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Abstract. We construct and analyze efficient, high-order accurate methods for approx- 
imating the smooth solutions of a class of nonlinear, second-order hyperbolic equations. 
The methods are based on Galerkin type discretizations in space and on a class of fourth- 
order accurate two-step schemes in time generated by rational approximations to the 
cosine, Extrapolation from previous values in the coefficients of the nonlinear terms 
and use of preconditioned iterative techniques yield schemes whose implementation re- 
quires solving a number of linear systems at each time step with the same operator. L2 

optimal-order error estimates are proved. 

1. Introduction. The problem. In this paper we shall study efficient, high- 
order accurate methods for approximating the solution of the following initial and 
boundary value problem: let Q be a bounded domain in RN (N = 1,2,3) with 
smooth boundary aQ and let 0 < t* < oo. We seek a real-valued function u = 

u(x, t), (x, t) E x [0, t*] satisfying 
N 

Utt =-L(t, u)u + f(t, u) _ E 9(aij(x, t, u)ju) -ao(x, t, u)u 
i,j=1 

(1.1) + f(x, t, u) in Q x [O, t*], 
u(x, t) =0 on aQ x [O, t*], 
u(x, 0) = u (x) in Q, 
ut (x, O) = uO (x) in Q. 

where aijaofu0 u0 are given functions. We shall discretize (1.1) in space by 
methods of Galerkin type and base the temporal discretization on a class of fourth- 
order accurate, two-step multiderivative schemes generated by rational approxima- 
tions to the cosine, [3]. By extrapolating from previous values in the coefficients of 
the nonlinear terms we can implement the time-stepping schemes by solving only 
linear systems of equations at each time step. These systems may then be solved 
approximately by preconditioned iterative techniques, [12], [4], that require solving 
a number of linear systems with the same operator at every time step. 

Galerkin type methods, coupled with two-step schemes of second-order accuracy 
in time, for the numerical solution of nonlinear problems similar to (1.1) have 
been analyzed in the past, cf., e.g., [10], [11], [14]; in [14] the linear systems at 
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each time step are solved by preconditioned iterative techniques. High-order linear 
multistep methods were studied in [1] in the case of a semilinear problem. One of us, 
[2], has recently analyzed high-order time-stepping methods (generated by rational 
approximations to exp(ix)) for (1.1) written in first-order system form. In this 
paper we shall discretize directly the second-order equation in (1.1). Our analysis 
relies in part on existing estimates in the case of the linear hyperbolic problem 
with time-dependent coefficients, [3], while some of the techniques of estimating 
nonlinear terms are adapted from the analogous techniques for parabolic problems 
due to Bramble and Sammon, [5]. 

For integral s > 0 and p E [1, oo], let W8'P = Ws P(Q) denote the usual Sobolev 
spaces of real functions on Q with corresponding norm 11 II,& and let HI = W,,2 
with norm 1 ; (, ), resp. 1 , will denote the inner product, resp. norm, on 

2= L2(Q), while 1 10 will be the norm on LI = L(?(Q). As usual, H1 will 
consist of those elements of H1 that vanish on aQ in the sense of trace. It is well 
known, cf., e.g., [6], [9], that the problem (1.1) has a unique solution, in general for 
small enough t*, under appropriate smoothness and compatibility conditions on the 
data. Specifically, it is proved in [9] that if, for example, the coefficients aij, ao, f 
are sufficiently smooth functions of their arguments for (x, t, u) E Q x R+ x R, 
with (aij) symmetric and uniformly positive definite and ao nonnegative in Q, if 
the initial data are such that uo E Hm, u0 E Hm1- for some m > [N/2] + 2, and if 
appropriate compatibility conditions are satisfied at t = 0 (namely, if the functions 
Uj, j = 0,1,2,...,-where uo = u?, u1 = u? and u3, j > 2, denote u(., t)It=o 
as computed formally in terms of uo and u1 by the differential equation in (1.1)- 

belong to H1 for 0 < j m - 1), then, for some t* > 0, there exists a unique 
solution u of (1.1) as a Ck map from [0,t*] into Hm-k(F) for k = 0,1,... ,m. By 
Sobolev's theorem, the solution will be classical provided m > [N/2] + 3. 

We shall assume therefore in the sequel that the data of (1.1) are smooth and 
compatible enough and t* is sufficiently small so that a unique smooth solution u 
of (1.1) exists as above. As a consequence, we shall assume, for the purposes of 
the error analysis of our schemes, that, in addition to u(x, t), temporal derivatives 
a u(x, t) of high enough order also vanish for x E aQ, t > 0. We remark that 
the error analysis will not require any artificial compatibility conditions on the 
nonhomogeneous term of the type, e.g., that f(x, t, u) = 0 for x E au, t > 0. 

To introduce some more notation, suppose that u E [M1, iM2] for (x, t) E Q x 

[0, t*]. We shall assume that, for some fixed 6 > 0, aij, ao and f are defined and 

are smooth functions of their arguments (x, t, u) in Q6 _ T x [0, t*] x M6, where 

M6 = [Ml - 6, M2 + 6]. In particular, we shall repeatedly make use of the fact 

that the aij, ao, f and some of their partial derivatives satisfy Lipschitz conditions 

with respect to the variable u in M6, uniformly with respect to (x, t) E a x [0, t*]. 

