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On the Number of Elliptic Pseudoprimes 

By Daniel M. Gordon 

Abstract. For an elliptic curve E with complex multiplication by an order in K = 

Q(V\/d), a point P of infinite order on E, and any prime p with (-d I p) = -1, we have 
that (p + 1) * P = O(mod p), where 0 is the point at infinity and calculations are done 
using the addition law for E. Any composite number which satisfies these conditions is 
called an elliptic pseudoprime. In this paper it is shown that, assuming the Generalized 
Riemann Hypothesis, elliptic pseudoprimes are less numerous than primes. In particular, 
on the GRH, the number of elliptic pseudoprimes less than x is O(x log log x/log2 x). 
For certain curves it is shown that infinitely many elliptic pseudoprimes exist. 

1. Introduction. In [8], the author defined a necessary but not sufficient test 
for primality, based on the nature of elliptic curves over finite fields. Choose an 
elliptic curve E with complex multiplication by an order in K = Q(/fd), and a 
point P on E of infinite order. Then a composite number n is called an elliptic 
pseudoprime if (-d I n) = -1 and 

(1.1) (n + 1) . P = O(modn). 

These pseudoprimes are analogous to pseudoprimes for Fermat's test (see [19]): 
composite numbers n for which 

an-1l-1 (modn) 

for a given a. They are also analogous to pseudoprimes for the Lucas-Lehmer test 
(see [2]): let D, P and Q be integers such that D = p2 - 4Q $ 0 and P > 0. Let 
Uo = 0, U1 = 1, and Uk = PUk1 - QUk-2 for k > 2. Then a composite number 
n is a Lucas pseudoprime if 

Un (DIn) 0 O (mod n). 

The Lucas-Lehmer test is a degenerate case of the elliptic test (see [8]). For this 
reason, it seems plausible that the distribution of elliptic pseudoprimes is similar 
to Fermat and Lucas pseudoprimes. This is supported by empirical data given in 
Section 3. While that conjecture is still open, this paper will establish (conditional 
on the Generalized Riemann Hypothesis) an upper bound of O(x log log xl log2 x) 
elliptic pseudoprimes less than x, which shows that on the GRH they are less 
numerous than primes (a necessary condition for a compositeness test to be at all 
useful). 

In Section 2, the needed facts about elliptic curves will be presented. In Section 3, 
basic properties of elliptic pseudoprimes are briefly discussed. The main theorem is 
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given in Section 4. The paper concludes with a discussion of further open problems 
concerning elliptic pseudoprimes. 

Although the test is not sufficiently better than the Fermat test to be of much 
practical use, there are several reasons to study elliptic pseudoprimes. They are 
interesting in their own right as a special set of numbers similar to Fermat and 
Lucas pseudoprimes, but different enough to require further analysis. A better 
understanding of them could conceivably lead to stronger compositeness tests, or 
perhaps a necessary and sufficient condition for primality. 

In addition, elliptic curves have become an important tool in computational num- 
ber theory. Lenstra's factoring algorithm [15] and the Goldwasser-Kilian primality 
test [7] are two examples. Atkin (see [16]) and Bosma [3] gave different primality 
tests. Other applications exist in cryptography. Many of the computational prop- 
erties of elliptic curves are still not well understood, and any new investigation may 
be useful for other algorithms. 

2. Elliptic Curves with Complex Multiplication. Let E be the elliptic 
curve defined by the equation 

(2.1) Y2=X3+AX+B 

for any integers A, B such that 4A3 + 27B2 : 0. For any prime p > 3, Ep will be 
the set of all points on this curve over Fp: all pairs (X, Y) which satisfy Eq. (2.1) 
modulo p, together with the point at infinity, 0. These points form an abelian 
group with the point at infinity as its identity element. Let P1 = (Xl, Y1) and 
P2 = (X2,Y2). If P2 = -P1 (i.e., (X2,Y2) = (X1, -Y1)), then P1 + P2 = 0. 
Otherwise, let 

m =(Y2 - Y)/(X2 - X1) if P1 9 P2, 
m =(3X2 + A)/2Yi if P1 = P2. 

Then the addition law (see [15], [22]) states that P1 + P2 = (X3, Y3), where 

(2.2) X3 = -X1 - X2 + m2 

and 

Y3= -yl +m (Xl -X3). 

Parametrizations of elliptic curves other than (2.1) may be used, resulting in 
different addition laws. Montgomery, in [17], gives a parametrization which requires 
more multiplications but no inversion. Calculations using his version are faster by a 
constant factor depending on the implementation, since inversions take more time 
than multiplications. 

