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Abstract. This paper discusses some new integer factoring methods involving cyclo- 
tomic polynomials. 

There are several polynomials f (X) known to have the following property: given 
a multiple of f (p), we can quickly split any composite number that has p as a prime 
divisor. For example-taking f (X) to be X - 1-a multiple of p-1 will suffice to easily 
factor any multiple of p, using an algorithm of Pollard. Other methods (due to Guy, 
Williams, and Judd) make use of X + 1, X2 + 1, and X2 ? X + 1. 

We show that one may take f to be 4k, the kth cyclotomic polynomial. In contrast to 
the ad hoc methods used previously, we give a universal construction based on algebraic 
number theory that subsumes all the above results. Assuming generalized Riemann 
hypotheses, the expected time to factor N (given a multiple E of 4 k (P)) is bounded by 
a polynomial in k, log E, and log N. 

1. Introduction. This paper discusses a new method for factorization of num- 
bers, given partial information about the factors. Our algorithm includes some 
well-known methods of factoring as special cases, and provides a synoptic view of 
a large class of factorization methods. 

Let N be a composite number with unknown factorization, and let p be an 
unknown prime dividing N. 

Several investigators have observed that it is easy to split N if one knows any 
multiple of p - 1. Miller used this observation to show that computing the Euler 
*function is equivalent in difficulty to factoring N [17]. Based on this idea, Pollard 
devised a "p - 1" method of factoring [19]; it was also known to D. N. and D. H. 
Lehmer [23]. This method is "often spectacularly successful since it can sometimes 
find a quite enormous factor p with very little computing if p - 1 splits entirely or 
almost entirely into a product of small primes." [4] 

Similarly, it is easy to split N if one knows a multiple of p + 1; this was pointed 
out by Guy in [8] and made the basis of recent implementations of Williams [23] and 
Brent [4]. Williams and Judd ([24], [25]) extended these ideas to the polynomials 

p2 + 1 and p2 ?p+ 1; their methods, although originally designed for prime testing, 
easily extend to factoring. 
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It is natural, given these facts, to make the following conjecture: since X ? 1, 
X2 + 1, and X2 ? X + 1 are all defining polynomials for complex roots of unity, the 
above results should be provable using special cases of some unknown "cyclotomic" 
factoring method. 

Further support for this conjecture is provided by [1], in which we (along with 
Miller) showed that finding a(N), the sum of N's divisors, is equivalent in difficulty 
to factoring N. Since a is expressible as a product of cyclotomic polynomials, our 
results also showed that one can quickly split N using a multiple of 4bk(P), where 
4?k(X) is the kth cyclotomic polynomial and k is a prime power. Extending some 
ideas of Williams [25], we recently showed this to be true also if k has at most two 
prime factors [2]. 

In this paper we give a universal construction that implies all the above results 
and (assuming the Extended Riemann Hypothesis) proves the conjecture in the 
following substantive form: given any multiple of 4k (P), one can remove a factor p 
from N in random polynomial time. 

We call an integer B-smooth if all of its prime factors are less than or equal to 
B. The methods of this paper give an algorithm with running time polynomial in 
B, k, and log N to extract a prime divisor p of N provided that 4k (p) is B-smooth. 
It should be noted that such primes p are probably rare, and so our results are 
unlikely to have great impact on the practice of factoring. However, we find this 
theoretically interesting for the reasons given below. 

First, the previous methods involved many ad hoc techniques, using linear re- 
currences, finite fields, and so on. From a theoretical standpoint, it is interesting 
that all of these results can be explained as special cases of one algorithm. 

Second, our results shed light on the paradigms that are used in designing factor- 
ing algorithms. Many such algorithins involve "pushing elements into subgroups" 
(see, e.g., [5]); our results give explicitly a large class of groups that lead to factoring 
algorithms.** 

Finally, the use of generalized reciprocity laws in algorithms is just beginning to 
be explored. The analysis of our method makes essential use of these; in particular, 
we use a simple "higher reciprocity law" that can be stated with a minimum of 
extra concepts. Surely, this will find other uses in the construction of algorithms. 

The rest of this paper is organized as follows. In Section 2, we discuss a "p + 1" 
method; our viewpoint caries over to arbitrary "cyclotomic" methods, presented in 
Sections 3 and 4. The running time is discussed in Sections 5-7. Finally, in Section 
8 we present theorems on factorization. 

We chose this division of topics for the following reason. Knowing basic field 
theory, one can read the first three sections and implement what might be called the 
"typical" version of the algorithm. To understand all the details of the algorithm, 
as well as a heuristic argument for the running time, one needs algebraic number 
theory at the level of [16]. Finally, to get the polynomial time bound, one has to 
know the basic results of class field theory, as presented in the appendix of [27]. 

**Just what groups can be used is an open question. There are factoring algorithms involving 
quadratic-field class groups [20] and elliptic curves [15], and it would be of interest to find some 
point of view that includes these, as well. 
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2. The p + 1 Method. Before presenting our general construction, we discuss 
the p + 1 factoring method. This was originally defined with linear recurrences; 
we will use algebraic number theory, as this gives an algorithm that is easier to 
generalize. Since we will give detailed proofs later, we will restrict ourselves to the 
case where N is a product of two odd primes p and q. 

THE p + 1 FACTORING ALGORITHM. 

