
MATHEMATICS OF COMPUTATION 
VOLUME 52, NUMBER 186 
APRIL 1989, PAGES 255-274 

Continuous Finite Elements in Space and Time 
for the Heat Equation 

By A. K. Aziz*and Peter Monk** 

Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday 

Abstract. In this paper we shall analyze a new variational method for approximating 
the heat equation using continuous finite elements in space and time. In the special 
case of linear elements in time the method reduces to the Crank-Nicolson Galerkin 
method with time-averaged data. Using higher-order finite elements in time, we obtain 
a new class of time stepping methods related to collocating the standard spatial Galerkin 
differential equations in time at the Gauss-Legendre points. Again the data enters via 
suitable time averages. We present error estimates and the results of some numerical 
experiments. 

1. Introduction. In this paper we shall analyze a variational method for ap- 
proximating parabolic problems using continuous finite elements in space and time. 
For simplicity, we shall apply the method to the following initial-boundary value 
problem for the heat equation. Let Q be a polygonal domain in R2 with boundary 
92, let T > 0, and let u(x, t) satisfy 

Ut =Au +f 8(x, t) E Qx (O. T), 
(1.1) ~ ~~~~ u= V(xjt) E anx [0,T] I 

u = uo Vx E Q and t = O, 

where f(x, t) and uo (x) are given functions. The extension of our method to more 
general linear problems follows in obvious ways. 

To formulate the finite element method, let SJP(Q) C Ho (Q) be a finite element 
space of continuous piecewise pth degree polynomials on Q with mesh parameter 
h (we shall give more details of the finite element spaces used in Section 2). Let 
0 = to < ti < t2 < < tN = T be a partition of [0,T], and let Skq([0,T]) be a 
finite element space on this partition consisting of continuous piecewise qth degree 
polynomials in time (k = max1<i<N Iti - ti1 I). Then define Whk to be the tensor 
product space 

Whk = S ) 0 S ([O. T]). 

If we let (,.) denote the inner product on L2(Q), our finite element method for 
approximating (1.1) is to find uhk E Whk such that 

(1.2) Uhk = Pxuo at t = 0 
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where PI is the elliptic projection onto ShP(Q) (see Section 2), and 

T IT 

(1.3) ]( (Uk I vXk) + (VUhk, vVhk) dt = (f vhk) dt VVhk E Whk. 

The finite element solution uhk can be computed by marching through successive 
time levels. To see this, let pq (J) denote the set of polynomials of degree q on an 
interval J; then for n = 0, 1, 2,.. ., N - 1 we can compute uhk on [tn, tn+1] as the 
unique solution (see Section 3) of 

rtn+ 1 rtn+ 1 

(1.4) (u hk, whk) + (Vuhk, vWhk) dt = (f w hk) dt 
tn tn 

VW hk E Shp (f) (& pq-1 ([tni tn+1]) 

with uhk at t = tn fixed by continuity (or initial conditions if n = 0). Clearly, a 
solution of (1.4) for n = 0, 1, . . . , N - 1 is also a solution of (1.3) and vice versa. 
Thus, although uhk is continuous in space and time, we can solve the finite ele- 
ment problem (1.3) by marching in time. Equation (1.4) also shows that the finite 
element method proposed in (1.3) can be viewed as a Petrov-Galerkin method for 
approximating the heat equation, in which the trial function uhk is continuous in 
space and time, whereas the test function whk = Vhk is discontinuous in time and 
continuous in space. 

Many finite element methods for the heat equation have been proposed and ana- 
lyzed in the literature (cf. [18]). A common approach is to first apply the Galerkin 
method in space to reduce (1.1) to a system of ordinary differential equations. In 
that approach, called the method of lines, we seek uh (t) E ShP (Q) such that 

(1.5) (Uhl'vh) + (VUhVVh) = (f vh) VVh E SP(Q). 

A suitable method is then applied to integrate this system of ordinary differential 
equations. One interesting scheme results when the trapezoidal rule is applied to 
(1.5) and this fully discrete method is called the Crank-Nicolson Galerkin method 
(cf. [20] and [18]). In contrast to the method of lines described above, we use fi- 
nite elements to discretize in space and time simultaneously. However, if we use 
piecewise linear functions in time (i.e., q = 1) in (1.3), we obtain a version of the 
Crank-Nicolson Galerkin method in which the data f enters as time averages. Thus 
our analysis yields an alternative proof of convergence for a Crank-Nicolson type 
method. To understand the method when q > 1, consider discretizing the homoge- 
neous problem (1.1) with f 0_ . If we apply q-point Gauss-Legendre quadrature on 
each subinterval in time, we evaluate the time integrals in (1.4) exactly. Further- 
more, by a suitable choice of whk, we can show that (1.5) is exactly satisfied at the 
Gauss-Legendre points in time. Hence, for the homogeneous problem, our method 
is exactly equivalent to collocating (1.5) at the Gauss-Legendre points on each 
subinterval in time. Furthermore, for this linear problem q-point Gauss-Legendre 
collocation is known to be equivalent (in the sense of giving the same nodal values of 
the solution) to using the qth diagonal Pad6 approximation (cf. [9]). For the inho- 
mogeneous problem, our method differs from Gauss-Legendre point collocation in 
that the data f appears as suitable time averages. The Gauss-Legendre collocation 
methods can be thought of as a good quadrature method applied to implement our 
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method. The choice of a q-point Gauss-Legendre quadrature rule for integration 
in time is not the only possibility, however. One could approximate the time in- 
tegrals in (1.4) by a q-point Radau quadrature on each subinterval [ta, tn+1] with 
tn,+- chosen as a quadrature point. Again, for the linear homogeneous problem, we 
obtain a collocation method for (1.5) and this method is equivalent to using the 
(q, q - 1) subdiagonal Pade approximation (cf. [8]). In this case the integrals in 
time are not computed exactly by the quadrature formula, and there is a loss of 
accuracy in the time step. 

The use of continuous finite element methods to discretize time-dependent prob- 
lems has been analyzed before for ordinary differential equations. Hulme [9], [8] has 
investigated continuous time Galerkin methods for ordinary differential equations, 
and shown how they relate to collocation methods. He has proved convergence for 
the associated collocation schemes applied to nonlinear ordinary differential equa- 
tions. For hyperbolic problems, Winther [21] has analyzed exactly the time stepping 
scheme we propose when applied to a system of first-order hyperbolic problems. 
As pointed out above, our variational method is closely related to Gauss-Legendre 
point collocation methods for the heat equation, and these methods have been an- 
alyzed by Douglas and Dupont [3] in the context of collocation in space and time 
for one space dimension problems. Our work is the first analysis of the continuous 
time Galerkin method applied to the heat equation. 