Hasse proved that IEpI, the order of the elliptic curve, is p + 1 - ap, where IapI < 

2,/p. Schoof, in [21], gave an algorithm for the computation of IEpl which runs in 
time O((logp)9). However, the order of elliptic curves with complex multiplication 
can be more quickly determined. 

An elliptic curve is said to have complex multiplication by a field K = Q(f/7d) 
if End(E), the group of endomorphisms of the curve over C, is an order in the 
imaginary quadratic field K. For a curve defined over Q with complex multiplica- 
tion by K, the order of Ep is p + 1 if p does not split in K. If p does split, say 
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p = irW, then the order is p + 1 - tr(u7r), where u is some unit in the field and tr 
denotes the trace. 

This reduces the problem of finding the order to determining which unit is the 
correct one, out of six choices (for Q(VX/)), four choices (for Q(v'=i)), or two 
choices in all other cases. Lenstra [16] gives methods to determine the correct unit 
for the first two cases. Which choice is correct can be determined for any curve 
using class field theory, but in practice for the other cases it is easier to just calculate 
(p + 1 + tr(r))P and (p + 1 - tr(r))P and see which one is the identity. 

As an example, consider curves of the form 

(2.3) y2 = X3-DX. 

These curves have complex multiplication by Q(T): the endomorphism corre- 
sponding to i sends a point (X, Y) to (-X, iY). A prime p splits in this field if 
p 1_ (mod 4). Thus, for any of these curves, if p 3 (mod 4), IEpI = p + 1. 
Otherwise, we can factor p as (c + id)(c - id), so r = c + id, and IEpI = p + 1 ? 2c 
or p + 1 ? 2d, corresponding to the units u = +1, ?i. 

In general, p splits in Q(V'd) if (-d I p) = 1. If it does split, there are 
four possible orders if d = 1 (corresponding to the units ?1, +i), six if d = 3 
(corresponding to the sixth roots of unity), and two (1 and -1) in all other cases. 
If p is inert, the order will be p + 1. 

3. Elliptic Pseudoprimes. In this paper we consider a compositeness test: 
one which, given any number, returns either "composite" or "probably prime." It 
uses the case of p not splitting in K, for which the order of the curve is always p+ 1 
if p is prime. The test for any n in the right congruence class is to see if the order 
of P on En divides n + 1, i.e., n satisfies Eq.(1.1). 

Repeated doublings and additions may be used to calculate (n+1)P. An addition 
chain is a string of integers ao, al,... , ar, where ao = 1, ar = n+1, and ai = aj+ak, 
for some j and k less than i, for all i = 1, 2,... , r. Given any such addition chain, 
(n + 1)P may be calculated by computing aiP = ajP + akP for i = 2, 3, ... , r. The 
final answer does not depend on the addition chain used, but during the inversion 
step a factor of n may be discovered. 

For example, consider the curves y2 = X3 -DX. Primes split in Q(X/=T) if 
p_ 1 (mod 4), so the test will only be applied to n =3 (mod 4). If n is composite, 
finding a point on the curve is difficult, so instead we will only use curves with a 
rational point. Any point of infinite order will do; while no effectively computable 
algorithm is known for finding them, algorithms such as the one given by Zagier in 
[27] work very well in practice. 

Definition. For an elliptic curve E defined over Q with complex multiplication 
by an order in K = Q(VS), a rational point P of infinite order, and an addition 
chain for n + 1, n is an elliptic pseudoprime if (-d I n) = -1 and (n + 1)P = 0. 

The dependence on the addition chain may be eliminated by using a parame- 
trization for which the addition law has no divisions. The definition may also be 
extended to curves defined over extensions of Q (which is necessary for complex 
multiplication by fields without unique factorization), but in this paper we will only 
look at curves over Q. 
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TABLE 1 