Input: N = pq, and E, a multiple of p + 1. 

Pick integers a, b, and d at random, and let t = a + bV/-. 
By rationalizing the denominator, evaluate x = t/t mod N. 

Compute xE = u + vf mod N. 
Hope that gcd(u - 1, v, n) splits N. 

Why is this likely to work? Consider what is happening algebraically. Assuming 
that the integer d is not a perfect square (this is likely), t belongs to the quadratic 
extension field Q(V71). By its construction, the norm of x-that is, the product of 
itself with its conjugate-will be 1. 

We do all the computations in the ring Z[VH] mod N, and by the Chinese Re- 
mainder Theorem for commutative rings ([12, p. 63]) this is isomorphic to the direct 
sum 

(1) Z [Vd] mod p e Z [v/] mod q. 

We further hope that d is not a square modulo p, making the first factor a finite 
field Fp2. 

It is shown in the theory of finite fields that the conjugation map on a finite 
field of order p2 is the Frobenius automorphism x -* xP. Therefore, by raising to a 
power that is some multiple of p + 1, we will get a power of the norm of x (which 
has to be 1) in the first direct summand of (1). 

The above discussion has not involved q, and it seems likely that in the other 
piece of (1), nothing particularly noteworthy will happen. Put another way, unless 
we are unlucky, we will have the relations*** 

u - 1 v _0 (modp), u - 1,v 0 0 (modq), 

allowing the last step to remove the factor p. 
We now retrace the above discussion, using a point of view that we will adhere 

to for the remrrainder of the paper. 

By choosing d, we have selected a field K of degree 2, along with a generator 
a for its Galois group (which is cyclic of order 2). In this case, the action of a is 
given by 

(x + yV,) =5\ x -* 
y/d 

***If the second condition fails, p and q will appear together in the gcd, but they can usually 
be separated by lowering the value of E. The details are similar to those of the p - 1 method; see 
[l]. 
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and it is clear how to interpret (x + y-'d)'i. We extend this notation to include 
symbolic powers whose exponents are polynomials in a, with integer coefficients: 

aano n+..+al,+ao denotes (aRan )cn . . (aral)o (ra) 

We hope that modulo p, a is the Frobenius map on a finite field of p2 elements, 
for then 

xP+1 = t(Uf_1)(Uf+1) t_ t2-1_1(md) xP+ ==1(mod p), 

allowing us to remove p from N. 

3. The ?k(P) Method. Let 4k be the kth cyclotomic polynomial; this is the 
unique monic polynomial whose roots are the primitive kth roots of unity. It can 
be shown ([12, p. 206]) that 'k has degree 0(k) and integer coefficients. We let 

T (X) = (Xk - 1)144(X); 

this will also have integral coefficients. 
This section discusses how to quickly remove a factor p from N, when we know 

a multiple E of 4k(P). 

All the computations will be done in a certain finite ring (denoted Rm) which 
depends on an auxiliary prime m. This ring has the following properties. First, 
Rm is a free ZN-module of rank k with basis {/o,....,. 3k-1}; this means that 
every member of Rm is uniquely a linear combination of the pi's with integer 
coefficients taken modulo N. As part of our implementation of Rm, we will provide 
"multiplication tables", which are (implicit or explicit) matrices for the linear maps 
x -) /ix. Second, Rm has an automorphism a of order k; again, this is just a linear 
transformation. Finally, the multiplicative identity of Rm has some representation 
1 = CO30 + * * * + Ck-1/k-1 

We will give details in the next section; for now, the reader is urged to keep 
the following "typical" case in mind. Rm is the polynomial ring Z[X]/(fm (X), N), 
where fm generates a cyclic field Km of degree k, a is a generator for the Galois 
group of Km, and the basis {,3i} consists of powers of X. 

THE 4k(p) FACTORING ALGORITHM. 

Input: N (to be factored) and E (a multiple of 4k(P)). 

Repeat until N splits: 
Choose a prime m -1 modulo k. 
Construct the ring Rm, with automorphism a. 
Choose t E Rm at random, and set x = tE. 

For each i, 1 < i < k, that is relatively prime to k: 
Set r = a . 
Compute y = x@(T) 
Set D = gcd(ci - yi). 
Try to split N with gcd(D, N). 

What we hope for (in the typical case above) is this: fm will be irreducible 
modulo some prime p dividing N, so Rm will have a direct factor isomorphic to the 
finite field Fpk. Then a will have some power r that is the Frobenius map t -tP 

on this finite field. Then modulo p, 

XE (r) xtzk(P)* (P) Xp 1 
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and we further hope that this will not be congruent to 1 modulo some other divisor 
of N, allowing the last step to split N. (If the latter condition fails and xE @(r)-1 

(mod N), a smaller value of E is likely to split N.) 
(The reader may wish to glance at the appendix, which contains three examples.) 
It is not obvious that the algorithm will work in polynomial time, but we can 

sketch the ideas involved in the typical case without too many technicalities. 
For a prime m congruent to 1 mod k, let Km be the unique field of degree k 

contained in the cyclotomic field generated by the mth roots of unity (the existence 
of this field follows from Galois theory). Further, let Km be generated by a root 
of the monic integral polynomial fm(X). Then, for most primes p, fm(X) splits 
modulo p in the same way as Xk - p splits modulo m. (This is a simple "higher 
reciprocity law"; we prove it later as Lemma 10.) Using this last fact, it suffices to 
find a prime m 1 (mod k) modulo which Xk - p is irreducible. Among primes 
congruent to 1 mod k, Chebotarev's density theorem ([13, p. 169]) implies that the 
ones we seek have density 1/1(k), so heuristically at least, we expect to have to try 
q(k) values of m before splitting N. 