The use of finite elements in space and time for parabolic problems is not new. A 
significant body of work has analyzed the use of discontinuous in time finite element 
methods (cf. [6] and [10], and the references contained in those works). In particu- 
lar, the discontinuous in time Galerkin methods of Eriksson, Johnson and Thom&e 
[6] generalize the implicit Euler scheme for time stepping the heat equation, using 
as data time averages of f. In general, when applied to the homogeneous prob- 
lem, the discontinuous Galerkin method is equivalent to using a subdiagonal Pade 
approximation to discretize (1.5) in time. Thus the smoothing properties of the 
below-diagonal Pade approximation are built into the method. The discontinuous 
Galerkin method may be useful in designing adaptive schemes, and Eriksson and 
Johnson [5] have examined this possibility. It is hoped that our method will also 
provide a basis for an adaptive scheme; however, since the Crank-Nicolson method 
is known to behave poorly on problems with rough solutions (and this is presum- 
ably also true of the higher-order methods), the applicability to adaptive methods 
is not certain. 

Other finite element methods using elements that are continuous in time have 
been proposed in the past. For example Lesaint and Raviart [13] proposed a collo- 
cation method for solving the heat equation rewritten as a first-order system. Jamet 
[11] has also investigated methods on variable grids. However, we believe that (1.3) 
is a new Galerkin formulation for the heat equation, and that the resulting methods 
are novel. 

The plan for the remainder of this paper is as follows. In Section 2 we will 
summarize notation and describe in detail the finite element spaces used. In Section 
3 we shall prove some global error estimates for the solution of (1.4) and show 
the method is of optimal order. Our analysis will draw on the work of Falk and 
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Richter [7] who have analyzed a continuous finite element method for the transport 
equation, which motivated our formulation. We have also used ideas from [18]. 

We should comment on the smoothness and convexity requirements of our the- 
orems. We have assumed Q to be a polygonal domain in order to avoid the in- 
creased complexity of dealing with variational crimes which arise when approxi- 
mating Dirichlet problems on a smooth domain. Unfortunately, on polygonal do- 
mains, smooth data may not give rise to smooth solutions, because corners induce 
singularities. Thus we have not attempted to relate the smoothness required by our 
estimates to properties of the data. Of greater concern is that we cannot apply du- 
ality arguments on a general polygonal domain, and so in some theorems we have 
to assume the domain is convex. It is our opinion that the clarity of exposition 
possible with a polygonal domain outweighs these difficulties. 

The fact that our time stepping method is equivalent to a diagonal Pade ap- 
proximation when applied to the homogeneous problem, suggests that the method 
should converge with time discretization error proportional to k 2q at the time step 
points tn, and in Section 4 we shall prove such a superconvergence result. The 
proof of superconvergence uses some special projections introduced by Winther 
[21], which are related to the quasi-projections of Douglas, Dupont and Wheeler 
[4]. Finally, in Section 5 we will present some limited numerical results concern- 
ing superconvergence estimates and the utility of higher-order methods for smooth 
problems. 

2. Notation and Finite Element Spaces. First let us define some notation 
to be used in the remainder of this paper. Let Q be a bounded polygonal domain 
in the plane, and let L2(Q) be the standard space of square integrable functions on 
Q with inner product (,.) defined by 

(u, v) = f u(x)v(x) dx 

and norm lull - (u, u)1!2. For integral s > 0, H8(Q) is the completion of Co(0) 
in the norm 

1111211= Z IIDauII, 

where a = (i, j), IaI = i + j, and DI = (a/ax1)i + (a/9x2)j. For nonintegral s, 
H8(Q) is defined by interpolation (cf. [14]), and Hol(Q) {u E H1(Q) I u = 0 on 
X2}. We shall also need to use anisotropic Sobolev spaces. Let J be an interval; 
then C' (J; H8(Q)) denotes the set of infinitely differentiable functions from J into 
H8(Q) for which all derivatives have continuous extensions to J. For nonnegative r 
and s we define Hr(J; H8(I2)) to be the completion of C (J; H8(I2)) in the norm 

r I2 

(I|UIIHr(J;Hs(Qz)))2 = - ||tU( , t) dt, 
j-O 

and we define 
Hr 8 (0 x J) Ho (J; Hr( p)) n H8 (J; Ho (0)) 

with norm 

(2.1) (I1UI1J{ )2 = IIUI12 o(J;Hr(z)) + IIUII12(J;Ho(Q)) 
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For each nonnegative r and s, Hr,, (Q x J) is a Hilbert space defined by interpolation 
in r and s [15]. Further, let 

H = {u EH'(Q x (OT)): u = O on AM x (OT)}. 

In addition, in the section of the paper concerning superconvergence, we shall also 
use the spaces H8(Q; Hr (0, T)) which are defined analogously to the spaces dis- 
cussed above. 

Properties of the spaces defined above, including trace theorems and theorems 
concerning the existence of mixed derivatives, are proved in [14] and [15] when Q is 
smooth. For polygonal domains, the existence of mixed derivatives and extension 
theorems are proved in [17]. The use of anisotropic spaces on polygonal domains 
for parabolic problems is discussed in [12]. 

Now let us describe the finite element spaces used in this paper. Let rh(Q) 
denote a regular triangulation of Q satisfying the usual finite element geometric 
constraints [2], where h is the maximum diameter of the triangles in rh(Q). Let 

ShP(Q) c Ho (Q) be the set of all continuous piecewise pth degree polynomials on 
Trh(Q) that vanish on AW. We remark that (1.3) can also be applied using finite 
element spaces based on a quadrilateral tesselation of Q, and the estimates we shall 
prove in Sections 3 and 4 also hold in that case. 

Now define PX: Ho (Q) -+ ShP(Q) to be the elliptic projection, so that if u E 

Ho (Q), Pxu E Shp (0) satisfies 

(2.2) (VP'u,Vqh) = (Vu,Vqh) Vqh E Sh(Q). 