Sample curves for pseudoprime tests 

curve j P K test for 

y2 = X3-5X 1728 (5,10) Q(v/ i) n 3 (mod 4) 

y2 = X3- 120X -448 8000 (64,504) Q(sf{) n _ 5,7 (mod8) 

y2 = X3 + 3 0 (1,2) Q(V=3) n-2 (mod 3) 

y2 = X3- 3500X - 98000 - 3375 (84,448) Q(?7?) n -3,5,6 (mod 7) 

y2 = X3 - 1056X + 13552 - 32768 (33,121) Q("11) n _ 2,6, 7,8, 10 
(mod 11) 

y2 = X3- 2432X - 46208 - . 33 (57,19) Q(N/V19) n 5 0 (mod 19) 

y2 = X3-495360X - 218 . 33 (817,2537) Q(sF43) n 5 0 (mod 43) 
- 134193024 

y2 = X3- 117920X -215 .33 .53 .113 (201,67) Q(v'=6) n 5 0 (mod 67) 
+ 15585808 

y2 = X3- 34790720X -218 * 33 . 53 * 233 . 293 (3400,548) Q(V/"T6) n 5 0 (mod 163) 
+ 78984748304 

Table 1 gives a list of suitable curves, along with integral points, for each field 
of complex multiplication with class number one. 

Each curve can only be used for half of the integers, but using a sufficiently large 
table of suitable curves would reduce this problem. Only one number in 512 would 
not be testable by any of the curves in Table 1. 

Table 1 contains one curve with complex multiplication by each of the nine fields 
with class number one [23]. The test would be similar for curves with complex 
multiplication by fields with class number two or higher, except that these curves 
would be defined over extensions of Q and the multiple of P to be calculated would 
be larger. Since the degree of the extension is equal to the class number of the 
field, extending the list would best be done by first including curves for each of the 
18 fields with class number two, then class number three, and so on, to keep the 
calculations as manageable as possible. 

A composite number n is an elliptic pseudoprime only if (n + 1)P 0_ (mod p) 
for all primes p dividing n (i.e., the order of Pmodp divides n + 1). For any field 
of complex multiplication, half of the primes will split, and half will be inert. If 
any prime factor p of n splits in one field and is inert in another, the curves mod p 
for each field will have different orders. Thus the chance of Eq. (1.1) holding for 
several curves with different fields for any one n is, at least heuristically, very small. 

In the calculations summarized in Table 2 below, a standard doubling and mul- 
tiplying algorithm was used, scanning the digits of the binary representation of 
n + 1 from left to right to form the addition chain (see [12]). This method has the 
advantage that it corresponds to a strong pseudoprimality test. If n is an elliptic 
pseudoprime and n + 1 = 29 d, where d is odd, call n a strong elliptic pseudoprime 
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if 

(i) d P = O, or 
(ii) (d. 2r)P = a 2-division point, for some r with 0 < r < s. 

For elliptic curves given by Eq. (2.1), the 2-division points (points P such that 
2 P = 0) are of the form (X, 0), where X is a root of X3 + AX + B = 0 (modp). 
The left-to-right scan calculates all points of the form ((n + 1)/2i) * P, and if one 
of these points is a 2-division point modulo p, for some prime factor p of n, but is 
not a 2-division point modulo another prime factor, then the y-coordinate of the 
point is divisible by p, and so n will be partially factored during the inversion step 
in the next doubling. 

Numbers up to 108 were tested, with the following results: 

TABLE 2 
Number of strong elliptic pseudoprimes up to x 

X = 

curve K P 103 104 105 106 107 1o8 

y2 = X3 - 13 Q(vr=3) (17,70) 0 1 5 25 59 160 
y2 = X3 - 2 Q(vr=3) (3,5) 0 5 12 33 81 211 
Y2 = X3 + 3 Q(vr/=3) (1,2) 0 1 3 14 48 138 
y2 = X3 - 5X Q(j/T) (5,10) 0 3 5 19 49 124 

These results are consistent with the conjecture that the counting functions for 
pseudoprimes, Lucas pseudoprimes, and elliptic pseudoprimes are all about the 
same order (see figures for strong pseudoprimes in [19] and Lucas pseudoprimes in 
[2]). All of the tests are outdone by the test of Adams and Shanks [1], which detects 
all but two composite numbers less than 108, and all but 55 less than 50 109 [13]. 

Combining two compositeness tests which are not dependent usually results in 
a very strong test. In [19] a combination of the Fermat test with base 2 and a 
Lucas test detected all composites less than 25* 109. No number less than 108 

was an elliptic pseudoprime for all three curves with complex multiplication by 
Q(j/=3). No n 11 (mod 12) less than 2.108 was an elliptic pseudoprime for both 
y2 = X3 + 3 and y2 = X3 -5X. 

