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Computation of Independent Units in 
Number Fields by Dirichlet's Method* 

By Johannes Buchmann and Attila Petho 

Abstract. Using the basis reduction algorithm of A. K. Lenstra, H. W. Lenstra, Jr. 
and L. Lov&sz [8] and an idea of Buchmann [4], we describe a method for computing 
maximal systems of independent units in arbitrary number fields. The tables in the 
supplements section display such systems for the fields Q( VD) where 6 < n < 11. 

1. Introduction. Let K be an algebraic number field of degree n > 2 over 
Q, let R be an order in K and let E be the group of units of R. The structure 
of E was described in 1846 by Dirichlet [6]. He proved that if K has s real and 
2t nonreal conjugate fields, then E is the direct product of the finite group of the 
roots of unity in E and r = $ + t - 1 infinite cyclic groups. In the sequel we assume 
r >1. 

Dirichlet's proof was based on his diophantine approximation theorem: Let 
(X1. ..,an E R, n > 2; then there exist for any Q E R, Q > 1, integers xl,.. .,xn 
which are not all zero such that 

lxii <Q, i=2,...,n, 
(1.1) l~~~Eaizi, < lalpQ-(n-l), 

One can find this proof, for example, in Dedekind's classical book [5, ?183]. If 
n = 2, then the convergents of the continued fraction expansion of a1l/ar2 solve 
(1.1). 

Unfortunately, there exists for n > 2 no general practical method for the solution 
of the approximation problem (1.1). 

The importance of the unit group inspired many mathematicians to find algo- 
rithms which produce systems of fundamental units, or at least systems of indepen- 
dent units. A system {e1,... , eu} C E is called independent if c' l*. = 1 im- 

plies ml = =mu = 0 for every system of integers {ml, * , mu}. {e, ... , e7} C 

E is called a system of fundamental units if it generates the maximal torsion free 
subgroup of E. Most of the former algorithms are based on generalizations of the 
continued fraction algorithm and are applicable only to special number fields. For 
a complete list of references we refer to Brentjes [2] and Buchmann [3]. 

The method of Pohst and Zassenhaus [10] has another foundation. It produces 
many integers of bounded norm by solving certain inequalities. This procedure 

Received July 22, 1985; revised November 26, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 11R27; Secondary 11J68, 

12-04. 
*This work was written when the second author was a visitor at the University of Koin on a 

fellowship of the Alexander von Humboldt-Stiftung. 

? 1989 American Mathematical Society 
0025-5718/89 $1.00 + $.25 per page 

149 



150 JOHANNES BUCHMANN AND ATTILA PETHO 

yields units because there are only finitely many nonassociated elements of bounded 
norm in the order R. This method was improved by Fincke and Pohst [7]. 

The basis reduction algorithm of Lenstra, Lenstra and Lova'sz [8]-in the follow- 
ing LLL-algorithm-solves the following approximation problem very fast: 

1xi l < 2 n/4Q, i = 2, ... ., n, 
(1.2) |~~~xiai |< 1al IQ-(n-1) X 

which is slightly weaker than (1.1). Thus, the LLL-algorithm combined with Dirich- 
let's original idea yields theoretically a useful method for finding independent units. 
But in practical computation, this combination has the disadvantage that if Q in- 
creases, then j xi oi decreases very fast, and one must use multiprecision arith- 
metic. We were able to remove this disadvantage using an idea of Buchmann [4]. 

We do not vary Q but the ai's. We apply the LLL-algorithm in each step two 
times. First we vary the ai 's in such a way that all their conjugates have always the 
same "small" order of magnitude, and then we solve (1.2) for the new ai's and with 
the unchanged Q. In this way we compute independent units without handling too 
large or too small numbers. We are working with such numbers only if we want to 
calculate the coefficients of the units in the original basis of the order. 

The comparison of our computational results in pure quintic fields with tables 
of fundamental units, computed by the method [3], showed that our method yields 
often fundamental units. If this is not the case, then one can compute such a system 
from a set of independent units, for example by the method of Fincke and Pohst 

[7]. 
In Section 2 we give an informal description of the basic steps of the algorithm. 