By virtue of the regularity of the triangulation it is well known (cf. [1], [2]) that PX 
has the following approximation properties. If u E Ho (n) n Hr (), then 

(2.3) Iu - Pzulls < ChrsIIUIlr 

for 1 < r < p + 1 and s = 1. In addition, if Q is convex, this estimate holds for 
0 < s < 1. 

PX can be extended to functions of x and t in an L2 sense. Thus we define the 
extended projection PX: Ho' (0 x (OT)) -+ ShP () 0 L2(0,T) by 

T rT 

(2.4) ](VPzu, Vqh) dt = (Vu, Vqh) dt Vqh E Shp(0) ? L2(0,T). 

Error estimates for the extended projection are given later in Lemma 2.2 and follow 
from the approximation properties of PI given by (2.3). Note, in particular, if u 
is smooth enough that u(., t) E Hol () for each t, we can define PIu pointwise in 
time, and error estimates for the extended projection follow from (2.3). 

We shall use the finite element solution of the Dirichlet problem for Laplace's 
equation on Q. Let T: H-1(0) - H01(0) be such that if g E H-1(0), then 
Tg E Ho'(0) satisfies 

(VTg, Vq$) = (g, A) V E Ho' (a). 
Let Th be the finite element approximation to T defined as follows. Th: H-1(Q) - 

ShP((Q), such that if g E H-1(0) then Thg E ShP () satisfies 

(2.5) (VThg,Vrh) = (g,kh) Vh E Sh(f2)- 
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The approximation properties of Th are also well known and follow from the prop- 
erties of PI (cf. [1]) since Th = PIT. Of course, Th can also be extended to 
apply to functions in H0'0(Q x (0, T)) in an L2 sense (in the same way as for PI). 
Furthermore, Th is a symmetric operator, and Th satisfies the following a priori 
bound 

(2.6) 0 < (g,Thg) < C1g2l Vg EH-1(0). 

The left-hand inequality follows from the definition of Th. The right-hand inequality 
is proved using the a priori estimate IJTgJJ1 < CJlgJJ_1 and the approximation 
property II(T - Th)g1I1 < C ITgI I. Note also that Th is invertible on Shp(Q), since 
if ThUh =.0 for some uh E Shp(Q), then (UhUh) = (VThuh ,Vuh) = 0 and hence 
uh = 0. 

Next we discuss finite element subspaces in time. Let 0 = to < t1 < t2 < 
< tN = T be a partition of [0,T] and let k = maXl<?<N Itn - tn- Then 

define Skq([O,T]) c H1(0,T) to be the set of all continuous piecewise qth degree 
polynomials on this partition. Suppose Jn = [0,tn, 0 < n; then Skq(Jn) is the 
restriction to Jn of functions in Skq([, T]). 

We also need to consider projections in time. Let Pt: H1 (0, T) -* Skq ([0, T]) be 
the one-dimensional projection such that if w E H1 (0, T), then Ptw E Skq([, T]) 
satisfies Ptw(0) = w(0) and 

BT rT 

(2.7) j(Ptw)t$k dt = f wtqtdt Vqk E Sk([0,T]). I I 

By standard techniques, we can see that Pt satisfies the estimate 

(2.8) 11W - PtWIH9(OT) < CkIIwIIHr(OT) 

for -q + 1 < s < 1 < r < q + 1 with C independent of w but dependent on T. 
Again, we can extend Pt to apply to functions of x and t in an L2 sense. Thus we 
define Pt: H0O' (Q x (0, T)) -+ L2 (Q) 0 Skq ([O T]) by 

rT rT 

(2.9) ,/((Pt W)t, I I$) dt = k 
(Wtx q$t) dt Vqok E L2(() 0k SQ([0 T]) 

with the initial condition ((Ptu)(., 0), k) = (u(., 0), k) V8 E L2((Q) (the trace of 
u E H0 1(0 x (0,T)) is defined at t = 0, cf. [15]). Error estimates for the extended 
operator are given in Lemma 2.2. 

Note that by taking qok = t for 0 < t < tn and qOk = tn for t > tn in (2.7), we 
conclude that 

(2.10) Ptw(tn) = w(tn) 

(in particular, if q = 1, pt is just the interpolant). Thus the projection of w onto 

Skq([0, tn]) defined similarly to (2.7) (with T replaced by tn) is just the restriction 
of Ptw to [0, tn] and satisfies estimate (2.8) with [0, T] replaced by [0, tn] (and C 
independent of n but dependent on T). 

Now let Whk = Shp (0) 0 Skq ([0, T]). We will need some approximation properties 
of this space. First we note that operators in space and time commute. 
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LEMMA 2.1. Suppose u E H2'2(Q x (O,T)); then 

(2.11) (Pxu)t = PX(ut), 
(2.12) VPtu = PtVu, 

(2.13) P Ptu = PtP u, 

(2.14) ThPtu = PtThU. 

Proof. The regularity assumed for u guarantees that Vut is well defined (cf. 
[17]). The results then follow from the linearity of the operators, and we will give 
a proof only of the first result. Let oh E ShJ(Q) 0 H1 (0, T) be an arbitrary function 
with qhh(., 0) = oh(-,T) = 0; then 

rT rT T 

J(VPxUt, Vqh) dt = f(VutI Vqh) dt =- (Vu, Vq$h) dt 

=-| T(VPxU Vq$h) dt = f (V(Pxu)t Vqh) dt, 

thus Pxut = Px(Pxu)t but (Pxu)t E ShP(Q) 0 L2(O. T), and the result is proved. 
The remaining results can be proved similarly, and we shall not provide details 
here. 0 

Lemma 2.1 allows us to prove the following approximation results: 

LEMMA 2.2. Let Px and pt be defined in the extended sense by (2.4) and (2.9), 
and let Jn = (0, tn), 1 < n < N. Then there is a constant C independent of n such 
that the following hold. 

1. Suppose v E HO? (Q x Jn). Then for -q + 1 < r < 1 < s < q + 1, 

n-1 

(2.15) j E liv - PtvllIr(tm,tm+,) dx < Ck2(8 )(Ilvil o) .s 

2. Suppose v E H2'1(Q x Jn) n H'11(0 x Jn) and v(, t) E HP+1(0) for all t; 
then for s = 1 in general, or for 0 < S < 1 if Q is convex, 

(2.16) (v - Pxv)(, t) 11? < ChP+'-'lIv(, t)I1p+1. 

3. Suppose v E HrO(f2 x Jn) nf H'1o x Jn) and Q is convex. Then for 1 < r < 
p + 1, 

(2.17) IIPXV - V| Jn < Ch IvII JnO. 