4. An Upper Bound for the Number of Elliptic Pseudoprimes. For a 
compositeness test to be useful, pseudoprimes must be rare. This is shown (condi- 
tionally) by: 

THEOREM 1 (under the Generalized Riemann Hypothesis). For a fixed elliptic 
curve E over Q with complex multiplication by an order in a complex quadratic 
field K = Q(V7S) and rational point P on E of infinite order, the number of 
pseudoprimes less than x is O(x log log xl log2 x). 

Thus, given the GRH, the number of elliptic pseudoprimes less than x is smaller 
than the number of primes. The proof will follow that of Erd6s [6] for pseudoprimes 
for base 2, with some complications due to the nature of elliptic curves, which force 
the assumption of the GRH and the weaker bound. Erd6s showed that the number 
of pseudoprimes for base two is less than 

(4.1) x R(x)c1 
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for some cl > 0, where 

R(x) = exp(log x log logx). 

Pomerance, in [18], proved a stronger bound, that the number of pseudoprimes for 
base two less than x is at most 

x L(.T)-1 

where 
L(x) = exp(log x log log log x/ log log x). 

Pomerance conjectured that the correct order is x L(x) - 1+o(1). It seems likely that 
the number of pseudoprimes for a fixed base and the number of elliptic pseudoprimes 
have the same order, but the variable order of elliptic curves mod p makes different 
means of proof necessary. 

The elliptic version of a Carmichael number is an n and E for which n is an 
elliptic pseudoprime for every point P on E. In [8], a heuristic argument is given 
for the following conjecture. 

CONJECTURE 1. For any E with complex multiplication, the number of elliptic 
Carmichael numbers less than x is x L(x)-1+0(1). 

The heuristic argument for this conjecture is similar to the one for pseudoprimes 
given in [19] and strengthened in [18]. 

Before proving the theorem, two lemmas are needed. Let ep denote the order of 
P on Ep. 

LEMMA 1. For a given elliptic curve E and point P of infinite order, the number 
of primes p such that ep = t is 0(t2). 

Proof. The n-division points of E are all points P over C for which nP = 0. It 
is well known that there are n2 such points. The division polynomial n (X, Y) has 
roots at all of these points except for those with 2P = 0. On is discussed in more 
detail in Section 5. 

A point P = (X, Y) has order t over Fp if and only if p divides kt(X, Y), and p 
does not divide +, (X, Y) for any s < t. Since the degree of kt (X, Y) as a polynomial 
in X and Y is less than t2/2, Ot = O(Ct2), where c is a constant depending on P 
(see Lemma 7 below), and so it/(X, Y) can have at most 0(t2) prime factors. 0 

LEMMA 2 (ERD6S [6 ] ). Let N(p1, P2, . . ,Pk; x) denote the number of integers 
less than x, all of whose prime factors come from Pi ,P2, ... Pk* Put ku = x. Then 
for u < log x/ log log x (i. e., k > log x), 

N(pl,P2t .. * * Pk; X) < X * exp(-C2U 109U), 

where c2 > 0 is an absolute constant. 

Now to prove Theorem 1, choose any 6 with 0 < 6 < 1/4, and split the elliptic 
pseudoprimes n < x into four (possibly overlapping) classes: 

(i) for every prime p I n, ep < R(x), 
(ii) there is a prime p I n with ep > R(x) and p is inert in K, 
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(iii) there is a prime p I n with ep > xl-6 and p splits in K, 
(iv) there is a prime p I n with xl-6 > ep > R(x) and p splits in K. 
By Lemma 1, the number of primes p with ep < R(x) is at most 

T u 

E 
t2) =O(R(x)3). t<R(x) 

Therefore, using Lemma 2 with k = R(x)3, so that u = C3 (10g xI log log x)1/2, the 
number of elliptic pseudoprimes in class (i) is at most 

x * R(x)c4 

for some C4 > 0. 

The other classes consist of elliptic pseudoprimes n having at least one prime 
factor p with ep > R(x). Since n is an elliptic pseudoprime, we have 

(4.2) n-- 0(modp), n _ -1 (mod ep). 