In Section 3 we study the connection between LLL-reduced bases of lattices, dio- 
phantine approximation and the algorithmization of Dirichlet's proof of the unit 
theorem. Section 4 contains the detailed description of the algorithm. To illustrate 
the efficiency of the method, we have computed maximal systems of independent 
units in number fields Q( @T), where 6 < n < 11, which are presented in the tables 
of the supplements section at the end of this issue. 

2. First Outline of the Method. Let K be an algebraic number field 
with s real conjugate fields K(l), ..., K(8) and t pairs of complex conjugate fields 
K(8+1), K(8+1), ... , K(8+t), K(8+t), and let R be an order of K. For every "conju- 
gate direction" i E {1, .8 + t} we construct a sequence (-Yk)keN of numbers of 
bounded norm in R with 

(2.1) () I < I4,k1i for k > 2, 

1-k 
U) 

> ly U1 I forjE {1**, s+ t},j0#i,k>2. 
Obviously, these numbers have to be pairwise distinct, and after a finite number of 
steps two of these numbers are associated with a nontrivial unit ei satisfying 

(2.2) le') < 1 and ljei)I > 1 for j : i. 

It is well known that every subsystem of cardinality $ + t - 1 in {eI, .. , 8+t} is a 
maximal system of independent units in R (cf. [9]). 

The sequence (-Yk)keN is constructed as follows: To initialize the sequence, we 
set 

(2.3) = 1. 
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Now suppose that we know Nk. Then we define 

(2.4) Rk = 1-R, Nk = JNKIQ('1k)JI 
'71k 

and using techniques of diophantine approximation, we compute a number 3k in 
the module Rk satisfying 

(2.5) k< ,f > k > 1 for j E {1,. . .,s+ t},j i, 

and 

JNKIQ(fk)J < f2Nk 1, 

where fl, f2 are constants depending only on the degree n of K and on the dis- 
criminant of the order R. Then we set 

(2.6) -k+l := -kIk 

Obviously, the sequence (-Yk)kEN constructed like this satisfies the requirements 
of (2.1). 

The advantage of our method is the following: All the conjugates of the numbers 
f3k and of the elements in the basis of Rk are-independent of k-of "small" size 
during the whole algorithm. Moreover, the question of whether two of the - k'S, 
e.g., 'Ykl and Yk2, are associated can be answered in terms of the basis of the 
corresponding modules, since 

(2.7) Yk1 i 'k2 t RkI = Rk2 

In fact, (2.7) follows directly from 

(2.8) A(aR = R X a is a unit of R). 
arEK 

Finally, if -Yk1 - k2 (k, < k2), then the corresponding unit can be computed by 
the formula 

k2-1 

(2.9) r= i fAl. 
l=kl 

So we do not have to know the -Yk'S explicitly, and we can carry out all computations, 
except for the final computation of the unit ei, using only "small" numbers. For 
this reason, our method can be applied very efficiently to fields of high degrees and 
large discriminants. 

3. Basis Reduction and Diophantine Approximation. First of all, let us 
briefly recall some definitions and results of the basis reduction theory of Lenstra, 
Lenstra and Lovasz [8]. 

Let L be a complete lattice in R', and let d(L) be the volume of its fundamental 
parallelotope. For a basis bl, . . . I b,n of L the vectors b, (1 < i < n) and the real 
numbers pij (1 < j < i < n) are inductively defined by 

i-l 

bi*:=bi - E ijbj 
j=l 
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where (, ) denotes the ordinary inner product on R1. The basis b1,... , b, is called 
LLL-reduced if and only if 

I.ijl < 2 for 1 < j < i < n, 

and 

lb* 1ib* 1 12 > 3 lb* 112 for 1 < i < n. 

(3. 1) LEMMA. Let bl,. . . ,bbn be a reduced basis of L; then we have 

n 

(3.2) d(L) < 17 Ibil < 2n(n-l )/4d(L), 
i=l 

(3 3) lbil I< 2(n )/d(L) l/ 

The LLL-algorithm yields an LLL-reduced basis of any lattice. 

