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On the Computation of Totally Real 
Quartic Fields of Small Discriminant* 

By Johannes Buchmann and David Ford 

Abstract. All totally real quartic fields of discriminant less than 106 are computed. The 
method used to generate the fields is derived from Delone and Faddeev, with corrections 
and improvements. A new method for deciding field i8omorphism is used to eliminate 
redundant examples. Integral bases and Galois groups are given for each field. 

1. Introduction. In [3, pp. 184-200] Delone and Faddeev give a number- 
geometric method for computing generating equations for all totally real quartic 
fields of discriminant not exceeding a fixed upper bound L E R>0. This method 
is well suited for implementation on a computer. Unfortunately, the original paper 
contains many mistakes, and the proofs are sometimes hard to understand. 

In the present paper we give a corrected version of the Delone-Faddeev algorithm, 
we describe its implementation, and we give a table of all totally real quartic fields 
of discriminant less than 1,000,000, including their integral bases and the Galois 
groups of their normal closures. 

A different method for computing totally real quartic fields was given by God- 
win [6], and for general algorithms for computing fields of small discriminants, see 
Martinet [8] and Pohst [9], [10]. 

2. Computing Finitely Many Generating Equations. Each totally real 
quartic field F will be given by a generating polynomial 

(2.1) f(x) = x4 - sx3 + px2 - qx + n E Z[x], 

i.e., a root p of the irreducible polynomial f generates F over Q. We will now 
describe a method for computing finitely many generating polynomials f, among 
which generating polynomials for all the fields under consideration can be found. 
This is done by first proving that the rings of integers e9F of those fields contain 
"small" irrationalities a. We then show how to compute the characteristic poly- 
nomials of all such quartic irrationalities. But since a might also be a quadratic 
irrationality, we then explain how to compute generating equations for the remain- 
ing quadratic extensions of the quadratic fields Q(a). For this section we fix a 
totally real quartic field F, we denote by AF its discriminant and by &F its ring of 
integers. Also, for every number C in F we denote by Cl, 42, b, ~4 its conjugates. 
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(a) "Smalf' irrationalities in 61F. For each a in 6'F we consider the projection 

~p(a) of its conjugate vector 

a = (ai,a2, a3, a4)t 

onto the trace zero hyperplane 

H = {x = (xi, X2, X3,X4)t E R4 I X1 + X2 + X3 + X4 = 0} 

parallel to the vector 1. Since the vectors 

X1 = 2 (1, ii -1i _1)ti X2 = I (1i -1i 1i _1)ti X3=2(-,, _t 

form an orthonormal basis of H, this projection is given by the formula 
3 

(2.2) (p(a) = (xi, a)xi, 
i=l 

where (, ) denotes the standard inner product on R4. We put 

A = (p(6F). 

(2.3) PROPOSITION. The mapping p: 61F -4 R4 is a Z-module homomorphism 
with kernel Z. 

Proof. Formula (2.2) shows that p is in fact additive and Z-linear, and since 1 
can always be taken as the first element of a Z-module basis of 91F, only the rational 
integers are projected by p onto 0. 0 

(2.4) COROLLARY. The set A = V(6'F) is a three-dimensional lattice in R4 of 
determinant d(A) = 2 . 

Proof. Clearly, by (2.3), A is isomorphic to the three-dimensional Z-module 
L5'F/Z, hence A is a lattice of dimension 3. Now let 1, 01, 02, 03 be an integral basis 
of 69F. Then the parallelotope which is spanned by the vectors 1,01,02,03 is of 
the same volume as the parallelotope spanned by the vectors 1, p(O1 ), P(02), p(03), 
namely /Y. But since 1 is orthogonal to P(Oi) for 1 < i < 3 and because the 
vectors p(01), p(02), p(03) form a basis of A, we have 

-/ = |1|11 d(A) = 2d(A). 0 

(2.5) PROPOSITION. The ring 69F contains an irrationality a E (5F\Z uwth 

Tr(a) E {0, 1, 2} and 119(a) 112 < F 

Proof. It is known from Cassels [2, Chapter II, Theorem III] that A contains a 
vector v = p(a), v 0 0, with 

11v112 < (2d(A)2)1/3. 

Now we have by Corollary (2.4) 

(2d(A)2)1/3 < (F/2)1/3. 