Note that ep and p are relatively prime, since otherwise the two congruences would 
be contradictory. Therefore, the number of elliptic pseudoprimes n < x with p I n 
is at most 

x 1+- 
pep 

If p is inert in K, we have the solution n = p, so there are at most x/(pep) 
composite solutions. Therefore, the number of elliptic pseudoprimes in class (ii) is 
at most 

(4-3) 
x x log log x 

Pe R(x) ( ) pE pep R(:r)<x 
ep>R(x) 

Now suppose p splits in K and n = kp for some k > 1. Then p -1 + ap (mod ep), 
since ep I lEpI = p + 1-ap. Since ap < 2fp, for any prime p with ep > xl-6 
we have that p > xl-6 and k > X(112)-6 (since k -(1 - ap) (modep)), so the 
smallest solution to the congruences (4.2) is at least 

n = kp > px(1/2)-? > X(3/2)-26 

This means that for these primes, if x is large enough, the smallest solution will be 
larger than x, and so there will be no elliptic pseudoprimes divisible by p less than 
x. Therefore, class (iii) is empty for x sufficiently large. 

The number of elliptic pseudoprimes in class (iv) will be at most 

1+- < 1+ E 
p<x ~ pep p<x p<x pep 

p splits p splits p splits 
R(x)<ep<x1-6 ep<x -6 R(x)<ep<x1-6 

The second sum is small, as shown in Eq. (4.3), so all that remains to show is 
that the number of p < x for which p splits in K and ep < xl-6 is small. It seems 
reasonable (but very difficult to prove) that: 

CONJECTURE 2. The number of primes with ep < y is Q(yl+e) for any E > 0. 
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This conjecture implies a bound as strong as that of Erd6s, that the number of 
elliptic pseudoprimes is at most x* R(x)-c. A far weaker lemma suffices to prove 
the weaker bound of Theorem 1: 

LEMMA 3. Assuming the GRH, the number of primes p < x which split in K 
and have ep < xl is O(x log log x/ log2x). 

Proof. We will look at the index ip of P in Ep, defined by ip = IE I/ep. To prove 
Lemma 3, we will divide all primes p < x with ep < xl-6 into three classes: 

Si = {p I p < xl-6/2 ep < x-16}, 
S {p I x1-6/2 < p < x, ep < xl-6 and q I ip - q < 1 logx}, 

and 

S3 = {p I X1-6/2 < p < x,ep ? x-6 and q I i for some q > 1 logx}. 

The first class clearly has size less than x1-612. The other two cases require 
more effort. 

Size of S2. From Lemma 3 of Gupta and Murty [9], if p splits in K and p does 
not divide the discriminant A of E, a prime q has q I ip if and only if one of the 
following is true: 

(a) q is inert in K and p splits completely in Kq, 
(b) q ramifies or splits in K, say q = a1a2, and irp splits completely in L<>1 or 

L., or Kq. 
Here, Kq = K(E[q]), the field obtained by adjoining the q-division points of E 

to K. L<> = K(E[ca],ce-1P), where cO-7P is a point B on E over C such that 
ac B = P. We choose 7rp so that p = irp7p, and lEpI = p + 1 - tr(irp). 

For q prime, let Nq(x) denote the number of p < x such that q I ip. We 
estimate Nq(x) for q < (1/12)logx, using an effective version of Chebotarev's 
Density Theorem: 

LEMMA 4 (LAGARIAS AND ODLYZKO [14]). Let L/K be a normal exten- 
sion of degree n with discriminant dL = disc(L/Q). Let lrc(x, L/K) be the number 
of prime ideals in K unramified in L with norm less than x and Frobenius auto- 
morphism in a given conjugacy class C of Gal(L/K). If the GRH holds for the 
Dedekind zeta function of L, then 

|7rc(X, LK) - ]?-Li(x) <? 1CX1/2 (log x + log dL) 

Returning to the proof of Lemma 3, we apply this result to bound Nq(x), using 
bounds on the degrees and discriminants of Kq, L<>1 and L.2. It is shown in Lemma 
7 of [9] that for prime q one has 

log dL ?logq 
n 

for each of these fields and [La,i: Q] > q3/2, [Kq: Q] > q2. Then, using (a) and 
(b) above, Lemma 4 implies the bound 

Nq(x) < q312 l + X1'2 log q + x12logx 
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Now let y = j1 log x, and I(q) denote the product over all p < x and q < y of all 
the powers of q dividing ip. By the above, we have that the log of the product of 

ip for all p E S2 is 

log J1 I(q) < log g q 
+X 

1/2 log q+x1/2 log X) 

(4.4) q<y q<y 
x log q 

<< lO :_ q3/2v 

The sum is convergent, and so the whole expression is less than cxl log x for some 
absolute constant c. 