4. Suppose u E HO q+l( x Jin) n HO' (0 x Jn) and ut E HP+1'0(Q1 x Jn) n 
HO" l(0 x Jn) and Q is convex. Then 

(2.18) lI(u-PxPtu)tIIJnO C{hP+1IJutIIJi ,0 + kq IJUJI Jn +1 }. 

Proof. Each of parts (1), (3) and (4) are proved in the same way, so we will give 
details only for part (1). We start by proving the estimate for a smooth function 
u E C?(Q x Jn). Using (2.8) together with the fact that pt is a local projection 
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on each subinterval in time, 

n-1 

E J liV - PtvII Hr(tmtm+l) dx 
m=0 

n-1 

(2.19) E IHV(Xr) - (PtV)(X, )IIr(tmtm+i) 
n-1 

< J Ck2(,-,) IIV(X, .)IIi(tm tm+i) dx 
m=0 

< Ck 2(.9-r)(IVllOJn_)2. 

Now consider a sequence of smooth functions {vi} converging to a function v in 
HO' (Q x Jn) and apply the above estimates to each vi. Since the estimate holds 
for each i, it holds in the limit. This completes the proof of (1). 

Part (2) follows from (2.3) since the regularity assumptions ensure v(., t) E 
Ho (Q) for each t. Part (3) is proved in a fashion similar to part (1). Part (4) 
is also proved for a smooth function first. If v E C?F2 x Jn) with v = 0 on X2, 
then using the commutation properties of PX and pt in Lemma 2.1, 

II(V - PxPtv)tIJlno < II(V - ptV)tIIJn + II(v - pxV)tIoJn 

+ II((V - Pxv) - Pt(V - P'V))tllJo. 

Application of (2.3) and (2.8) pointwise proves the estimate if v is smooth. A 
limiting argument similar to that given for part (1) completes the proof of part 
(4). 0 

3. Global Error Estimates. In this section we will prove existence, unique- 
ness, and some global error estimates for the numerical scheme given by (1.3). 

THEOREM 3.1. For any uo E Ho'(Q) and f E H??0(Q x (0,T)) there exists a 
unique solution uhk satisfying (1.2) and (1.3). Furthermore, the following stability 
estimate holds for 1 < n < N with constant C independent of n and N: 

(IITl/2uUhkll( tn))2 + Iluhk(, t1)II2 < C{(IIT,112fIItn))2 + IIpXUoI }2 

Proof. As discussed in the introduction, problem (1.2)-(1.3) is equivalent to the 
problem of finding uhk E Whk such that 

(3.1) uhk (., 0) = PXu0 

and 
rtm+1 rtm+1 

(3.2) irn (Utk, whk) + (VUhk, VWhk) dt = J (f, whk) dt 

Vlwhk E Shp (Q) 0 pq- 1 ( [tm Itm+ 1]) 

for m = 0 1, 2, ... , N-1. For each m, uhk is determined at tm (by uo if m = 0, and 
by continuity if m > 0). Thus, for each m, the number of equations given by (3.2) 
and the number of degrees of freedom (just I Shp (Q) * q where ShP (Q)j is the number 
of degrees of freedom in Shp(Q)) are equal, and it suffices to prove uniqueness. 
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Uniqueness can be proved via the stability result in the theorem. To prove 
stability, consider (3.1)-(3.2), and take whk = Thu hk. Then using the definition of 
Th in Section 2, 

ftm+1 ftm+1 

'tn (uhk , Thu hk) + (uhk, u hk) dt = (f, ThU k) dt. 
tm tmt 

Adding this estimate for m = 0, 1,... , n - 1, and using the definition of JI liOd, 
given in Section 2, we obtain 

(3.3) (I IT/2uhkIlltn-))2 + Iluhk(, tn.) 112 < C{ (I IT/2f IIot))2 + IlUhk&, O)112} 

Using the initial condition (3.1) proves the stability estimate. 

To prove uniqueness, we apply the stability estimate with uo _ 0 and f 0, 
and conclude uhk(Xtn) = 0 for x E Q and 0 < n < N and llTh/2uthkllootn) = 0. 
But since Th is invertible on ShP(Q) (see Section 2), we conclude uthk 0, and so 
u hk 0 O. Hence existence and uniqueness are guaranteed. 0 

Our next theorem guarantees approximability in H1 (0) norms: 

THEOREM 3.2. Let u solve (1.1), let uhk satisfy (1.2) and (1.3), and let e(x,t) 
- u(x, t) - Uhk(X, t). Then the following estimates hold for n = 1, 2, . ., N: 

1. Suppose u(.,t) E HP+'(Q) for 0 < t < T, Au E HO q+l(O x (0,T)), and 
ut E HP O (Q x (0, T)). Then 

Ile(, tn)I1i < Cfkq+IIAUII(Oqt-) + hP(IutII(Ot-) + JIu&, tn)I p+)}. 

2. Suppose Au E HOq (f2 x (0, T)), u E HO?q+l (Q x (0, T)), ut E HP+1 0(Q x (0, T)) 
and Q is convex. Then 

(let jjtn) < C{kq (jjujO t-4 + IlAull (?tn )) + hP+1 jull(~tn)} 

Remark. The estimate for et is of optimal order, since the norm is global. For 
a general polygonal domain we must replace the term hP+l by a power of h that 
depends on the nature of the corners of the polygon. 

In order to prove this theorem, and a subsequent theorem concerning error in 
lower norms, we first state and prove the following lemma. 

LEMMA 3. 1. Let P2 and pt be the projections defined in Section 2, and assume 
U E H2,2 (Q x (O, T)) nfHd ,1 (Q x (0, T)). Then for any $ E Whk, 

t n j ((Ptpxu - u-hk)t, 0t) + (V(PtPxU - Uhk), Vkt) dt 

jtn / 
(P uz - ) t, 0t - (A (Pnth u . - u) Ot 
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Proof. We use the definitions of Pz and pt. together with the commutation 
property of the projections (Lemma 2.1) as follows: 

j ((Pt PU - uhk)t, kt) + (V(PtPxu - Uhk), Vqt) dt 

= j ((PtPxu - Ptu)t, qt) + (V(PtPxu - Pxu), Vqt) dt 

Itn 

+ j ((P U - uhk)t, t) + (V(PxU _ Uhk), Vqt) dt 

Itn 

- j ((Pxu - U)t, qt) + (V(Ptu - u), Vqt) dt 

rtn 

+ ((U hk)t, kt) + (V(U _ Uhk), Vqt) dt. 