By substituting ?a + k for a with a suitable k E Z we can make Tr(a) E {O, 1, 2}. 
By Proposition (2.3) this substitution does not affect the value of 1V(a)I112. 0 
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(b) Case I: The "small a" generates F. We assume in this subsection that 6F 

contains a quartic irrationality a which satisfies the conditions of Proposition (2.5), 
and we let (2.1) be the characteristic polynomial of a, i.e., we assume 

(2.6) s E {0,1,2} and II (a)II2 ?< .(/2). 

In order to use (2.6) for deriving bounds on the coefficients p, q, n, we need 

(2.7) LEMMA . The coefficients s and p satisfy IIp(a) 112 =3 2 - 2p. 

Proof. According to (2.2) we have 

IIv(a)II 2= (XII a)2 + (X2, a)2 + (X3, a)2, 

because the vectors xI, x2, x3 are pairwise orthogonal. Furthermore, we have 

4((x1, a)2 + (X2, a)2 + (X3, a)2) 

3(a2 + a(2 + a 2+ a2) - 2(ala2 + ala3 + a1a4 + a2a4 + a2a3) 

=3s2-8p. 0 

The nice property of this formula is that the coefficients s and p are separated. 

(2. 8) PROPOSITION. The coefficients s and p satisfy - (LF/16) ? p- S2 < 0. 

Proof. In view of Lemma (2.7), the second inequality follows immediately from 
the fact that the length of p (a) is always positive. The first inequality is a direct 
consequence of condition (2.6). D 

(2.9) LEMMA. The coefficients s,p and q satisfy (XI, a) * (X2,7a) * (X3,) = 

8 (-3 + 4sp) - q. 

Proof. This follows easily by a straightforward application of symmetric func- 
tions. [I 

(2. 10) PROPOSITION. The coefficients st p and q satisfy 18 (-s3 + 4sp)-ql < 
1 1Ip(a)113 

Proof. By the inequality between the arithmetic and geometric means we have 

((X1,a)2(x2, a)2(x3, a) 2)1/3 < 1 IIf(a)II2 

hence, by Lemma (2.9), the result follows. Dl 

In order finally to get bounds on n we need 

(2. 1 1) PROPOSITION. The coefficients s, p, q and n satisfy 
(i)p2 _ S2p+ 3 S4 + sq-4n > 0; 

(ii) 4(p2 - 3sq + 12n)3 - (2p3 - 72pn + 27s2n - 9sqp + 27q2)2 > 0. 

Remark. The left-hand side of (ii) is the polynomial discriminant of f multiplied 
by 27. 

Proof. By [3, p. 184], these conditions are necessary for a to be totally real. El 

A further bound is given in 

(2.12) PROPOSITION. The coefficients s, p, q and n satisfy In| < 1 (S2 - 2p)2. 
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Proof. First, we notice that 

at = (p(ca) + 1 

and thus 
2 

1at112 = IIv(a)I2 + 9 
4 

Now we get from the inequality between the geometric and arithmetic means 

/4 1/42 

Inl'/2 = j(Jail < Ilp(a)I112+ 2 

)~~~~~ 
So it follows from Lemma (2.7) that 

lnl1/2 < 1 (s2 -2p). c 

Using (2.6) and Propositions (2.8), (2.10), (2.11), and (2.12), we can compute 
a finite number of polynomials (2.1) among which there are generating equations 
for all those totally real quartic fields which possess a generating integer satisfying 
(2.6). Notice that the bounds on each coefficient depend on the previous coefficients. 

(c) Case II: The "small a" generates a quadratic subfield of F. We now assume 
that F does not contain a generating integer satisfying (2.6). 

(2.13) PROPOSITION. The field F contains a quadratic subfield of discrimi- 
nant d < 2 

Proof. By Proposition (2.5) and by our assumption, F contains a quadratic 
irrationality a satsifying (2.6). Let d be the discriminant of the quadratic subfield 
generated by a. Then the area of the lattice generated by 1 and a exceeds 2v'd. 
In fact, this is true, because of the length of 1 and a is twice the length of the 
corresponding quadratic conjugate vector, so the area of our parallelotope is twice 
the area of the two-dimensional parallelotope. But the area of the parallelotope 
spanned by 1 and a is IIp(a)II 2, and this proves our assertion. o 

We now fix a quadratic subfield K of F, K = Q(v'd) with discriminant d and 

(2.14) d < .(AF2). 