However, this heuristic argument neglects two things. We are interested in find- 
ing a small m that works, and we also want some assurance that the resulting 
factorization is nontrivial. We attend to these matters by analyzing a version of 
the algorithm that uses m in order from the sequence k + 1, 2k + 1, 3k + 1 .... We 
show below-assuming ERH-that the least m that is likely to lead to a nontrivial 
factorization is bounded by a polynomial in k and log N. This, combined with 
polynomial time bounds for one trial of the ?k(p)-method, shows that the whole 
procedure takes expected polynomial time. 

4. Constructing Rings. Let m be a prime congruent to 1 modulo k, with 
a primitive root 9. Km denotes the cyclic field of degree k contained in the mth 
cyclotomic field,t and Om denotes the ring of algebraic integers in Km. Mathe- 
matically, Rm is just Om reduced modulo N; this section tells how to implement 
it. 

If ' is a primitive mth root of unity, then the Gaussian period of degree k is, by 
definition, 

x 
71= E fx. 

XE(Z- )k 

Its conjugates are found by replacing ' by ?9, fg, and so on in the above definition. 
This gives k quantities which we denote by ?7o = ?l, 71, .i. , ?7k- 1 Km is constructed 
algebraically by adjoining a root of the irreducible polynomial 

f(X) = (X-nO)(X-l) ... (X-7-1) 

to the rational numbers. Its Galois group is generated by 

a: 77i ?7i+i mod k 

(this depends on the generator g). Let A be the discriminant of f, modulo N; we 
may as well assume that gcd(A, N) is 1 or N, for otherwise we get a factor of N. 

tBy the Kronecker-Weber theorem ([27, p. 341]), every abelian-hence every cyclic-field is 
contained in some cyclotomic field. 
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In the typical case, A is relatively prime to N, and then ([13, p. 27]) Rm 
Z[X]/(f(X), N). Here we can use the power basis /i = Xi to implement R; the 
multiplication algorithms follow from polynomial algebra. The automorphism a is 
implemented as a matrix: its coefficients tij have to satisfy 

Z tijn = 7i. 

If N divides A, then we need to use the full ring of integers of Km. This is a 
free Z-module with basis no, l, ... .Ek-1 ([9, p. 217]), so we take pi = ni. In this 
case, a is easy to implement (we just permute the basis elements cyclically). The 
multiplication tables can be computed by the following algorithm (see [26, Section 
54]). Let k = (m-- 1)/k, and 

t(x) = (index of x in Zm) mod k, 
{ ?h(x) if (x,m) = 1, 

a(x) = 
k E rn (otherwise) 

(indices are taken with respect to the generator g). Then for 0 < i, j < k, 

7/i7 = E a(gi + gkl+) 

0<1<k 

In practice, we only need to compute o2 oK0i,..7 ,7 k- 1 ; the others are easily 
found using the Galois group. Finally, the multiplicative unit is 

l=-70 -71- *-7k-1. 

Even though Km is defined as a subfield of a cyclotomic field, we would like to 
avoid using the larger field. For this reason, we suggest the following procedure. 

First, find the multiplication tables in the period basis; this can be done by com- 
puting a table of indices (mod m) and using the algorithm above. Then, use these 
tables to express the quantities 1, q , . .k-l as integral linear combinations of 
0, . .,k-1 Since the field discriminant of Km is mk-1 ([18, p. 586]), the matrix 

of coefficients (tij) has the property that 

A= disc(f) = (det(tij))2 .mk-1 

(apply [13, p. 64]). By applying Gaussian elimination mod N to (tij), we can see 
whether A is a unit mod N, since the determinant is the product of the pivots. 

If A is a unit, then (since tij has been already made upper triangular) we can 
express k as a linear combination of smaller powers of 7, giving the polynomial 
f(X) mod N. To find a, we find a relation 

k-1 

E Xi7i = 7/ 
i=O 

and use this to express (7/1)2, (?71)3,... in the power basis. 
If A is not a unit, then (after seeing whether any of the pivots have a nontrivial 

gcd with N) we use the period basis. 
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Using classical algorithms for the arithmetic and Gaussian elimination for the 
linear algebra gives the operation counts below. In all cases, these estimates are 
good only up to constant factors. 

COMPUTATION POWER PERIOD 

BASIS BASIS 

1. multiplication table - m log2 mk 
2. Gauss elimination k3 log2 N 
3. find f(X) k * log2N 
4. find a k30log2 N 
5. add/subtract in R k * log N k log N 
6. multiply/divide in R k2 log2 N k3 log2 N 
7. applya k3 log2 N k logN 

5. The Time for One Trial. Let N, the number to be factored, have at 
least two distinct prime factors p and q. We will say that a prime m is useful in 
separating p from q if it satisfies the following three conditions:tt 

1. m is congruent to 1 mod k, 
2. p stays prime in Om, 

3. q splits completely in Om. 
In this section we analyze the running time of our procedure, assuming that such 
a prime has been found. We postpone the question of finding m until the next 
section. 