Use of the definition of uhk (1.3) and the equation for u, together with integration 
by parts, completes the proof of this lemma. 0 

Proof of Theorem 3.2. The regularity assumptions on u and ut ensure that 
u E H2'2(Q x (O IT)) n Ho' 1 (Q x (0, T)), and hence we may apply Lemma 3.1 with 

0 = PtPxu-uhk. Note by the interpolation property of pt given by (2.10), 0(., 0) = 

(PtPXU - Uhk)(.,O) = (pxu(., 0) - pXuo(.)) = 0. Using Schwarz's inequality and 
the arithmetic geometric mean inequality, we obtain 

II(PtPXU - Uhk)tIlIO~tn) + IV(ptpxU -_uhk)(. t)I110 

? C(II(PxU - u)tIIo n) + IA (Ptu u) 11 ) 
Hence, by the triangle inequality, and noting that, by (2.10), PtPXu(., tn) = 

Pxu(., tn), 

(3.5) 
1 

- (u-uhk)(, tn)IIO < IIV(u - PXU)(., tn)110 

+ C(II(Pxu - u)t||(IOtn) + ||A(ptu - U)11(0,tn)) 

Use of the commutation and approximation properties of px and pt in Lemmas 
2.1 and 2.2 completes the proof of part (1) of the theorem. 

In the same way, using the triangle inequality, we may write 

II(U - uhk)totn) < II(U _ PtPxU)tIIO6tn) + II(PtPXU - Uhk)tIl(O tn) 

and again using (3.4) and the error estimates in Lemma 2.2 completes the proof of 
part (2) of the theorem. O 

Our last theorem of the present section gives error estimates in the L2 (Q)-norm, 
which is the norm most usually considered in error estimates for the heat equation. 

THEOREM 3.3. Suppose Q is convex and the solution u of (1.1) is such that 

u E Hq+l((0,T);H1(Q)) and ut E HP+1'0(Q x (0,T)), 

and u(,t) E HP+1(Q) for 0 < t < T. Let e(x,t) = u(x,t)-Uhk(Xt). Then the 
following estimate holds for n = 1, 2, ... , N: 

(3.6) je(., tn ) jjo < C{hP+1 (jlu(., tn) IIP+1 + IIUt II0,?t4n]) + k'+ 1 II VUII0tn}. 
Remarks. 1. Except when q = 1, the estimates in this theorem do not give an 

optimal estimate of the order of convergence. With some extra assumptions, we 
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can prove superconvergence in time (i.e., an estimate of the error at tn proportional 
to hP+l + k2q). However, the theorems in this section hold in more generality than 
those concerning superconvergence. 

2. When q = 1, the results in the above theorem should be compared to well- 
known results for the standard Crank-Nicolson Galerkin method. For example, 
let Un E Shp(Q) represent the Crank-Nicolson Galerkin estimate for u(., tn) with 
U= PXuo; the following estimate may be proved using standard methods (cf. [18, 
Theorem 4, page 14]): 

{ r~~~~~~~tn 
jjU(tn) - unI1o ? C {hP+1(Iju( X tn)jjp+1 + jjUtjjP+1 dt) 

(3.7) 

+ k2f (I uttt11 + k utt1D)dt} 

The use of averages in time has allowed us to decrease the number of derivatives 
appearing in the norms in the term multiplying k2. 

COROLLARY 3.4. Suppose the smoothness assumptions for Theorem 3.3 hold, 
and let Q be convex. Then 

Hu - u hklOT) < C {hP+1 (sup jju(.,t)jjP+1 + iiujitij(+ ) + kq+1IIVuIIl?(i)i} 

Remark. The above result is an optimal estimate in terms of order for the global 
L2 error. 

Proof of Corollary 3.4. The result is proved in the obvious way by using the 
estimate in Theorem 3.3 to estimate the error at each time step, and using the last 
result of Theorem 3.2 to estimate the error between steps. 0 

Proof of Theorem 3.3. Let q = Th(PtPxu - uhk) in the conclusion of Lemma 
3.1 and use the definition of Th. We obtain: 

rtn 

((Ptpu + U t h(ptPxUP--Uhk)tudtP+ t(pxUUhk)u th )2 

rtn 

((ptpXu - Uhk)tTh(PtPXU Uhk)t) 

+ ((Ptpxu - Uhk), (ptPtU p -uhk)t) dt 
rtn 

J (ptpxu - U)tTh(PtPx U -Uhk)t) 

+ (V( pt pxu _ Uhk Vh (pt~ ~- Uhk)t) dt 
rtn 

J ((Pxu -u)t, Th (PtPxu - uh)t) 

- 
(A(PtU 

- 
u), Th(PtPXu - uhk)t) dt. 

Hence by the triangle inequality, the symmetry (and nonnegativity) of Th, and the 
arithmetic geometric mean inequality, the following estimate holds: 

(-uhk)(., ttn)jg < C (|U - Pxu)(., tn)Ij + ((Pxu - U)t, Th(Pxu - U)t) 

+ (L(Ptu-u),ThL(Ptu-u)) dt). 
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Hence via the a priori estimate for Th (2.6), we obtain 

jj(u - uhk)( ,tn) o 

<c {II(U-P'U)(,tn)j)o + (f| IPxut - UtI12 + IIV(Ptu - U) 1/2 }. 

Use of error estimates in Section 2, Lemma 2.2 completes the proof. 0 

4. Superconvergence in Time. As discussed in the introduction, the Galer- 
kin method described in this paper is equivalent to using a diagonal Pade approxi- 
mation in time when both methods are applied to the homogeneous heat equation. 
Thus we expect our Galerkin time stepping scheme to be superconvergent at certain 
special points in time. This is easy to prove in the absence of spatial discretization, 
and we shall consider that case first. The proof involves semidiscrete parabolic du- 
ality and stability estimates for the homogeneous semidiscrete problem. Then we 
shall provide a more complex proof of superconvergence for the fully discrete prob- 
lem, using some techniques related to those introduced in [4] and used by Winther 
in his analysis of hyperbolic problems [21]. 