Suppose now that at least dx/ log2 x primes all have ep < x1-6. Then by the 
definition of S2, 

p+l-2~/~ 2 1- 1_6/ 
ip > P + 1 - 2/ p> i / = 61262 

and so 

(4.5) log I(q) > log ( ip) > log (l 6/2) > 3 dx 
q<ogJJI(q) 

- 3 log x 

for x sufficiently large. By choosing d large enough, this contradicts (4.4). Thus, 

1S21 < X/(logX)2. 
Size of S3. In Section 6 of [9], Gupta and Murty define the quantity 

M(yl,y2) = l{P I p < x and q I ip for some Yi < q < Y2}l1 

They show, assuming the GRH, a result which implies 

M(y, 2x) = (x log og x) 

S3 is clearly contained in the set counted by M(y, 2x), anid so the number of primes 
p < x with ep < x1-6 is at most IS,i + 1S21 + 1S31 = O(XloglogX/log2 X). 0 

The condition in Theorem 1 that the curve is defined over Q is used in the proof 
of Lemma 3, both in the estimates of degrees and discriminants and the lemmas 
from [9], which deal only with the class number one case. The same theorem can 
be shown for curves over extensions K of Q, but the implied constant in the bound 
would strongly depend on the field K. 

5. Lower Bounds and Other Open Problems. It seems to be a hard prob- 
lem to establish a good lower bound for the number of elliptic pseudoprimes. Un- 
fortunately, the various methods used in [2], [11], [18] and [19] to give lower bounds 
for pseudoprimes all run into difficulties when applied to elliptic pseudoprimes. 

To consider lower bounds, it is convenient to use a parametrization of the elliptic 
curve for which the addition law has no divisions, as in [17]. In this case, no 
pseudoprimes are eliminated by the inversion step, simplifying the analysis. 
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We will prove that an infinite number of elliptic pseudoprimes exist for certain 
curves by using the properties of the division polynomial V)P (X, Y). A number of 
facts about elliptic functions will be needed. For proofs, see [24], [4] or [5]. 

Recall that the division polynomial V), (X, Y) has roots at the n-division points 
of E: P = (X, Y) such that n* P = 0. These polynomials are often defined by the 
equations 

+0O(X, Y) = O, 

ik (X, Y) = 1, 

+2(X, Y) = 2Y, 

03(X, Y) = 3X4 + 6AX2 + 12BX - A2, 

i4 (Xi Y) = 4Y(X6 + 5AX4 + 20BX3 - 5A2X2 - 4ABX - 8B2 - A3) 

and the recurrence 

(5.1) V)m+nh)m-n = 4)m-lV4m+l n - V4n-lV4n+ M. 

These polynomials may also be defined in terms of elliptic functions. Let L be the 
lattice generated by w1 and w2 for any complex numbers such that Im(w2/wl) > 0. 
The Weierstrass p-function is defined by 

() 
1 + E { 

1 
} ip(Z) = T2 EL+Z{-()2 

W2} 

WOO 

This is an elliptic function which satisfies the relation 

p 2(z) = 4P3(z) - 92P(Z) - 93, 

where 92 and 93 are functions of L. Therefore, if we take L so that A =-92/4, 
B = -93/4, and z to be the point in the period parallelogram C/L such that 

p(z) = X, then p'(z)/2 = Y, and we have a correspondence between complex 
numbers z in the period parallelogram and points on the curve E over C. The 
point at infinity corresponds to z = 0, where p has a pole. 

Under this map, the addition law on the curve corresponds to complex addition 
modulo the lattice L. The n-division points on the curve correspond to the n2 
complex numbers z such that nz E L. Let fn (z) be the function defined on CIL 
by fn(z) = On (X, Y), where p(z) = X. As mentioned in the proof of Lemma 1, 
the roots of OP1n are the n-division points, and so we get another definition of the 
division polynomials: 

(5.2) V2 (X, Y) = fn2 (z) = n2 rj ((z)-p(u)) 
nusEL 

LEMMA 5. Let w1 andw2 be basic periods of p(z), and define wab = awl +bw2. 
Let r7, = ~(w,/2) and 72 = ~(W2/2), for Weierstrass's c-function, and Tlab = a271 + 

bfl2. Then for the Weierstrass a-function: 

a(z + Wab) = (_j)a+ba(z)e2t1ab (z+wab/2) 
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Proof. This is an extension of the well-known properties of a(z), that 

a(z + wi) =-a(z)e2n1 (z+w1/2) 

and 
a(z + w2) = -a(Z)e2n2(z+w2/2) 

The lemma follows easily by induction on a and b. 0 

LEMMA 6. We have Okn(X, Y) = a(nz)/a(Z)n2, where z is the complex number 
in CIL for which p(z) = X. 

