ gradv - graduRdR df dZ,
Q Q

we obtain

/ lgrad(@ix,~n — $1'% n0)|*?RdR df dZ

/ grad(iix, v — p1% vi) - grad(§3'% yi)RdR df dZ.
By using the Cauchy-Schwarz inequality, the preceding formula yields
/ﬁ |grad(iix, v — 3% y0)|*>RdRd0dZ < /ﬁ lgrad(ii — 1'% y@1)|>RdR d0 dZ;
hence there exists a positive constant ¢ independent of 4, K and N such that

lar,n — 8% nvillLg < clld - g3k nvallL4.
Using the triangular inequality, we deduce
la = dx,nllie < (1 +0)lla - 6% vl e,

and by using Theorem 3.4, we obtain (4.3). O
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Appendix. The proof of the estimate (3.3) requires an interpolation result that
we state in this appendix. To simplify the notations, for any real number s with
s> 1 we set

*3o(Q) = Hy ,(Q) NH ,0(D)
and
H3Y(Q) = {u € (H°% ,(Q))% divu = 0}.
We want to prove the following theorem.

THEOREM A.1. For any real numberso,r and with1 <r<ocand0<f <1,
we have

o0, o o(1-6 Or,di
(Al) [H dIV(Q) He d1V(Q)] - H g,p o+ ]v(ﬂ),
For the notations of interpolated spaces we refer to Lions and Magenes [15]. This
theorem is valid when p is either the Legendre weight or the Chebyshev weight. We

give its proof for the Chebyshev case.
We first recall an interpolation result for the spaces H°% ,(1).

THEOREM A .2. For any real numberso,r and @ with1 <r <o and0<0 <1,
we have

(A-2) [(H°G,, (@)%, (H, (@)% = (HoR 7+ (@)°.

This result has been proved by Y. Maday [18, Theorem 11.5] for the spaces
(H°9(A%))3; the same proof gives (A.2) for the periodic/nonperiodic spaces
(H°g ,(2))°.

We ﬁrst prove several lemmas. We find it convenient to introduce the following
notations: for any real number A with A # 0, set

ax(z) =sh(Az),

Ba(z) = ch(A2),
(A.3) o= (ch(/\) ) )
=" A
2= 3™ T T8
LEMMA A.1. For any real number A with A # 0, the following estimates hold:
(A.4) laallo.p < 18allo., < Car~14e,
(A.5) CiA~126* < [laxllo < [IBsllo < Car—1/26M,
and
(A.6) ||a,\||0,p—1 < ||,B>‘”0’p_1 < 02/\-3/46,\,

where Cy7 and Cy are positive constants independent of \.
Proof. Setting I; = f;/? cos?/(0) df, we recall that
Ii—Iiy1=1;/(2j+2) and I; ~{r/(45)}'/%
hence there exists a positive constant A such that

0<I; <A(2j+1)71/2

(A.7) Vj €N, (0 < I = I: < AQ27+2)71/2(25 + 1)1,

It is clear that

leallos < 118xllo,ps  Nleallo,p=1 < l1Brllo,o-1
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and a direct calculation gives (A.5). To obtain (A.4) and (A.6), we note that

1815 521 = /0 2ch(A2)]*[p(2)]*! dz = fo [1+ch(2X2)][p(2)]*! dz

and

' 11, _ o (2N g +1
/Och(2/\z)[p(z)] dz—jgo ) /0 29 (p(2))*" d=.

Using (A.7), we get
1
/ 2Yp(2)dz=1I; < A(2j +1)"1/2
0
and
1
/ 2p(2)] M dz =1 — 41 < A(25 +2)7 2 (25 + 1)
0
hence we deduce

oo
(2/\ )%
/0 ch(2X2)p( Z (27 + 117

1/2
oo ; oo (2/\)2.1

< A[ch sh(2/\ /,\]1/2.
This proves (A.4). We also have

. . ) (2,\)21'
/0 ch(2X2)[p(2)] ! dz < A:L; (27 + 1)!(25 +2)1/2

RN (2 1/2
= (2M0)¥ = (2))%
s4 (Z (27 + 1)!) (J; (25 +2)!)

J=0

< A[sh(2X)ch(2))/(8)3)]'/2,
which gives (A.6). O
LEMMA A.2. For any real number A with A > 1, and for € = x1, the solution
¢xre 0f the problem

((§A.e)l' - /\2§A.e =g mA,
ane(l) = (1+¢€)/2, ne(=1)=(1-¢)/2,

satisfies

(A~8) S',/\,e(_l) = S';\,e(l) =0

and

(A.9) ViEN, lsrellsp < CoA7Y4,

where C; are positive constants independent of M.