Let us first define the semidiscrete problem without spatial discretization. We 
seek uk E Ho(Q) SkQ([O,T]) such that 

rT rT 

(4.1) f(utk,Vk) + (Vuk,Vvtk)dt = f (fvt)dt VVk E Ho'() 0 Skq([O T]) 

with initial condition uk = uo at t = 0. Using the same arguments as for Theorem 
3.1, we can see that uk exists and is unique. The following error estimate shows 
that the solution uk of the semidiscrete problem is superconvergent at the time grid 
points tnn=1,...,N. 

THEOREM 4.1. Suppose the solution u of (1.1) is such that T-q+l/2u E 

H0,q+1(Q x (0,T)). Then, if Uk solves (4.1), the following error estimate holds 
for 1 < n < N: 

11(u - uk) (., tn)llo < Ck2q JIT -q+1/2Ujj 14tn) 

Remark. For JjT-q+1/2ujjl(?tn) to be bounded, it is sufficient that 
IU 11Hq+1((oT);H2q-1((n)) be bounded and L~ u = 0 on A9 for 0 < j < q- 1 [18]. Us- 
ing Eq. (1.1) at the boundary, together with the boundary data and the conditions 
that Liju = 0 for O < j < q-1, we can show that Akf = O on A90 for O < k < q-2. 
In view of a priori estimates for parabolic problems on smooth domains [12], the 
need to impose boundary conditions of this type on f is unexpected, but these 
type of constraints also appear in other work on superconvergence for parabolic 
problems (e.g. [6]). 

Before proving this theorem we shall prove a lemma concerning the stability of 
the semidiscrete problem in negative spatial norms. 

LEMMA 4.1. Suppose zk satisfies Eq. (4.1) with f _ 0 (i.e., the homogeneous 
semidiscrete problem). Then for 1 < r < q and 1 < n < N, the following stability 
estimate holds with constant C independent of n: 

n-1 / ( r (tm,tm+) 12 

(4.2) Tr-1/2 zk 0,< CIjz k(.10)j1g2 
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Proof. The proof is by induction on r. First, in the case r = 1, we take vk = Tzk 
in (4.1), and the result follows by the same arguments as used in the proof of the 
stability result in Theorem 3.1. 

Now suppose the result is true for 1 < r < R - 1 < q. Let Q[tm tm+i] be the 
L2 (tm Xtm+i ) projection onto pq-l([tm, tm+ i ]); then taking vk = Twk in (4.1), 
where wk E H01(0) 0 Skq([0,T]), we find that zk satisfies TZk = Q[tm'tm+1]Zk on 
[tm, tm+i]. Hence, using the fact that the operators in time and space commute, 
we obtain 

R-1 /\R-1 
T R-l1/2 (1 zk = L Q[tm~tm+1]T R3/2Zk. 

( at ) ( at ) 
Thus, if km = tm+1 - tm, and using inverse estimates on a single interval in time, 
we find that 

a R-1 (tmtm+i) 

TR(| (12 k ) 
0,0 

< atmR+ 1 11 (Q[tm tm+1] - I)TR-3/2zk 
0,0 

(4.3) + 
(~9Rl1R3/Z 

(tm,tm+i1) 

+ I () TR-/ k|| 

0,0 

< Ck-R+l jj(Q[tM'tM+1] - I)T R-3/2z k j(tmnItm+) 

(tm,tm+i) 

+ 
a 
)TR-13/2zk 

0,0 

But, by standard estimates for the L2 projection, 

jj (Q[tm ,tm+1] - I)TR-3/2zk jj(tmrtm+1) 

(4.4) ||1 
( 

R 
32Z(tmtm+i) 

0,0 

and hence combining (4.3) and (4.4), we have shown that 

TR-1/2 ( t)zk <C TR-3/2 ( 
a 

) zk 

0,0 0,0 

and induction completes the proof of the lemma. o 
Proof of Theorem 4.1. The proof rests on a discrete duality argument similar to 

those used in [16], [19], and [6]. Let zk E Ho' (Q) ? Skq([O, T]) satisfy the semidiscrete 
backward heat equation 

(4.5) - kvk)-(VzkVVk)dt = O Vvk E Hd(Q) 0 Skq([OT]) 

together with final data zk(., tn) = (U - Uk)(., tn). Now let ek = ptU uk and note 
that zk = ek at t = tn. Letting vk = Tek in (4.5), and integrating the second term 
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by parts in time, we obtain 

(VZk, VTek)Itn = f (ek TZI ) + (Vek, VTztk) dt. 

Next, if we use the equation for u, the definition of uk and the definition of pt, we 
can show that 

rtn 

ZVk, VTek) - f ((Ptu - U)t, TZt) + (V(Ptu - u), VTz k) dt 

- f ((PtU - u), Zk) dt. 
o~~~~~~~ 

Finally, using the Cauchy-Schwarz inequality and the error estimates for Pt from 
Lemma 2.2, we find that 

rtn 

jj(U -U k)((. tn)j = f ((Pt - I)T-q+l/2u, Tq-1/2zk) dt 0 

n-1 

< E jj(Pt I)T-q+ l l +l ) IITq- 1 t 1 ) 

m=O 

n-1 

< 
Ckm2q 

E JT-q+ 1/2ujj4ltm+l ) ITq- 1/2Zk11(tMtM+1)) 
m=O 

Use of the result of Lemma 4.1 to estimate the term in zk completes the proof. o 
The method of proof used for Theorem 4.1 can be used to analyze the fully dis- 

crete problem. However, the final result contains quantities involving inverse powers 
of Th rather than T. In particular, the estimate involves jTl+l/2pu m+l) 

which seems difficult to bound independently of h without some extra assumptions 
on the spatial grid. For this reason, when we prove error estimates for the fully 
discrete problem, we adopt a slightly more complex proof technique to estimate the 
term involving (Pt - I). To do this, we use some auxiliary functions related to those 
introduced in [4] and used by Winther [21] in his analysis of hyperbolic problems. 
The essential features of the fully discrete proof are still that we use discrete duality 
and trade inverse norms in time against positive norms in space. The next theorem 
provides a superconvergence estimate for the fully discrete approximation. 

THEOREM 4.2. Suppose that Q is convex and that the solution u of (1.1) is 
sufficiently smooth that 

u E H+ ((O. T); H22q-1 ()) and ut E H2q+P-l10(0 x (O, T)). 