We also let 

| 24 if d-0mod 4, 

1 + 
if d-1 mod 4, 

so 1, w is an integral basis of K. Since F contains a quadratic subfield, K, there is 
an automorphism a of order 2 of F which fixes K. We assume that 

(2.15) a(al) = a2 and a(a3) = a4 

for every a in F. F is generated by a root p of a polynomial 

(2.16) g(x) = x-_ ax + fi E &'K[xI. 



TOTALLY REAL QUARTIC FIELDS OF SMALL DISCRIMINANT 165 

Here 9&K denotes the ring of integers of K. Notice that 

(2.17) a =Pl +P2, 3 = P1 P2, 

a' =P3+p4, f =pP3 p, 

where prime denotes conjugation in K. We write 

a = a, + a2w, d = bi + b2w 

with ai, bi E Z, and we want to compute bounds on ai and bi such that among the 
corresponding equations (2.16) a generating equation for F can always be found. 
For this purpose we consider the projection 

A: ~F '~4 
(2.18) 

& 

(1 t- A (Y) = (7, Y1)Y1 + (7, Y2)Y2, 

with 
= , Y2= -2(0 10 - 11)t 

Notice that y, and Y2 are orthogonal and both of length 1. We also put 

r = A(F). 

(2.19) PROPOSITION. The projection A is a Z-module homomorphism with 
kernel &K 

Proof. Again, it is clear from (2.18) that A is additive and Z-linear. Furthermore, 
each element -y of the kernel of A has the property ^Yi = '2 and 13 = -4, which 
means that -y is an integer in the fixed field K of a. 0 

(2.20) PROPOSITION. The set r = A(QF) is a two-dimensional lattice in R4 

of determinant d(r) = 2 / . 

Proof. By (2.19) we know that F 9F/169K, so r is a two-dimensional lattice 
in R4. Now let 1, w, 11, 72 be an integral basis of F. Then the volume of the 
parallelotope spanned by the vectors 1, w, 11, 72 is the same as the volume of the 
parallelotope spanned by I,w,I A(11), A (12), namely V.A27* On the other hand, for 
orthogonality reasons we have V/ = 2di * d(r). 0 

( 2. 21 ) PROPOSITION.- There is a generating element p E (&F with relative trace 

TrF/K(P) E {0,1,w,1 +w,2w,1 +2w,3w,1 +3w} and IIA(p)114 < AF/3d. 

Proof. We know from Cassels [2, Chapter II, Theorem II] that the lattice r 
contains a vector v A(p) with 11v112 < 2d(r)/,/3. Hence, by Proposition (2.20), 
we have 

||V|14 < 4AF/4 . 3d = AF/3d. 
We now replace p by p + ki + k2w with suitable kl, k2 E Z so that 

TIrF/K(P) E {0,1,w,1+w}. 

This substitution does not affect the value of A(p). Since 1, w, p, wp are independent 
over Q, either p or p + w must be a quartic irrationality. If p is not, then we make 
the further replacement of p by p + w, so that p is a generating element of F and 

TrF/K(p)E{0,1,w,1+w,2w,1+2w,3w,1+3w}. 0 
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We now let p be a generating element of F satisfying the conditions of Proposition 
(2.21) and we let (2.16) be the corresponding relative quadratic equation, i.e., 

(2.22) a E {0,1,w,1 +w,2w,1 +2w,3w,1 +3w} and IIA(p)14 < AF/3d. 

(2.23) LEMMA. The elements a, a', 3 and 3' satisfy 

IIA(p)112 = 2(a2 + a,2) - 2(/3 + 3'), 

and 

(y, p)2 - (Y2, p)2 = (a2 - a2) - 2(# -/3') 

Proof. Since Yi and Y2 are orthogonal, we see from formula (2.18) that 

I1A(p)112 = (yl,p)2 + (Y2, p)2 

= 2[(P1 - P2)2 + (p3 - P4)2] 

1 
(2 + a'2)-2(C+/3'). 