We first need to estimate the coefficients of T. 

LEMMA 1. Each coefficient of [ is bounded by 2k in absolute value. 

Proof. The zeros of T are roots of unity, at most k in number, so the ith 
coefficient is at most (k). 0 

LEMMA 2. The computation of xE in Rm requires O((log E k2 + k3) log2 N) 
steps, if E is an integer. 

Proof. This is clear if we use the power basis. If R is implemented with the 
period basis, we use a special basis of powers of x, as follows. We first compute 
the matrix that represents multiplication by x, then apply this to powers of x 
to get x2, x3,... , Xk in the power basis. We use elimination (again!) to find a 
monic polynomial that x satisfies; all this requires 0(k3) multiplications modulo 
N. Finally, we evaluate the power of x as usual, and express the result in the period 
basis. 0 

LEMMA 3. The computation of X2(T) requires O(k4 log2 N) steps. 

Proof. Since r = ai with gcd(i, k) = 1, we can first express *(r) as a polynomial 
in a by rearranging coefficients. If we evaluate the symbolic power by a process 

tt We can also show that the complete splitting of q is not necessary, and also have a polynomial- 
time procedure that works as long as q does not stay prime. See Section 6. 
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similar to Horner's rule, we need 0(k) matrix-vector multiplications and 0(k) ex- 
ponentiations by 0(k)-bit numbers (by Lemma 1). The result follows from Lemma 
2. 0 

LEMMA 4. One trial of the 4bk-method-that is, one execution of the outer loop, 
given a prime m as input-requires 0(m log2 m k + (k5 + k2 log E) log2 N) steps. 

Proof. We compute tE once, then compute x@(r) at most k times. The result 
follows from Lemmas 2 and 3. 0 

The above results say that if m is small, then one trial of the algorithm will 
require polynomial time. How likely is this to produce a factorization? The answer 
is given next; this is the main technical result of the paper. 

THEOREM 1. Let N have at least two distinct prime factors p and q, and let m 
be useful in separating p from q. Let E be a multiple of bk(P), such that q - 1 t E. 
Let r induce the Frobenius automorphism modulo p. Then, if t is a random element 
of Rm, with probability at least 1/2, tE'@(r) = 1 (mod p), $ 1 (mod q). Further- 
more, the time to compute this symbolic power of t is bounded by a polynomial in 
k, m, logE, and log N. 

Proof. If r is the Frobenius mod p, then for any t in R*, tE1@(T) = 1 mod p. 
We now have to show that the same relation is unlikely when p is replaced by q, 
or, what is the same thing, that the image of t -_ tE'@(r) (mod q) consists of more 
than just the identity. 

To prove this, let Qo, , Qk-1 be the prime ideals of 0 that divide q. It is 
known ([16, p. 70]) that the Galois group of K permutes them transitively; we 
assume that they are numbered so that Qi = Qo . The "residue notation" 

X = (Xo,...,Xk-1) 

indicates that x _ xi (mod Qi). Here we can take the components xi to be in Fq. 
Now, if X - Xk_l E Qk-1 = QoIC then (apply r) XT - Xk-l E Qo. This means 

that xT"s first component is xk.1; that is, the effect of r is a right cyclic shift of the 
components xi. Then, since T is monic and has degree less than k, 

(xI 1, ... ., 1)@(Tr) = (. .,xI 1, ..., 11) 

and 

(xI 1, ..., I1)@V(Tr)E = I... XE, 1, ... ., 1). 

The set of such elements will have at least two elements when q -1 t E. 
The statement about the running time follows from Lemma 4. 0 

6. The Nonsplitting Case. In this section we digress somewhat to show that 
the assumptions of the last section can be relaxed to include the case where q 
does not split completely. The results of this section are not required in any later 
sections. We will adhere to the notation of Section 5. 

We will need some polynomial algebra first. Let k be a positive integer, and I a 
nontrivial divisor of k (that is, 1 1 k and 1 < 1 < k). Let 

''k(X) = (Xk1 = k4 1(XI)+4 1)(Xl) .X+...+4**+ l)(Xl) .Xl1 
4 k (X) 

(here we are just grouping terms according to their degree modulo 1). It will be 
useful to have an explicit form for T(?). Let f denote a primitive Ith root of unity; 
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then, since 

k )(X') = 7[4k(X) + Ik(~X) + + k'k( X)I 

we see that 

(2) kT (X) = Lk(X'I/) + Lk(sXl/l) + + %sk(?-Xll)]. 

LEMMA 5. If E is a root of unity of order t for some t I k/l, t 5 k/lI, then 

k ) (E) = 0. 

Proof. Let ' denote a primitive lth root of unity. Then for any i, 0 < i < I, 

(i 1/l)tl = fitl'Ft = 

Now, since t I k/l and t :# k/l, tl I k and tl # k. Hence, fi"1/' is a root of 'k. ('k 

is the product of all cyclotomic polynomials of order properly dividing k.) By (2), 
then, 

'k )(0) =0.O k~~ 

LEMMA 6. The polynomials k (X) and 1k/i (X) are relatively prime. 