Furthermore, suppose u(.,t) E HP+'(Q) for each t, and LAju = 0 on A9 for 0 < 
j < q-1. Then 

jj(U - uhk)(. Itn) )o 

< C{hP+1(IIu(&, tn)IIp+1 + I|Ut|II|tn')41 ,) + I }U.Hq+1((0,tn);H2q-1(n))} 

Remark. When q = 1, this estimate reduces to the estimate proved in Section 3. 
Before proving this result, let us define some notation. If s > 0 we define the 

special norm 
N-1 

jjjWjjjs,/ = E IIWIH{8(tmtm+j) 

m=O 
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and Hs k(O, T) = {w E L2(0, T): jjjW111,,k < oo}. For s a negative integer, we define 

jjj Wjjjs,k sup f[wd 
0EH 

- ,k (O,T) |1W |||-a ,k' 

Clearly, if w E H8(O,T) with s > 0, then IIIWIIjs,k < IIWIIHe(0,T), and if s < 0, 

IIW11H8 (OT) < IIIWII1.s,k. 
Now we introduce a special sequence of functions. Let W(?) = (Pt - I)u, and 

let W(j) E L2(Q1) 0 Skq([O, T]) for j = 1, 2.... be defined as the unique solution of 

T T 
(4.6) f W(j)Ot dt = f zW(j-l)5 dt Vq E Sk([OT]) 

with the initial condition W(j) (x, 0) = 0 for x E Q. Of course, this construction 
can be extended in the L2 sense in space if AW(j-i) E H??0(Q1 x (0,T)). Note 
that W(j) inherits whatever spatial smoothness is present for A\W(j-1), so that, for 
s6 > O. 

(4-7) ||0l, |U 1s2 

and if AW(j-i) E Ho' 1(O x (O,T)) then W(j) E Ho' 1(O x (O,T)). We shall need 
W(q- 1) E Ho"' (O x (O,T)), and this holds if LAju = 0 on al for 0 < j < q - 1 and 
u is smooth enough (e.g., u E H1 ((O, T); H2q-l ())). 

Note that if we define the function W by 

q-1 

(4.8) W = W(j) 
j=1 

then 

(4.9) tfl(A(pt - I)u, t) dt = f ((Wt - AW + AW(q-l)),q t) dt 

for all q E L2( Q) 0 Skq([0, ta]). Next we shall prove two lemmas concerning the 
auxiliary functions W(j), which show that the functions are small in an appropriate 
sense. The lemmas correspond to the two lemmas used by Winther [21] and are 
proved in a similar way. 

LEMMA 4.2. Let j be an integer with 0 < j < q - 1. Then there is a constant 
C such that for O < s < q-j-1, 

11W(j) 11L2(Q;H-8,k(0,T)) < Ckq+'+j+'IIUIIH'q+'((oT);H2j(Q)). 

Proof. The result is proved by induction on j. When j = 0, the estimate holds 
by using the estimates for pt in Lemma 2.2. Next, assume the result is true for 
0 < J-1 < q-1, and let O <s q-J- 1. For r E H8lk(O,T), define 

E H8+l1k(0, T) by qt = q and q(T) = 0. By (4.6) and the definition of q, 

JT T 

W W(J),qdt= W (J) t dt 

rT 

Ir(WJ) -AW(Jr~-1)( - y, + AWT(rfr_ 1Od, 
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for all functions p such that qI[tmtm+iI E L2(Q) gpq-1Qtm tM+1j) when 0 < m < 
N - 1. Hence, since IlkkIIls+1,k < CIII?/IIIs,k, we find that 

| W(1J)71 dt < Ck-+ (jjWt( IIL2 (OT) + IIAW(1) IIL2(OT))IIIrIIIS k 

+ < jI IV9(J-11 W II(s+)1,kII) + IIAWkj 

Now we note that by (4.6), IIWt(J)IIL2(0,T) < IIAW(J-1)IIL2(0,T). Furthermore, if 
Z() = AW(j) 0 < j < q - 1, then ZU) satisfies all the equations and estimates 
satisfied by W(j), except with u replaced by Au. Hence the induction hypothesis 
implies estimates for ZU), O < j < J - 1 < q - 1, and so 

[IJAW(J 1) (0,T) < Ckq+ ||l\ull|H+l((o,T);H2(J-1)(Q)). 

Estimating II\W(J-1)j L2(Q;H-(1+1) (oT)) similarly by induction proves the desired 
estimate for W(J). O 

From Lemma 4.2 we obtain the following estimates for W(j). 

LEMMA 4.3. Let j be an integer such that 0 j < q - 1. For each r > 0 there 
is a constant C such that 

1. IIW(j)11(0,T) < Ckq+j+'||U||Hq+l((O,T);H2j+,(Q)); 

2. max, <n<N |lW(j) (' tn) Ilr < Ck 2q IIUIIHq+'((OT);H2j+ (Q)). 

Proof. As in the proof of the previous lemma, we note that derivatives in space 
commute with the operations in time. Thus to estimate (a9/xp)iW(j-l)(x,t), 
p = 1,2, it suffices to estimate W(j-i)(x,t) with u replaced by (9/9xp)iu. With 
this observation, the first estimate follows directly from Lemma 4.2 with s = 0. 
The second estimate is also easy to prove if j = 0 since Ptu = u at the time mesh 
points, so we need only consider the case 1 < j < q - 1, and r = 0. But 

W(j)(xi t) = f m (Q[tmttm+1] W(j-1))(x t)dt 

hence, using the stability of Q[tm tm+l] in negative norms, 

||W(j )(, tn)110 < CIIA\W(j l)||L2(Q;H(j-q),k(0 T))I 

and an application of Lemma 4.2 with u replaced by A~u completes the proof. 0 
Proof of Theorem 4.2. The proof of this theorem uses a discrete parabolic duality 

argument in a way similar to the proof of Theorem 4.1. Let zhk E Whk solve the 
fully discrete backward heat equation 

rT 

(4.10) (Z hk, IVhk) - (VZhk, VVthk) dt = 0 VVhk E Whk 

together with final data zhk(., tn) = (Pu - uhk)(., tn). Let ehk = PxPtu - uhk; 

then as in the proof of Theorem 4.1, 
rtn 

(P'u - U t)( ,tn)l = J (eIThZ + (Vehk VThzkk)dt 

and so by Lemma 3.1, 
(tn 

( ) [l(P U hU)(-1 2n|o ((P'u - u) tTh zhk) + (A\(Ptu -u), Th hk ) dt. (4.11) II (P'u 
- u tn) 110 

. 
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We now estimate each term on the right-hand side of (4.11). The first term is 
estimated as follows: 

(4.12) f( (Pxu -u)t, Thzt ) < 1T 1/2 (Pu - u)It I1 (0tn) IIT 12zphk I (Otn) 

But by the stability estimate in Theorem 3.1, 

(4.13) jjT 1/2zhkII(0%tn) <CIlehk(. t)11 

Using the a priori estimate (2.6) for Th and the estimates for PX in Lemma 2.2 
completes the estimate of the first term on the right-hand side in (4.11). 