In view of (2.4) we now discuss free Z-modules of rank n in K of the formn 

(3.4) M=-R 

with a number 'y E R. 
We apply the LLL-algorithm in two different situations: 
(a) Since we want to carry out computations in M, we need a convenient basis 

of M. From the geometry of numbers it is well known that the mapping 

K Rn 

a a: (l) a(9),Rea(s+l),... IRe a(+t), Ima(+1),... ,Im (s+t))T 

is a monomorphism of K, and that the image M of the module M is a complete 
lattice in Rn (cf. [1, Chapter II, ?3]). We call a Z-module basis of M LLL-reduced, 
if the corresponding lattice basis has this property. 

(3.5) LEMMA. Let al . . . , an be an LLL-reduced basis of M. Then we have 

c-(n-1)N-1/n < ?Ia(3)I < C0N-N/n for 1 < i < n, 1 < j < s + t, 

unth N := INKIQ(-y)l and Cl = (2(n+2)/2n-1)(n-1)/2A, where A is the volume of 
the fundamental parallelotope of the lattice R. 

Proof. First of all, note that the volume of the fundamental parallelotope of M 
is given by the formula 

(3.6) d(M) = N-1A. 

Now it follows from (3.2) that 

n 

.37) Jl ail| < 2n(n- l)/4 N- A, 
i=l 

where IctI12 = EZ+t ja(i)I2 for 1 < i < n. 
On the other hand, we have for every 0 5 a E M, 
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In fact, if a E M, then there is a number & E R with a = &/-y and 

s s+t 

21a>12 > E la'j) 12 +2 E I 
a(ji12 > nINKIQ (a) 12/n 

j=1 j=s+1 

The second inequality of (3.5) follows from (3.7) and (3.8). In order to prove the 
first inequality, note that 

N1 < INKIQ(ai)l < laij)IC(n-')N-(n-l)/n for 1 < i < n 

andl<j<s+t. 0 

(b) In view of (2.2), the second application of the LLL-algorithm yields a number 
Ei E M satisfying 

(3.9) Il,(i)I < 1, i,l')I > 1 for j $ i and INKIQ(fl)I < CN-1 

for every conjugate direction i E {1, ... I, + t}. The constant C does not depend 
on M but only on R. 

For the rest of this section we fix a conjugate direction i E {1,... , $ + t}, and we 
assume that a1, . . ., an is an LLL-reduced basis of M. Moreover, the numbers Ck, 
k E N, always denote effective constants depending only on the degree n of K and 
on the volume A of the fundamental parallelotope of R. Every number fl E M has 
a representation 

n 

i3} = E xlal with xl E Z for 1 < I < n. 
1=1 

We compute fi of (3.9) solving the following approximation problem: 

(3.10) 1,3(i) lei < C2 e-(n-ei )Ny-ei /n X 

(x1l < C3xc for 1 < I < n, 

with c > 1 and 
1 if 1 < i < 8, 

ei = 2 ifs+ <i<s+t. 

(3.11) LEMMA. Iffl3 satisfies (3.10), then we have 

C4N- 1/n < Ifl()I < C5 xN- I/n for j 7$ i, 

INKIQ(l)I < 06N-1. 

Proof. Applying (3.5) and (3.10), we find 
n 

(3.12) IIcWI= Zxlc |< C5N-1/n. 

By virtue of the fact that 

S+t 

N-1 < INKIQ(l)I - 1Ifl1)I 
l 

st l)i2 
1=1 l=s+1 

the first inequality follows from (3.10) and (3.12). O 
Since the bound for the norm of fi does not depend on the constant /c, we choose 

/c such that (3.9) is satisfied. The approximation problem (3.10) is solved by means 
of the LLL-algorithm. 
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First of all, let us assume that i is a real direction, i.e., 1 < i < s. 

Consider the matrix 

0 0 ....6 
0 0 0 *0 

(3.13) U 

O O 6 ... O 

O 6 O .0. O 
a(i a(i) a(i . .. a(i) Lal a2 a3 n 

where al,.. , cn is a L3-reduced basis of M and 

(3.14) 6 := 2n/4(i)IC-n 

We apply the LLL-algorithm to the columns of U. The result is a matrix U 
which we get from U by multiplication by a unimodular transformation matrix 
T = (tj)1?<i,j<n E Z(n,n). If we define 

xi := tli for 1 < I < n, 
n 

A := ExclalX 
1=1 

then fl solves (3.10). 