Proof. Recall that 
Xk/l-1 = 171 (X). 

tlk/l 

Since k0) has degree less than k/l, it cannot contain all IDt(X)'s as factors. How- 
ever, by Lemma 5, it must contain factors of the form 4t (X) when t I k/l, t : k/l, 
and therefore '1k/I must be the one omitted. The result follows. 0 

Let R(f, g) denote the resultant of the polynomials f and g. For k and I as 
above, define 

(3) Rk,I = R(* ( (X), 

From standard properties of resultants ([12, p. 135]) and Lemma 6 it follows that 

Rk,1 is a nonzero integer contained in the ideal generated by T(?) and '1k/l in Z[X]. 
We also have the alternative expression 

Rk,I = R( 4O()(Xt),4.k/l(X)) 

whenever i is relatively prime to k/l. This follows from the lemma below. 

LEMMA 7. Let f (X) E Z[X], 1a the cyclotomic polynomial of order a. Then, 
if i is relatively prime to a, 

R(f (X), '(a(X)) = R(f(Xt), (a(X)) 

Proof. If c is the leading coefficient of f, and X denotes the Euler phi-function, 
by a known formula ([12, p. 137]) 

R(f(X), i(a) = C,(a) JJ(a -; 

here the product is taken over all roots a of f and / of (a (taken with appropriate 

multiplicities). Then 

R(f(Xt), 'I(a) = C4(a) JJ(a' -3)- 
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where a' denotes a root of f(Xi). Since each a' has to be of the form s~jia/i, where 
f is a primitive ith root of unity, we can group the factors corresponding to a given 
a together to get 

(al/i - I)(Sal/i - 3) .. (i-lal/i - 3) = a -_p 

But ,3 -- /P just permutes the roots of 4b, and the result follows. 0 
Resultants can be computed efficiently by the Euclidean algorithm ([3, p. 160]); 

however, for the purposes of this discussion we can think of them as precomputed. 

THEOREM 2. Let q be a prime dividing N that is unramified in Km/Q, and 
splits into I pieces, where 1 < I < k. Define Rk,I as in (3). Assume that 

4tk/l (q) t Rk, IE. 

Let r generate the Galois group of Km/Q. Then there is some x E Rm for which 

xT ,(r) E $ 1 (mod q). 

Proof. Let Qo... Qi-i denote the prime ideals dividing q; then for all i, 0 < i < 1, 
Rm/Qi -Fqi/ci Since r permutes the prime ideals dividing q cyclically, rl induces 
an automorphism of Rm/q, given by 

xl= 'xq' (mod q) 

for some i relatively prime to k/l. Therefore (using residue notation), 

(XI 11 . 1) )2 (T) _ 
(0) (q ) ) 

and so 
xIC(T)E = (q')E (mod Qo). 

This cannot be identically 1 for x E (Rm/Qo)* unless qk/l - 1 I (4) (qt)E. But this 
last condition would imply 

441l (q)1| k ) (qi )E. 
Recall the assumption that 

'tk/l (q) t Rk,1 E. 

But by properties of resultants, we have polynomials ai and fli with integer coeffi- 
cients such that 

Rk,IE = ai(q)1 (?) (qi)E + i3(q) 4k/I(q)E. 

The right side of the above equation is clearly divisible by 1k/L (q), but the left side 
is not, a contradiction. 0 

We now indicate how one could prove an analog of Theorem 1. Assume that 
N, the number to be factored, has two distinct prime factors p and q. Say that an 
auxiliary prime m -1 (mod k) is good if: 

1. p stays prime in Om 
2. q does not stay prime in Om. 

Such a prime can be used in a recursive factorization algorithm outlined below. 
This procedure runs in polynomial time and will split N with high probability 
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provided that m is good and 44k(P) I E; a proof of this fact is left to the reader. 
The base case is k = 1, which is the p - 1 method. 

THE CYCLOTOMIC FACTORING ALGORITHM 
Cyclo (k,E): 
For each 1 1 k, I :$ 1: 

Compute the polynomial @ (?) (X). 

Compute Rk,1 = R('4(Y), Ik/l). 

Run Cyclo (k/l, Rk,IE) to ensure that 4k/L(q) t Rk,lE 

For each i, 1 < i < k, relatively prime to k: 
Choose a random x E Rm, 
T'ry to split N with gcd(x %k(T) E _ 1, N). 

7. Higher Reciprocity. The use of generalized reciprocity laws in algorithms 
may strike the reader as a black art. Since these laws are essential for an under- 
standing of our algorithm, we present some background; the viewpoint is that of 

[28]. 
We are concerned with the following situation. Let f(X) be an irreducible monic 

polynomial with integral coefficients that is normal in the sense of field theory. That 
is, adjoining one root of f to the rationals creates a field K that contains all roots 
of f. To properly analyze our algorithm, we will have to answer the following kind 
of question. 

Let p be a prime number. How will f factor modulo p? Furthermore, what 
happens to the Galois group mod p? 

One can give precise answers to these questions in the case where f is abelian, 
that is, K has a commutative Galois group. 

The splitting information is traditionally encoded in the following fashion. For 
mostttt primes p, the defining polynomial f(X) will factor modulo p into r poly- 
nomials fl,.. ., fr of the same degree. Then (applying [13, p. 18]) there is a unique 
element a of the Galois group for which 

XP =_ X' (mod ) 

for all i. This is called the Artin symbol of p, and written 

o = (p I K/Q). 