The other formula is proved analogously. 0 

(2.24) PROPOSITION. The elements a, a', : and /3' satisfy 

0< 1(a2 +a12) - (p +/3) < 1 / 

g(,2 1z2_(_t< 

Proof. The first two inequalities are an immediate consequence of condition 
(2.22) and Lemma (2.23), and the third follows from the same argument together 
with the fact that for any two real numbers XI, X2 it always holds that Ix 2 -x 21 
xl2+x 2. 0 

(2.25) PROPOSITION. (i) If d O0mod4, then 

0< 1(4a 2+a 2d)-bi < V(AF/3d) + 2~)-b 

and 
1 1 
-ala2 -b2 < V(AF/3d2). 2 ?2 

(ii) If d 1 mod 4, then 

1 2 21-2i-b2 <1 0 < 9 (4al + a2(1 + d) + 4aja2) -2b-62 < /(AF/3d) 

and 
1 1 
4 (2aa2 + a2)-b2 < 

2 /(AF/3d2). 

Proof. (i) In this case we have w = /d2 and so 

2 
a!2= (~al+ja2v'4) =a2+4-a2d+a1a2V4, 

a2 = - -a2V')d = al + a2d - aIa2V/d. 
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Consequently, a2+ a'2 = 2a 2+ la 2d. However, / + /b =bi + b2 4 + b - b2 rd= 
2bj. Hence, by Proposition (2.24), 

0-(2 12 ~-2< O<4 k2al + a2 d)2b,<} - (AF/3d) 

and 

|ala2vd-b2fd <- 2(A/3d) 
22 

or 

0 < ?(4al + a2d)-b < b (AF3d) 16 4 

and 
1 
|ala2-b2 < 2 (AF/3d2). 

(ii) In this case we have w-(1 + Vf)/2 and so 

a = (a + 2a2 + -a2v4) 

2 1 2 1 2 2V = a, + _a2 + ja2d+ aja2 + ala2Vf + ia2J 

42 2 2 1 j 2/ 
a = al + -a2 + -a2d+ala2-aia2Vd- a2va , 

a2 +a i2 = 2a2+ a22(1 + d) + 2aa2, 

+/3' = 2b, +b2, 

and thus 

1 2 2)_p+3)= + + + 
(a + a12) - + /3) = (4a, + a2(1 + d) + 4aa2) 2b1-b2 

1 (a - 2) a (_ ) = 4(2aia2+ a2)Vd-b2V T 

Clearly, by condition (2.22) and Proposition (2.25), we get bounds on the coeffi- 
cients ai and bi. In order to compute the generating polynomial from the polynomial 
(2.16), we apply the following 

(2.26) LEMMA. If d =0mod 4, let uf = 0, ir =-d/4, and if d = 1 mod 4, let 
CJ = 1, ir = (1 - d)/4. Then p is a root of the irreducible quartic polynomial 

f(x) = X4-sx3 +px2 -qx+nE Z[x], 

with 
s = 2a, + a2Ur, 

p = al2 + 2b, + (ala2+ b2)0r+ a2ir, 

q = 2alb1 + (alb2 + a2bi)u + 2a2b27r, 

n=bl +b122+bb2u+b2ir. 
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Proof. In each case, we have cr = w + w' and ir = w w '. The values given for 
s, p, q, n follow immediately when we define 

f(x) = (x2 _ ax +/)(x2 _ a,+/x ) 

which is obviously satisfied by p. 0 

3. The Computation. Our search proceeds in three phases. In each phase, the 
programs are written in PASCAL whenever possible. When large integer values are 
unavoidable, we use the ALGEB language. This occurs in two situations: when the 
discriminant of a polynomial must be computed exactly; and when testing whether 
two fields are isomorphic. 

MAXINT = 231 -1 = 2,147,483,647 is the maximum value of an integer variable 
in VAX PASCAL. 

Amin and Amax are lower and upper bounds for the field discriminant. 
Df is the discriminant of the polynomial f. 
(a) Phase I-Generation of Totally Real Quartic Fields. 
3.1: PSRCH3 and QSRCH3 (PASCAL). We apply the method of Section 2 to 

generate example polynomials f(x) with coefficients s, p, q, and n as in (2.1). Among 
the examples is at least one for each totally real quartic field F with AF < max. 

PSRCH3 generates characteristic polynomials of "small" quartic irrationalities. 
By Proposition (2.5), we may take s E {0, 1, 2}. For each value of s, Proposition 

(2.8), with AF = Amax, gives bounds for p. Given s and p, Proposition (2.10) and 
Lemma (2.7) give bounds for q. Finally, given s,p, and q, Propositions (2.11) and 
(2.12) produce bounds for n. 