LEMMA 7. For an elliptic curve E and point P = (X, Y) of infinite order, there 
exists a constant c > 1 for which 

On (X Y) = (1 + o(l))cn 

THEOREM 2. Suppose E is an elliptic curve with complex multiplication by an 
order in K and an integral point of infinite order P = (X, Y), and p is a prime 
which is incrt in K and does not divide 2 (X, Y). Then 

i2p (X, Y)/02(X, Y) -1 (modp). 

Proof. Since the order of P on Ep divides p + 1, we have that Vkp+l (X, Y) 0_ 
(modp). Let R = Q(E[p + 1]) be the field obtained by adjoining all the (p + 1)- 
division points on E to the rationals, and p be any prime ideal in R dividing p. 
Then ip+1(X, Y) _ 0 (mod p), and so by Eq. (5.2) there must be some (p + 1)- 
division point u such that p I (p(z) - p(u)). Since any such point can be written 
as Wab/(P + 1) for some a and b, we have 

(Wab (modp). 

This, and Eq. (5.2), along with the definition of fn(z), imply that 

IWab 
11)n M Y) fn (p + )(mod p) 

for all n > 0. 
Let k be any integer between 0 and 2p + 2. Then by Lemma 6, 

1k2p+k(X,Y) c((2p, + 2 - k)uWab/(P + 1)) 
)2p+2-k (X, Y)- =U(Wab/(P +1))(2p+2-k) (mod p) 

(_1)2a+2b+ l1(k(Aab/(p + 1)))e4?abb(Wnb-k(wab/(P+1))) 

- (Wab/(P+ 1))k2UC(Wab/(p+ 1))4(P+1)2-4(p+1)k (modp) 

by Lemma 5. Using Lemma 6, we get 

(5.3) 1)2p+2-k(X, Y)--k(X, Y) a (mod 

where 
a U(Wab/(P + 1))2(p+l) 

e2"abWab/(P+1) 

This is equivalent to Eq. (15.3) in [24]. Since the Obk's are integers, letting k = 1 
and 2 in Eq. (5.3) shows that a- 2P and a-2p+2 are congruent to rational integers 
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mod p, and so a2 must be equal to a rational integer mod p. But then all of the 
quantities in Eq. (5.3) are rational integers mod p, and so the congruence must hold 
modulo p. 

For k = 2, this gives 

02p (X Y) -2 (X, Y) (a2 ) -2 (X, Y) (mod p). 0 

Although Theorem 2 will suffice to show that there are an infinite number of 
elliptic pseudoprimes for certain curves, other properties of the division polynomials 
need to be better understood to strengthen the results. For example, by similar 
manipulations, it may be shown that 

Vp+l-k(XiY) = (-1)a+b+l kk(X, y))ak(P+l)/2 (modp). 

From this it follows that a is equal to an integer modp. Letting k = 1, we get 

Op(XI y) = (- 1)a+b+ l((P- 1)/2 (modp). 

This shows that Op/(X, Y) -+1 (modp) for inert primes p. In fact, ip (X, Y) is 
always equal to -1 (mod p), but a proof requires use of the facts that a supersingular 
curve has a trivial group of p-torsion points over Fp (see [22]). An elementary proof 
would be interesting, and might help getting stronger lower bounds for elliptic 
pseudoprimes. 

COROLLARY 1. For a curve E uwth complex multiplication by an order in K = 

Q(,/7i) and point of infinite order P = (X, Y), let n = 4'2p(X, Y)/12(X, Y) for 
any sufficiently large prime p. Then n is an elliptic pseudoprime if 

(i) (-d p) = -1, 
(5.4) (ii) (-d I n) = -1, 

(iii) n -1 (mod 2). 

Proof. By (i), p is inert in K, so by Theorem 2 we have n -1 (mod p). Together 
with (iii) this implies that 2p divides n + 1. By the definition of n, the point P 
has order dividing 2p on Eq for each of the prime divisors q of n, so (n + 1)P _ 
O (modn). By (ii), n is in the right congruence class modd for the pseudoprime 
test. 

The only other necessary condition is that n be composite. This follows from 
the fact that VPp I 1k2p, and that, by Lemma 7, tk2p > i)p for p large enough, so V)p 
is a proper divisor of I2p. Therefore n is an elliptic pseudoprime. 