For our algorithm, the most important fact is this: the order of p's Artin symbol 
is equal to the degree of one (hence every) factor fit 

Clearly, then, to find out how polynomials split, we must compute Artin symbols. 
How do we do this? First consider the classical quadratic reciprocity law, which 
states that for distinct odd primes p and m, x2- p splits mod m in the same way 
as x2- m* splits mod p (here m* is ?m, whichever is congruent to 1 mod 4). 
Notice that we are not strictly interchanging the roles of p and m; we construct a 
new equation of the same degree (somehow using m), and ask how it splits mod p. 
For arbitrary k > 1, the generalization is given below in Lemma 10. 

tttThe exceptions are the primes dividing the discriminant of f (which are finite in number). 
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LEMMA 8. Let m be a prime and let the finite field Zm contain a kth root of 
unity; that is, m -1 (mod k). Let G be a multiplicative group with 

(Zm)k CGC Z* 

and let KG denote the field Zm(Gl/k) (that is, we adjoin a kth root of every element 
of G to Zm). Then the degree of the field extension KG/Zm is equal to the index 
of (Z*)k in G. 

Proof. See the discussion of Kummer theory in [12]. 0 

LEMMA 9. The order of p in Z*/(Z*)k is the degree of any irreducible factor 
of Xk - p modulo m. 

Proof. Apply Lemma 8 when G is the group generated by p. It is true, then, 
that 

Zm(Gl/k) = Zm( ) 

But Zm( k) is the splitting field of Xk - p and the index of G is just the order of 
p. Let 

Xk-p = fi(X)***fr(X) 

be the complete factorization over Zm. If we adjoin any root of an fi to Zm, we 
get a field containing the roots of all fi's, since they only differ by a kth root of 
unity. We conclude that all the fi's have the same degree, which is equal to the 
degree of the splitting field and hence equal to the order of p modulo the group of 
kth powers. 0 

LEMMA 10. Let m be prime, congruent to 1 mod k, and let fm(X) be the period 
polynomial of degree k, defined in Section 4. Then, if p t disc(fm), Xk - p splits 
mod m in the same way as fm(X) splits mod p. 

Proof. Let r7 (the period) be a root of fm (X). Since p does not divide the 
discriminant of fm, p splits in exactly the same way as fm splits mod p, so we 
have just to consider the splitting of the prime ideal (p) in going from Q to Q(71). 

To do this, consider K = Q(71) as a subfield of the cyclotomic field Q(') (~ is 
a primitive mth root of unity). Then there is a unique subgroup G of Zm with 
the following property: Z*/G is isomorphic to Gal(K/Q), and the isomorphism is 
induced by the map p -- (p I K/Q) (use Theorem 2 of [27, p. 338]). 

By Galois theory, the index (Zm : G) has to be k, the degree of K, so that G is 
just (Z*)k. As remarked above, the order of (p I K/Q) has to be the residue degree 
of any of its prime divisors, otherwise the Artin symbol would not be unique. 

This gives the result, by Lemma 9. 0 
In the next section, we will have to use a more general version of the above 

theory. First, we have to consider not just the splitting of polynomials, but also 
the splitting of prime ideals. Second, we consider not just extensions of the ratio- 
nals, but any relatively-abelian extension of algebraic number fields. We need the 
first generalization because in the "exceptional" case, we cannot use a polynomial 
ring, but have to consider the full ring of integers of Km. To justify the second 
generalization, consider that we are interested in the splitting of polynomials like 

(4) Xk - p (mod m). 
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At first glance, the theory will not apply, since this equation is not even normal. 
However, we can get around this problem by considering an extension field over 
which (4) is abelian. Then, if we can find a prime ideal M of this field with norm 
m, the splitting of (4) mod m will translate into the splitting of M (since the 
equation has rational integral coefficients). 

8. A Bound for Useful Primes. This section proves a technical result (The- 
orem 3, below) which gives a polynomial bound on the least m that makes the 
4k-method work. The result is not hard to state, but the proof requires some tech- 
nicalities of algebraic number theory, in particular the notion of Artin symbols for 
relatively-abelian extensions ([27, p. 338]). 

We make the following assumptions: m, p, and q are distinct primes, and k is a 
divisor of m- 1, relatively prime to pq. Km is the unique field of degree k contained 
in Q(~m); its ring of integers is denoted Om. fm(X) is the period polynomial as 
defined in Section 4, with discriminant A. 

LEMMA 11. p stays prime in Om and q splits completely in Om if and only if p 
generates Z* /(Z*)k and q is a kth power modulo m. Furthermore, if gcd(pq, A) = 

1, this happens if and only if fm is irreducible mod p and splits completely mod q. 

Proof. This follows from the proof of Lemma 10. 0 
Where p and q lie in the group Zm/(Zm)k depends on the splitting of Xk - p 

and Xk - q modulo m. To discuss this, we introduce two auxiliary fields: 

L = Q (r,, Vq), L' = Q(w, V,_ ~). 

(Here, w is a primitive kth root of unity, and k' is the maximal squarefree divisor 
of k.) Then L' is a cyclic extension of L; let A' and A denote the respective rings 
of integers of these two fields. 

LEMMA 12. Let M be a prime ideal of A of degree 1 whose Artin symbol 
(M I L'/L) has order k'. Then the rational prime m = Norm(M) has the fol- 
lowing properties: m = 1 (mod k), p generates Zm/(Zm )k, and q E (Zm )k. 