QSRCH3 generates quadratic extension fields of quadratic fields. 
By condition (2.14), the quadratic subfield discriminant d is bounded by 

V(AF12). We therefore consider every square-free m with 2 < m < ( (Amax/2). 
If m _ 1 mod 4 we take d = m; otherwise we take d = 4m. Applying condition 
(2.22), we choose al E {0,1} and a2 E {0,1,2,3}. For each choice of a1,a2, and 
d, Proposition (2.25) gives bounds for b, and b2. Then s, p, q, and n are computed 
according to Lemma (2.26). 

As shown in [3, p. 184], F is totally real precisely if the following three conditions 
are met: 

(i) 382 - 8p > 0, 
(ii) 16(p2 - s2p + sq - 4n) + 3s4 > 0, 

(iii) Df > 0. 
Polynomials satisfying the conditions above are tested for irreducibility over Q. 
Each divisor of n is tested as a root of f, and if f has no rational roots, it is 
determined whether f is the product of two quadratics. 

The polynomials surviving this test are normalized to satisfy 

(1) inl = 1 = isl ? Iql, 
(2) s E {0,1,2}, 
(3) s= 0 =q> 0 

and are then sorted to remove duplicates. 
3.2: PQMULT (ALGEB). We compute Df exactly, and exclude f if Df < Amax 
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A partial factorization Df = d, d2d3, with each of dl, d2, d3 not exceeding MAX- 
INT, is then performed. (This enables the subsequent PASCAL program to factor- 
ize Df completely.) 

If this factorization reveals that the square-free part of Df has a prime factor 
exceeding MAXINT (as occasionally happens), then f is excluded. 

3.3: PQFACT (PASCAL). The complete factorization of Df is performed. 
If the square-free part of Df exceeds m then f is rejected. 
3.4: PQDISC (PASCAL). For each polynomial f surviving the previous test, we 

compute the field discriminant AF. The method used is the "Round 2" Maximal 
Order algorithm of Zassenhaus [13], [14], as implemented by Ford [4], suitably 
modified to avoid large integer values. 

Polynomials for which AF < Amin or AF > Ama;, are eliminated. 
The remaining polynomials are then sorted in order of AF, so that fields with 

equal discriminants appear consecutively. 
(b) Phase II-Elimination of Redundant Fields. 
3.5: IFTEST (ALGEB). Polynomials with equal field discriminants are tested 

to see if the fields generated by their roots are isomorphic. 
The method used is given in Buchmann and Ford [1], with one deviation. In 

place of the complete LLL algorithm [7], we use the following procedure. Although 
it is weaker than LLL, we found it produces short vectors about four times as fast. 
No doubt, this is largely due to the inefficiency of representing the rational values 
in LLL entirely with integers. 

Our lattice has basis v1,v2,v3,v4,v5 over Z5. 

The following steps are performed alternately until neither produces a change in 
the lattice basis: 

1) Repeat 10 times: 
For < i,j < 5, with i 54 j: 

k +- nearest integer to (vi, v)/(vj, v;); 
Replace: vi +- vi - kvj. 

2) For 1 < h < 5: 
Solve the 4 x 4 system of equations determined by: 

(Vh -Ejsh Xiv) 1 vi, for i 5 h; 
For j $ h: 

rj- nearest integer to x3; 
Replace: 

W 4- Ej>jh r3v3; 

k - nearest integer to (vn,W)/(W,W); 
Vh - 

Vh- kw. 

While either step 1) or step 2) alone produces short vectors eventually, neither of 
them is particularly efficient. But it seems that when step 2) reaches a period of 
slow convergence, application of step 1) speeds it up again. The constant 10 in step 
1) was determined experimentally. 

Remark. In every case where two fields were in fact isomorphic, it sufficed to 
perform our calculations modulo the smallest p-power exceeding 1020 to discover 
the determining relation. 
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(c) Phase III-Computation of Galois Groups and Integral Bases. At this point, 
a unique polynomial has been determined for each field F with AF < 1, 000, 000. 

3.6: IBINDX (ALGEB). For each polynomial, the Z-module index of the poly- 
nomial order in the maximal order, given by /(Df/AF), is computed. 

3.7: IBTEXT (PASCAL). For each field, a basis for its ring of integers is com- 
puted, as described above under PQDISC. 