Proof. We prove the lemma for € = 1; the case € = —1 is analogous. We first
remark that if ¢ is such that ¢” — A2 = 0 we have

(19— o1¢) =g,
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and then

1

$a(e(D) ~ a(-De(-) = ¢ () + [ an(thelt) .
Applying this relation with ¢ = a) and ¢ = §), we obtain

S“,/\,l(l) + S',I\,l(—l) = §;\,l(l) - §,I\,1(—1) =0,
and this gives (A.8). Then ¢} ; is the solution of the problem
<(§£,1)” =M1 =05
a1(1)=¢:(-1)=0;

hence we obtain the classical estimates
(A.10) lsaello, < CA2lgAMos  llskelloe < CAT IgA N0
On the other hand,

llaallo, l18llo.p }
<A {ch A) S+ sh(A ;
loallo.p < A eh(3) T + sh(N) 3

and

, ) 180, leallo,
gallop <A {ch,\ +sh()) .
lgilo.s M ar TN TR

Using (A.4) and (A.5), we deduce ||gallo,, < CA7/4 and ||g}|lo,, < CA!/4; hence
from (A.10) we get

(A.11) st ellon < ON4, st cllo,p < OXT/4.
Using now the inequality

llsxello.e < A72{llgallo,p + llsx e llo,p}
we obtain
(A.12) llgnello, < CAY4.

By virtue of (A.11) and (A.12) we have (A.9) for j € {0,1,2}. By using the equality
¢ = A%, + g we finally obtain (A.9) for 7 > 3 by induction. O

LEMMA A .3. For any real number A with A # 0 and any function f in L?,(A),
the solution ¢ of the problem

(«3” - Mp=f inA,
p(1) = p(-1) =0,

satisfies

(A.13) ' (=) + 1" (1)] £ CA™*4||fllo,p»
where C 1s a positive constant independent of A\, and f.

Proof. Setting
_sh(Mz+1})
X@)=—g@y
we have the relation (¢'x — x’)’ = fx; hence

1
o(1) = /_ S(@)x(z) da
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This gives the estimate

(A.14) l" (D] < 1£llo.ellxllo,p-1-

On the other hand,
ch(A)ax + sh(X)B
sh(2)) ’

X =
and from (A.6) and (A.14) we get
' (1] < CA™*4||fllo,p-

In the same way we obtain |¢'(—1)| < CA73/4||f|lo,- O
We are now in a position to state the following theorem.

THEOREM A.3. Let r be a nonnegative real number. For any function p in
H;’_lp(,fll) with [, p(x) dx = 0, there exists a function u in (H;‘"l( )*N(HY , o())*
such that

(A.15) divu=p
and
(A.16) lullr+1,#.0 < Crllpllr,#,0s

where C, 13 a positive constant independent of p.

Proof. We prove (A.16) when r is an integer. The general case will follow by
using an interpolation argument.
We look for u in the form u = grad ¢ +w, where ¢ is the solution of the problem

Ap=p inQ,
peHy Q).

To this end we write p and ¢ in the form

Z pk z(k11+k2'y) with / pO

kez?

— Z Ok (Z)ez’(k11+k2y) .
kez?

For any k in Z2, oy is the solution of the problem

((@k)" - |k)3pox = px,
px(-1) = k(1) =0.

Since f po(2z) dz = 0, we have [ ()" (2) dz = 0, hence
(A.17) s06(—1) = p(1).

Moreover,

(A.18) loo(=1)I + leo(1)] < Clivolize < Clipollo,p-

Using (A.13), we also get
(A19)  VKeZZk#0, |pi(-1)|+ k(1) < Clkly>*|pkllo.p-

We now set
v = grad ¢ = (v1,v2,v3).
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It is easy to show that (see, e.g., [7, Lemma 11.3])
IVllr+1,4.0 < Cllpllr4.05
divv =p,
(v1,v2) € (HY , ()2

Moreover,

(A.20) v3(x) = Z (p;((z)'ei(klz+k2y)_

kez?
We now define the divergence-free function w as follows:

w(x) = Y wi()e ke thay),

kez?
where the functions wy are defined as follows:
(1)
0
wp(2) = 0
—pp(1)

(2) For any k in Z? with k # 0, we set

(A.21) ¥k = Pk(Djk)2,1 + Ok (=BT, -1
(where ¢ ¢ is defined in Lemma A.2) and

—Zkl’t/}l'( (z)

wi(2) = [kig? | —thkati(2)

~|k[3vxk(2)

Using (A.17) and Lemma A.2, we have
v+we (Hy ,o(0)>%

Finally, using (A.7), we deduce

W2 s 0 < oo (P + D {1k 21wkl 4, + KB Ikl 4.,

2
(A.22) P

+ 10l .0 + K12 Nkl7 12,4, ) -
Using (A.9), (A.19) and (A.21), we obtain the estimates

VieN, [[villo < CIKE  lpkllo,#.0r
which, using (A.18) and (A.22), give the estimate

IWllr+1,4,0 < Cllpllr,4,0-

Theorem A.3 is then proved withu=v+w. 0O
Proof of Theorem A.1. Theorem A.1 follows from Theorems A.2 and A.3, using
(15, Vol. 1, Theorem 14.3]. O
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