Proof. First, since M has degree 1 in L, m splits completely in any subfield of 
L. Taking the subfield to be Q(w), we see that m -1 (mod k). 

Next, since the order of its Artin symbol is as large as possible, M stays prime 
in going from L to L'. This implies that Xk' -p (mod M) cannot be solved in A. 
Since M has degree 1, A/MA ~ Fm, so Xk' - p is irreducible mod m. Therefore, 
p is not an rth power mod m for any prime r dividing k', so p has to generate 
Z* /(Z* )k_ 

Finally, M has to lie above some prime ideal of norm m in Q(w). This splits 
completely in going to L, so (by the above argument) Xk -q has to factor completely 
modulo m, meaning that q E (Z*)k. O 

LEMMA 13. Let L C L' be an abelian extension of number fields, and let a be 
in Gal(L'/L). Then there is a prime ideal M of L with residue degree 1 such that 
the Artin symbol (M I L'/L) = a. If the Dedekind zeta function of L' satisfies the 
Riemann hypothesis, then there is such an M with Norm(M) = O(log2 1A'I), where 
A' is the discriminant of L'. 
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Proof. The existence of a small prime ideal with the right Artin symbol is from 
[10, Corollary 1.2], specialized to relatively-abelian extensions. One can further 
take this ideal to have residue degree 1, as remarked in the introduction to [11]. 0 

LEMMA 14. If k, p, q, and L' are as defined above, then 

log I disc L'I < 3k3 log pqk. 

Proof. It is known that the discriminant of XI - a is ?nIa`1 (e.g., [6, p. 91]). 
Therefore, the discriminants of Q(w), Q(n), and Q( kt/p) divide kk, (kq)k, and 
(kp)k, respectively. By an estimate for the discriminants of composed fields ([21, 
Lemma 7]). 

|disc Q(w, (q, ktp) I < k3k 3 (pq)k3 

THEOREM 3. Let k be a positive integer. The least prime m 1_ modulo 
k for which p stays prime in Om and q splits completely is, assuming ERH, 
O(k6 log2 (pqk)). 

Proof. Let a be a generator for Gal(L'/L), and apply Lemmas 12, 13, and 14. o 

9. Conclusion. Our results above can be summed up in the following two 
theorems. 

THEOREM 4. Let k be a positive integer. Let 4k be the kth cyclotomic poly- 
nomial. Then, assuming ERH, there is a random polynomial-time algorithm that 
takes as input a multiple E of 4k(P) and splits any multiple of p. 

Proof. The algorithm proceeds as follows. First check that N is not a prime 
power. Run the 4k-method, using primes m of the form jk + 1, j = 1, 2,. . ., in 
order up to the bound indicated by Theorem 3. In parallel, run the 41-method 
(that is, the p - 1 method); note that here the auxiliary prime is not necessary 
since we can do everything in the field of rational numbers. By Theorems 1 and 2, 
with probability 1/2 we either factor using one of the small auxiliary primes, or we 
factor using the p - 1 method. The whole process takes polynomial time. O 

THEOREM 5. Let A and B be positive integers. Call a number N vulnerable if 
it has a prime factor p with the following property. for some k < A, 4k(P) consists 
of primes less than B. Then, assuming ERH, there is a random polynomial-time 
algorithm to split all vulnerable numbers. 

Proof. Since 4k(P) < NA _ 1, use E = p<B p[AlogP NJ as input to all the 
4k-methods. By the prime number theorem, log E < A -r(B) log N, giving a 
polynomial-time bound. O 

Part of our interest in these methods comes from the following question: "What 
fraction of numbers can we expect to be able to factor?" The answer certainly 
hinges on what the density of vulnerable numbers is, as a function of A and B. 

Algebraically, all the cyclotomic factoring methods boil down to the following 
idea. Let p be a prime factor that we want to remove, and consider the field exten- 
sion Fpk/Fp. This has a cyclic Galois group G, generated by (say) a. Then F;k is 

a module over the group ring Z [G], which we know is isomorphic to Z [X]/(Xk - 1). 
If f (X) I Xk - 1, the set of multiples of f (a) is a submodule Af of F;,. We get 
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interesting results when a is the Frobenius mod p, and we can annihilate Af with- 
out knowing p. This explains the usefulness of cyclotomic polynomials in factoring: 
they are intimately related to the structure of the group ring. 

In our algorithm, we try to annihilate At,: to do this, we must construct a 
global field with an automorphism that does what we want mod p. An interesting 
question is whether this expensive "globalization" of the problem is necessary; after 
all, we are really only interested in what happens modulo p and q. 

We can give a partial answer using the results of [24], which we paraphrase as 
follows. Let r and s be two distinct primes, and let L/K be a cyclic field extension 
of degree k = rs, with Galois group generated by a. Then K has two subfields 
Kr and K>, of relative degrees r and s, respectively; let N be the norm from L to 
K, and T the trace (or any other symmetric function) from L to K8. Then, if t is 
chosen so that N(t) = 1, 

x = tc?'k(0f) E Kr, 

and therefore T(x) E K. 
The nice thing about this result is that we do not need to know a at all; if the 

base field K is Fp, it suffices to know 'k (p) (see [2] for the details). This gives a 
simple "local" factoring method, provided that k has at most two distinct prime 
factors; we do not yet know how to make it work for general k. 