The Galois group G of the field F is computed, according to the following method 
(due to Soicher [11], derived in part from Stauduhar [12]): 

1) For f(x) = x4 sx3 + px2-qx + n, its cubic resolvent is given by: 
h(y) = y3 _ py2 + (sq - 4n)y + (-s2n + 4pn - q2). 

2) If Df is a square, then: 
G = V4 if h has a rational root; 
G = A4 otherwise. 

3) If Df is not a square, then: 
G = D8 or C4 if h has a rational root; 
G = S4 otherwise. 

4) If G = D8 or C4, then: 
For integer root r of h, form polynomials 

g9 =X2 rx+n 
92 =X2 sx+ (p-r). 

Pick g = g, or 92 so that Dg is not a square. 
G C4 if Q(\/7g) = Q(/D7) 
G = D8 otherwise. 

3.8: NCTEST (ALGEB). For each pair of polynomials f and g defining fields 
with equal discriminant, a prime p and a root r are determined such that p divides 
neither Df nor Dg, f has root r modulo p, but g has no root modulo p (thereby 
proving that the fields defined by f and g are nonisomorphic; see [5]). 

4. Results. All computations were done on a Digital Equipment VAX 8500 
computer at the Computer Centre of Concordia University. 

Because the Phase I software would otherwise produce large numbers of examples 
for fields with small discriminant, Phases I and II were run in seven parts, with 
distinct values of Amin and Amax, as shown. "Count" gives the number of examples 
produced by each part of each phase. 

Phase I Phase II 

Amin Amax time count time count 

0 15625 0:06 460 0: 53 91 
15625 31250 0: 13 502 1: 01 125 
31250 62500 0: 30 1081 2 : 09 284 
62500 125000 1: 17 2476 5 : 09 663 

125000 250000 3: 20 5557 11: 09 1509 
250000 500000 9: 05 12011 24 : 32 3290 
500000 1000000 27: 08 26115 54: 09 7111 

Totals 41: 39 48202 99: 02 13073 
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Among the 13,073 distinct fields there occur 12,089 different discriminants, with 
multiplicities as shown. For multiplicities 1, 2, and 3, the ten smallest field discrim- 
inants are given. 

Multiplicity: 1 2 3 4 5 6 7 

Frequency: 11250 709 119 9 1 0 1 

Discriminants: 725 16448 35537 426725 270400 705600 
1125 28224 57600 462400 
1600 30056 128357 473616 
1957 37485 151717 608400 
2000 42048 176400 658944 
2048 44688 183872 833600 
2225 48704 210649 878400 
2304 50688 229577 967824 
2525 55872 277429 998400 
2624 62525 284445 

The data produced in Phase III of the computation-polynomial coefficients, Ga- 
lois groups, and integral bases for each of the 13,073 distinct fields-is available 
from the authors on magnetic tape or IMB PC-compatible 54-inch floppy disks. 

Relative Distribution of Galois Groups 

Group: C4 V4 D8 A4 S4 

Fields: 59 196 4486 31 8301 
Percent: 0.45 1.50 34.31 0.24 63.50 

Distribution of Galois Groups by Field Discriminant 

c4 v A 

6 000 114 li111 18 1 24 2 il 
100000: 1116 1 13 1 
160000: 1 10 IlIllII 2 1 
200000: 3 12 IllilIlilll 1 I 
260000: 6 11 3II 9 II2 

300000: 4 ~~~~~~10 I1I 
3500003: 3 j 9 1111I2 
400000: 1 8 11111111 2 
450000: 5 10 3111 5 .. 
600000: 0 t li4i 
560000: S 7 I11111 1 
600000: 1 o10 IW 0 
650000: 0 6 1 1 
700000: 3 III 11 IlIllIlIll 1 
760000: 2 8 1111111 0 
800000: 2 II 8 1111111 1 
860000: 3 6 111111 2 
900000: S 11 11111 1 I 
960000: 1 5 11111 1I 
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D'istrilbution of Galoils Group D8 by Field Discrimilnant 

0: 57 
20O00 79 
40000): 8n 
60000: 80 
80000: 80 

120000: 73 
140000: 89 
160000: 961111 
180000: 81 
200000: 91 
220000: 92 I 240000: 89 
260000: 87 
2M80000: 101 

300000O: 96 'I''' 320000: 82 
340~000: 9 
360000: 82 
380000: 94 
400000: 92 
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Distribution of Galois Group S4 by Field Discriminant 
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