In fact, since the fundamental parallelotope of the lattice spanned by the columns 
of U is of volume 

d(U a(i)oln- 1 -n(n- 1)/4 ja(i) InKC-n(n- 1) d(U) = Ia I =6n 2 2nn)4kj 

it follows from (3.3) and (3.5) that 

(3.15) Ily(i) [< ja(i) 1,c-(n-1) < Cle -(n-')N-1/n (3-15) 1,P) ~~I 
? 

- 
I(nl lxii < 2n/4K for 2 < I < n, 

and we are ready if we prove an upper bound for xl. We get this upper bound if 
we divide 

n n 
W a()I = ZXa1(i) - Zxa1(i) 

1=1 1=2 

' ( + (n -)2n/4C, KN- /n 

by la(i) 1. In fact, this yields 

(3.16) jxiI < C7cN-1/n/aIt)I < C3KC. 
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Now assume that i is a "complex direction", i.e., $ < i < $ + t. This time we 
apply the LLL-algorithm to the columns of 

o 0 0 ... S 
o o 0 ... 0 

(3.17) U 
o o 0 ... 0 
O O 6 0 

Rea(') Rea(2) Rea(') Re an 

Im a()Im ?f2t WIm a(t) Im ?tn () 

where 

(3.18) 6 2-n(n+l)/(4(n-2))D1/2,-n/2 

with 

D = I Re a(t) Im -Rea 2) Ima(t)I. 

Let (tj)l<i,j<n E z(n,n) be the unimodular matrix which transforms U into the 
corresponding reduced matrix. Then we again fix 

xl=tll forl<l<n, 

(3.19) nd:=xlal, 
1=1 

and we prove that fi satisfies (3.10). 
Obviously, it follows from (3.5) that 

(3.20) D < C8N2/n 

But we also need a lower bound for D, and this is given in 

(3.21) LEMMA. For11,12E{1,.. .,n} set 

Dll12= Re a() Im a(') - Re a(') Im a( . I 2 12 l 1 

Then there are numbers 11,12 E {1,... , n} such that 

(3.22) D1112 > CgN2/n. 

Proof. If D* for 11,12 E {1, ... ,n} denotes the absolute value of the adjoint 
determinant of D1112 in the matrix (a,. . . ,_n), then we get from (3.5), (3.6) and 
Laplace's formula 

N-1A < E D1112 112 

1<11 <12<n 

< CatN-p(n 2)/n max Dlm 112 

and this Droves the lemma. O 
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Without loss of generality we assume that (3.22) is true for '1 = 1 and 12 = 2. 
Then we have 

(3.23) D > C1N-2/n . 

Notice that we have to renumber the basis at this point in order to get D 5 0. 
Now we are able to prove that f6, defined in (3.19), satisfies (3.10). This time the 

fundamental parallelotope of the lattice spanned by the columns of U is of volume 

d(U) = D * 6 n-2 = 2-n(n+l)/4 . Dn/2. -n(n-2)/2 

and thus (3.3) and (3.20) yield 

(3.24) 1,(i)12 <D . E-(n-2) < C2K-(n-2)N-2/n, 

lxil < 2(n2+1)/(4(n-2)) K for 3 <1 <n. 

An upper bound for xi and X2 follows from 

n 

Jxi Re a(X) + X2 Re a(') I Re/A(i) - E xi Re (i) 
1=3 

n 

lxlImal2) +x2Ima2 a xImfl( )_Ex,Ima(t) 
1=3 

Applying Cramer's rule, we get in view of (3.5), (3.23) and (3.24), 

(3.25) /x,l < C12.N 2D-1 < C3, for I = 1,2. O 

4. Computational Aspects of the Algorithm. Let i E {1,.... , Si+ t} be 
again a fixed conjugate direction. Before, we give a detailed description of the 
algorithm, we give some preparatory explanations. 