Finally, we would be amiss not to mention a closely related primality test, given 
by Lenstra [141 and relying on the following observation. Let p be a prime, and 
suppose we know the complete factorization of some divisor m of pk - 1. Then if 
m > , we can easily prove p prime. Taking m = '1k(P), we get a "cyclotomic" 
prime test; there is also the nice possibility of combining partial factorizations of 
various 4(p)'s in constructing a primality proof. It would be of interest to see if 
partial information about several 1(p)'s could similarly be used in factoring. 
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Appendix: Three Examples. In this appendix we present three examples in 
detail, for the (2, 4D4, and 46 methods. 

Example 1: k = 2. Recall that we are going to factor N, with two distinct prime 
divisors p and q. We present algebraic details for the 42 method, using the period 
basis. 

First we find a prime m 1 (mod k); we hope that p generates Zm/(Zm)k 
(i.e., p is a quadratic residue mod m) and q is a kth power (mod m) (i.e., q is a 
quadratic nonresidue mod m). We therefore hope that the Jacobi symbol 

(pq I m) = -1. 

Next we construct the periods; they are 

7o= E k 

1<k<m/2 
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and 
1= E rk2 (r a nonresidue). 

I<k<m/2 

The period equation is 

f (X) = (X -_ 70)(X - 7) =X2 - (t7o + 217 )X + 170o7, = 0. 

Here, 270 + t7l = -1 (this is easy) and 2?0rB7 = [1 - (-1 I m) m]/4 (this is nontrivial; 
it is a result of Gauss ([7, Section 355])). From this we see that 

27o,i = 2 

where m* = (-1 I m) m. Next we need a generator for the Galois group; this is a 
2 x 2 matrix a such that 

(n ) ~(o ) 

We find 
I 0' 

Finally, Z2 (X) = X + 1 and I2 (X) = X -1. This concludes the "precomputation" 
phase of the algorithm. 

For one trial, we choose at random x = ao + aI1 7o and compute 

X -2(a) = Xa-l = ao - a, - a17l 0 
aO + a1t0 = 

If we are successful, then gcd(yE - 1, N) splits N. It will be seen that this reduces 
essentially to the old p + 1 method. 

Example 2: k = 4. Here we show how to construct the Galois group generator 
matrix a for the case k = 4, m = 13. Let f denote a primitive 13th root of unity. 
The periods are 

10 = f + 3 + 9 

771 = 2+ 6 + 5 

172 = 4+ 
12 

+ 
10 

8 11 7 ?1= +~ +~ . 

From this we find the irreducible polynomial satisfied by the periods; it is 

f(X) = (X - 270)(X - 171)(X - 172)(X- r3) = X4 + X3 + 2X2 - 4X + 3. 

By using f (t7j) = 0, we find 

2702 = -2173-22o7-271-2 = 271 + 2172 

and 

?I3= 3173 + 7o + 3271 + 6 527o2 - 71 - 6172 - 3173 
This gives us the linear system 

1 = -70 - 271 -272 - 273, 
270 = 27o1 

N2o = 271 + 2272 

270 = -5270 
- 3271 - 6172 - 3173, 
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which can be easily solved to get 

(5) 1 = (2 0 + 3 0 + 4ry0 - 6). 

Thus, we can fill in the first two lines in the matrix equation 

(I' 1 (12 000 
(71 ) (-2 4/3 1 2/3)( 210 

3 1 3 
To fill in the rest of the lines, we just use (5) and the fact that f(ri) = 0 to get 

2 
= (2 n213 +3 3r2 + 4rB0 - 6)) -3- 2r 2-_ 4% + 1 

and 

37 ( (2 03 + 3 70 + 4rio 6)) = 770 + 176 + - 770 

Thus, we finally obtain 

1 0 0 0 1 
r - -2 4/3 1 2/3 No 

?71 1 -4 - 2 -1 I o2 3 3~~~~1/ 
<n13 J = 7 7/3 1 -1/3 i76 

(notice that the denominators are at worst 3; this is because the discriminant of f 
is 32 .133). 

Example 3: k = 6. We factor N = 1142624627800367 using the 46-method. 
The reader is encouraged to follow along using a computer algebra system such as 
MACSYMA. 

Choose m = 7; then K7 is a cyclotomic field, generated by S, a root of 

f(X) =X6+X5+X4+X3+X2+X+1. 

Since 3 is a generator for Z*, the Galois group of K7 is generated by S -S 

This allows us to easily work out the matrix for a relative to the power basis 
(1, S, S2, ... ., S5} (it is almost a permutation matrix). Since 

?D6(X) = X2 - X + 1, 

we find 
26(X) = X4 + X3 -X- X . 

Let t=2+33; then 

t*6 (-) = 56761050625072f5 - 579949865082260f4 - 360309277880893f3 

+ 841544272310854 2 + 693471966332404S - 594757095680104 

and 

[t*6(a)]300- -236435130228200f5 + 26173735275454f4 + 497751375820655f3 

+ 107621379503601 2 - 79744299524943S + 333155860818985. 

Finally, gcd(-236435130228200, N) = 149861, so the factorization is 

N = 149861 .7624562947 
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(7624562947 is prime). We were successful because 

446(149861) = 3 72 13 19 37 73 229. 
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