Alternatively, it can be shown, using results of Ward [26], that for k sufficiently 
large, lPk(X, Y) will always have a primitive prime divisor: a prime q such that 
q I lPk and q does not divide Vb1 for any 1 < k. The proof runs along the same lines 
as the proof of the corresponding theorem for Lehmer numbers in [25]. For k = 2p, 
this also shows that 1P2p 5 1)p. 0 

COROLLARY 2. There are infinitely many elliptic pseudoprimes for the curve 
E: Y2 = X3+3 and point P= (1, 2). 

Proof. This curve has complex multiplication by Q(j/=3), so by Corollary 1, 
n will be an elliptic pseudoprime for any prime p _ 2 (mod 3) which has n = 

I2p(1,2)/I2(1,2) -2 (mod3) and n _ 1 (mod2). 
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The sequence kk = V)2k(X, Y)/t/2(X, Y) for k = 0,1,... is also an elliptic di- 
visibility sequence: it still satisfies the recurrence (5.1), and if k divides I then qk 

divides Xl. Ward shows in [24] that such sequences are periodic modulo any prime; 
in this case we are interested in 2 and 3. For this curve it turns out that for p _ 5 
(mod 6), b2p (1, 2)/42(1, 2) _ 5 (mod 6). Therefore, there will be an elliptic pseu- 
doprime for each such prime. Since there are an infinite number of these primes 
by Dirichlet's Theorem on primes in arithmetic progressions, there are an infinite 
number of elliptic pseudoprimes for this curve and point. 0 

Because of the growth rate of the Ik'S, the pseudoprimes constructed by this 
method tend to be quite large. For instance, the first pseudoprime from Corollary 
1 is 

I10/I2 = 16617839269761894629 = 179 . 61469 . 64951 . 23253029. 

This method will not work if conditions (i) and (ii) in (5.4) are mutually exclusive, 
or if 42p (X, Y)/tk2 (X, Y) is always divisible by 2, which happens for most of the 
curves in Table 1. While it does not work for all curves, it should not be hard 
to find examples of curves with complex multiplication by each field with class 
number one for which all three conditions are met infinitely often. For instance, 
for Q(V1), the curve y2 = X3 -5X and point (5,10) is not suitable, but for the 
curve y2 = X3 + 3X and point (12,42) all three conditions are satisfied for any 
prime p 3 (mod 4). 

In cases where Corollary 1 applies, we also get a lower bound for the num- 
ber of elliptic pseudoprimes. For instance, in the curve of Corollary 2, since 
tI2p(X, Y)/ik2(Xi Y) << C4p by Lemma 7, and the number of primes = 5 (mod 6) 
less than x is about 2 -g , the number of elliptic pseudoprimes less than x obtained 2 log x' 
by this method is 

(5.5) > loglogx 

This is much weaker than the heuristic argument given in [8], which gives a 
construction for x L(x)-1+0(l) elliptic pseudoprimes less than x, the correct order 
if Conjecture 1 is correct. However, that argument uses several difficult number- 
theoretic conjectures, and is not likely to yield any rigorous lower bound. 

The bound in (5.5) is also weaker than lower bounds known for Fermat and Lucas 
pseudoprimes. A deeper understanding of the divisibility properties of the division 
polynomials is necessary to improve the bound or get a general lower bound for all 
curves. 

There are a number of other open problems regarding elliptic pseudoprimes. 
One difficult problem is to improve the upper bound, or remove the use of the 
Generalized Riemann Hypothesis. Another is to get a result analogous to Rabin's 
in [20]: for any composite number n, the fraction of points on an elliptic curve for 
which n is a strong elliptic pseudoprime is at most some c < 1. 

Finally, in [8], Euler elliptic pseudoprimes are defined analogously to the regular 
case: n is an Euler elliptic pseudoprime if n _ 1 (mod 4) and 

(5.6) (n + 1 p { O, P = 2Q for some Q on En 
(62} a 2-division point, otherwise. 
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The restriction to n _ 1 (mod 4) is to ensure that En is cyclic if n is a prime. 
A simple way to check whether P is twice another point, analogous to the Jacobi 
symbol, would make this a practical test. For Fermat and Lucas pseudoprimes, 
all strong pseudoprimes are also Euler pseudoprimes. The proof does not carry 
over to elliptic pseudoprimes, and it would be interesting to find a strong elliptic 
pseudoprime n _ 1 (mod 4) which does not pass Eq. (5.6), or prove that none exist. 
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