Assume that we know for a k E N the number Nk = INKIQ( yk)j and an LLL- 
reduced basis a, (k), . .. , an(k) of the module Rk = R/IYk. 

In order to compute the number /k satisfying (2.5), we have to proceed as follows: 
- choose ,c, 
- set 6 according to (3.14) or (3.18), 
- set U according to (3.13) or (3.17), 
- apply the LLL-algorithm to the columns of U resulting in U = U * T, with 

T = (t1,)i<1,<n E Z(n'n)7 
- set xl(k) +- ti, for 1 < 1 < n and set f3k E- 2U xiat (k). 
But how to choose K? To make sure that the algorithm yields a maximal system 

of independent units, we have to choose X such that 13k satisfies (3.9). Since we 
know by (3.11) and (2.6) that 

(4.1) Nk< C6, 

this means 

(4.2) K = max{C 1 C1/n Ci/(n-ei) + ? 

with an arbitrary small constant e. 
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Now in almost all our examples it has turned out to be enough to choose Kc such 
that only 

(4.3) < 1, 

in order to compute maximal systems of independent units. This condition is 
necessary to avoid trivial units. Recall that we have by (3.15) and (3.16), (3.24) 
and (3.25), 

I 
(i)lei < \A,E-(n-ei)E 

(4.4) IxiI ? Cia,cAT1 for 1 < I < ei, 

IxlI < C14K for ei < I < n, 
with 

() fc4~~~la')I for i <?s, 

(Aj = {:I Re a(') Im a(') - Re (') Im >(i) for i > s. 

Now on the one hand, we want to satisfy (4.3); on the other hand, we want to 
make the xilI small in order to get units with small coefficients. Hence we have to 
choose ,c such that 

(4.6) AiE,-(n-ei) = 1-} 

with a small number e, and this means that the bound for xl, 1 < I < ei, increases 
if Kc decreases, whereas for the bounds of xi, ei < I < n, the contrary is true. 

So the best thing to do is to renumber a, (k),... , a,n(k) such that IAi - 11 is as 
small as possible and D12 #6 0 if i > 8, and then to fix 

(4.7) ~ ~ ~ ~ ~ e K =A /(n-e,) + 2 

The next question we are going to discuss is the representation of the reduced 
basis a i(k), .. ., agn(k) and of the number pk. 

Note that all the basis elements have a representation 

n 
(4.8) caj(k) = 4 ? a1j(k) at(1) for 1 < j < n, 

Nk_ k1=1 

with 

(4.9) Ak := (aij(k))1<1J<n E Z(n,n). 

Since by (3.5) the conjugates of the axj(k)'s are-independent of k-all of the same 
small size, the same is true for the elements of Ak. Similarly, the number fk is 
representable as 

(4.10) fk = 4N Eb(k)at (1), b,(k) E Z, 

and because of (3.11) also the bt(k)'s are small. 
Finally, we explain how to decide whether the algorithm terminates, i.e., whether 

-Yk+l = -Ykfk is associated with a 'yz, Z < k. 
By (2.7) we know that we have to check whether the corresponding modules are 

equal. A necessary condition is of course Nk+1 = Nz. If this condition is satisfied, 
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then we have to test whether Az A-'1 E GL(n, Z). So we get: 

(4.11) ALGORITHM. 

Input: The conjugate direction i E {1, ... , s + t}. 

Rational approximations to the conjugates of the elements of an LLL-reduced basis 
a 1, . . . , an of the order R. A constant E > 0.* 

Output: The unit Ei. 

1. Initialization. al(1) al for 1 < I < n, 
N1 1, 

k 1, 

2. Repeat. 

a) Renumber a1 (k),..., an(k) such that l>i - 11 is minimal and D12 5 0 if 
i > s, cf. (4.6). 

b) /c -Al/(net) + ? 

c) Set 6 according to (3.14) or (3.18) and U according to (3.13) or (3.17). 
d) Apply the LLL-algorithm to the columns of U. The corresponding uni- 

modular transformation is T = (t1j)1<1,j<n. 
e) Set /ik E- 1 tial(k), Nk+1 +- NkINKIQ(flk)I; compute the coefficients 

b1(k), 1 < I < n (cf. (4.10)). 
f) Compute an LLL-reduced basis ai(k + 1).... Ian(k + 1) of the module 

Rk+l = (l/fk)Rk,applying the LLL-algorithm to{1a(k)/Ok,... a*Xn(k)//k}. 
Compute the corresponding representation matrix Ak (cf. (4.8)). 

g) For Z = 1 until k: 
If Nz = Nk+1 then 
if Az A'1 E GL(n, Z) then set Ei n_ JlkJz /1. 
Return. 

h) k-k+1. 