To estimate the second term on the right-hand side of (4.11), we use the function 
W defined in (4.8). By (4.9), and integration by parts in time and space, 

rtn rtn 

f ((Ptu - u), Thz hk) dt = f ((Wt- _W + LAW(q-)), Thz k) dt 
o~~~~~ o 

rtn 

= f (ThzhkIPWt) - (VThzhk, VWt) dt t 

rtn 

+ f (ThZhk (I - PX)Wt) + (L\W(q-), T Zt) dt 

+ (VW, VTh Zhk) Itn. 

Hence, using the properties of Th, then the fact that zhk satisfies (4.10) and the 
definition of PX, we find that 

rtn rtn 

f (i(&tU - u), Thzk) dt = f (ZtkI ThPXWt) - (Vzhk, VThPxWt) dt 

rtn 

+ j (ThZhk (I - PX)Wt) + (AW(q-), ThzT) dt 

+ (VPXW, VThZ hk)Itn 
tn 

= (T Zhk (I- PX)Wt) + (AW(q -), Th4) dt 

+ (PXWZhk) Itn. 

Applying the Cauchy-Schwarz inequality, and noting that zhk satisfies the a priori 
estimate (4.13), we obtain 

f (L: (Ptu - u),Thz hk) dt 

(4.14) < (ITI/ (I -Px)WtllOtn) + 1/2'AW(q-1)II(0,tn) 

+ IPxW(., tn)IIo)Ilehk(., tn)1lo. 

But by (2.6) and Lemma 4.3, 

(4)IPxW(( t) 11 + IIT 1/2AW( q- 1) | |tn) < C( ||W(. tn) j j1 + IIl11,to) 

< Ck2 q||U||Hq+1 ((OT) ;H2q- , (Q) I 



272 A. K. AZIZ AND PETER MONK 

and since Wt E Ho'1 (Q x (0, T)) (by virtue of assuming AL u = 0 for 0 < j < q -1), 

and using (4.7), 

1,2 (I - px)Wt 11Otn) < ChP+1 IWt II (?'+1, 

(4.16) < ChP+ 1 It'- )1 ?t.) 

j=1 

< ChP+ 1 
I 1t I I(?+t"n)10 

Use of estimates (4.15) and (4.16) in (4.14) completes the estimate of the second 
term on the right-side of (4.11). Then use of the triangle inequality and the estimate 
for Px given by (2.16) from Lemma 2.2 complete the proof. O2 

5. Numerical Results. In this section we shall present the results of some 
simple numerical experiments with (1.3). We seek to investigate two questions: 
first, do the higher-order in time methods possess an advantage in terms of overall 
computing time when compared to the lower-order methods? Second, in the theo- 
rems concerning superconvergence we require restrictive conditions on the data f. 
Are these conditions always necessary? 

For simplicity we have taken p = q and have performed any necessary integra- 
tions by Gauss rules (order in time depending on q as discussed in the introduction, 
and sufficiently higher order in space). 

We have only examined the case when Q is an interval (our estimates for R2 
hold for R1). So we take Q? = [0, 1], uo = 0, and 

f(x, t) = 3x cos(3irx/2) cos(3t) + 3ir sin(3irx/2) + (3ir/2)2 cos(3irx/2) sin(3t), 

which results in an exact solution 

u(x, t) = x cos(3irx/2) sin(3t). 

In order to investigate the computing time question, we take h = k, which is the 
relationship suggested as best by our most general theorems on global convergence. 
Figure 3.1 shows the errors in the solution at t = 3 plotted against elapsed time 
for the computation with various h values. These experiments were performed on 
a SUN3/50 (with MC68881) with no other users, and so elapsed time is a good 
measure of cpu time for the process. The unevenness of the graphs for small time 
is because the process was timed to the nearest second. Figure 3.1 suggests that a 
given accuracy of solution is obtained more rapidly by a higher-order method (at 
least for the smooth solution in this example). 

The second question concerns superconvergence. For these experiments we take 
p = q = 2, and k is chosen to be the smallest value of the time step larger than 
h3/4, which results in t = 3 being an integral number of time steps from t = 0. 
If the superconvergence results of the previous section hold, we would expect the 
L error at t = 3 to be 0(k4). Our results are shown in Figure 3.2; the slope of 
the L2 error line is approximately 3.9, which strongly suggests superconvergence is 
occurring. However, f does not satisfy the conditions of our theorems in Section 
4 on superconvergence, since f is nonzero at x = 1. This result suggests that it 
may be possible to relax some of the conditions on f required by the theorems in 
Section 4 concerning superconvergence. 



FINITE ELEMENTS IN SPACE AND TIME FOR THE HEAT EQUATION 273 

Error against Elapsed time 
1 0? --r- ,r-n-T- Br--T -r-1--rr -r ---- -r-i-i--r--- ---r- 

10-1 

1025 _ \ 

1 0-62- 

1 0-3 101 102 

Elapsed time (seconds) 

FIGURE 3.1 
A graph of relative error at t 3 against elapsed time for the computation (elapsed time was 
measured using the SUN time utility which measures in units of one second). Here relative error is 
II(u - uhk) (., t)jj18/fu(., t)118 with 8 = 0 or s = 1. In this case, p = q with q = 1, 2 or 3, and h = k. 
Elapsed time includes time needed to assemble the matrices involved. These results suggest that 
the time necessary for a given accuracy of solution decreases as the order of the method increases 
(at least for this smooth example). 
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FIGURE 3.2 
A graph of relative error at t = 3 against time step size k. Here, p = q = 2 and k is taken to be 
essentially h3/4 (adjusted so t = 3 is a time mesh point). The slope of the L2 error line is about 
3.9, which suggests that superconvergence is occurring. However, the data f does not satisfy the 
conditions of the superconvergence theorems in Section 4. 
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