After we have applied this algorithm to every coordinate direction, we know a 
set {E1, ... I E,+t} of nontrivial units. If this set does not contain a subset of s+t -1 
independent units, we apply our algorithm again, but with a bigger xc in 2b). 

Tables (see the supplements section at the end of this issue). By the method 
described, we have computed maximal systems of independent units in the order 
Z[p] of the field Q(p), where p = V/7 for 6 < n < 11. For n < 5 and n = 6, D < 0, 
there are efficient methods (cf. [3]) for computing fundamental units; therefore 
we have omitted these cases. In the tables we use D and n in the above sense. 
Moreover, we denote by 

P: max {number of iterations in direction i}, 
iE{l1....s+t} 

R: regulator of the system, 
Xi, . . , Xn : the coefficients of the units in the basis 1, p, . . ., pn. 

**It is possible to determine the necessary precision of approximation theoretically, but this 
theoretical value could hardly be realized. In our computation, double-precision floating-point 
arithmetic (26 decimal digits) was always sufficient. 
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For the sake of readability of the tables we decided not to list the coefficients to 
more than 8 decimal digits. All the computations were carried out on the CYBER 
76 of the University of Cologne. The computation of the units of each field took at 
most a few CPU-seconds. 

Mathematisches Institut der Universitat zu Koin 
Weyertal 86-90 
5000 Koin 41 
Federal Republic of Germany 

Mathematical Institute 
Kossuth Lajos University 
4010 Debrecen Pfl2, Hungary 

1. Z. I. BOREVIC & I. R. 9AFAREVI1, Number Theory, Pure and Appl. Math., vol. 20, Academic 
Press, New York, 1966. 

2. A. J. BRENTJES, Multi-Dimensional Continued Fraction Algorithm, Proefschrift, Math. Cen- 
trum Amsterdam, 1981. 

3. J. BuCHMANN, "A generalization of Voronoi's unit algorithm," J. Number Theory, v. 20, 
1985, pp. 177-209. 

4. J. BuCHMANN, The generalized Voronoi Algorithm in Totally Real Algebraic Number Fields, 
Proc. EUROCAL 85, Vol. 2, Lecture Notes in Comp. Sci., Vol. 204, Springer-Verlag, Berlin and 
New York, 1985, pp. 479-486. 

5. R. DEDEKIND, Uber die Theorie der ganzen algebraischen Zahlen, Vieweg, 1964. 
6. G. LEJEUNE DIRICHLET, Zur Theorie der complexen Einheiten, Bericht uber die Verhand- 

lungen der Konigl. Preuss, Akademie der Wissenschaften, 1846, pp. 103-107. 
7. U. FINCKE & M. POHST, A New Method of Computing Fundamental Units in Algebraic Number 

Fields, Proc. EUROCAL 85, Vol. 2, Lecture Notes in Comp. Sci., Vol. 204, Springer-Verlag, Berlin 
and New York, 1985, pp. 470-478. 

8. A. K. LENSTRA, H. W. LENSTRA, JR. & L. LOvASz, "Factoring polynomials with rational 
coefficients," Math. Ann., v. 261, 1982, pp. 515-534. 

9. W. NARKIEWICZ, Elementary and Analytic Theory of Algebraic Numbers, Monograf. Mat., 
Vol. 51, PWN, Warsaw, 1974. 

10. M. POHST, H. ZASSENHAUS (& P. WEILER), "On effective computation of fundamental 
units. I, II," Math. Comp., v. 38, 1982, pp. 275-292 and 293-329. 