We assume that (aij) is symmetric and uniformly positive definite and that ao is 

nonnegative in Q6. 

Following the notation of [5], we let Y = {9 E W1 ??: g(x) E M6, x E Q}. For 

t E [0, t*] and 9 E Y, the operators L(t, g) defined by (1.1) form a smooth family of 

selfadjoint elliptic operators on L2 with domain DL = H2 n H1. For such t and g, 
given w E L2, the boundary value problem L(t, g)v = w in Q, v = 0 on aQ, has a 
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unique solution v E DL which we represent as v = T(t, g)w in terms of the solution 

operator T(t, g): L2 DL defined by a(t, g)(Tw, P) = (w, P) VP E H1, where, for 
t E [O,t*], g E Y, 

a (t, g) (p, = | [ E aij(x, tq g)Oi paj + ao(x, t, g)P]dx dx p, ( E Hi, 

is a bilinear, symmetric and coercive form on H1 x H1. If u is the solution of (1.1), 
we shall use the notation L(t) = L(tu(t)), T(t) = T(tu(t)) for t E [Ot*] and 
regard L(t), T(t) as smooth families of bounded linear operators from Hm+2 n DL 
into HI, resp. Hm into Hm+2 n DL. 

Quasi-Discrete Operators. For 0 < h < 1, let Sh be a family of finite-dimensional 
subspaces of W1'00 in which approximations to the solution of (1.1) will be sought. 
For t E [0, t*] let Th(t): L2 -- Sh be a family of linear, bounded 'quasi-discrete' (in 
the sense that they depend on u(t), the solution of (1.1)) operators, that approxi- 
mate T(t). Following, e.g., [4], [5], [2], we shall assume that Sh and Th satisfy the 
following list of properties, that will be used in the sequel, usually without special 
reference. (Also, henceforth, c, ci, etc. will denote, as is customary, positive generic 
constants, not necessarily the same in any two places, possibly depending on u, t* 
and the data of (1.1), but not on discretization parameters such as h and the time 
step, or elements of Sh, the fully discrete approximations, etc.) 

(i) Th(t) is a family of selfadjoint operators, positive semidefinite on L2, positive 
definite on Sh uniformly in t E [0, t*]. 

(ii) There exists an integer r > 2 and, for j = 0, 1, 2,. .., constants cj such that 
for 2 < s < r 

(a) II(T(i)(t) - Tj) (t))fII < cjh8I|fIsI|._2, 
for all f e H-2. (In general, for a vector- or operator-valued function u(t), we put 
u(-) = Diu(t).) Moreover, there exists c such that 

(b) I(T(t)-Th(t))f loo <chrI log(h)T |ITTf llr,oo, 

where =0 if r > 2 and 0 < < oo if r = 2, provided Tf E Wr,,. 

(iii) If Lh(t) = Th(t)1 on Sh, 0 < t < t*, assume that there exist constants cj, 
j=1,2,...,suchthat 

|(L ) (t) p I < cj(Lh (s)p,'P) Vp E Sh, ts E [0,t* . 
(iv) Assume that there exists a constant c such that the following inverse as- 

sumptions hold on Sh (for a justification of (c) cf. Section 5): 

(a) (Lh(t)p wp) < ch 211pJ12 Vp E Sh, t E [0 t*]. 
(b) 1pl < ch-N/211pll Vp e Sh. 

(c) 1kloo < c-y(h)IJLh(0)1/2plI Vp E Sh, where 0 < -y(h) < h-1/2 for h small 
enough. 

(v) For t E [0, t*], g E Y, we postulate the existence of a symmetric bilinear 
form ah(t, 9)(., ) on W 1?? x W ?,? which is positive definite on Sh, and of a linear 
operator Lh(t, 9): Sh - Sh such that 

(a) Lh(t, u(t)) = Lh(t), t E [O t*], 

(b) ah(t, 9)(p,/)) = (Lh(t, 9)p Pi) i P< E Sh, t E [O.t*]. 
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Moreover, assume that there exists c such that for p, I/ E Sh, g, gi E Y, s, t E [0, t*]: 

(c) I((Lh(t)-Lh(t,g))p,4)f < cIu(t)-gI|L 
,2 IILh2(t)+, 

(d) I((Lh(t)-Lh(t,g))o,4)I < cIIu(t)-gII lkIlloollLl/2'(t) II, 

(e) I(ah(t, 91) - ah(t, 92) - ah(8, 93) + ah(8, 94))(p, /)I 

< c[gI91 - 92 - 93 + 94f1(1 + 193 - 941oo) 

+ 191 - 931oo1193 - 9411 + It - SI 1193 - 941111pI1,O1Lh/'(t)II. 

An example of a pair Sh, Th (t) which satisfies the above properties (and from 
which this list of assumptions is motivated) is furnished by the standard Galerkin 

0~~~~~~~~~~~~~~~~~ method in which Sh C H1 fl W1'oo is endowed with the approximation property 

inf (Ilu - XlI + hIlu - Xli) < chilluli, 1 < s < r, for u E H' n H1, 

where the Th(t): L2 Sh are defined for f E L2 by a(t,u(t))(Th(t)f,X) = (fix) 
VX E Sh and where the bilinear form ah coincides with a. For verification of (i)-(iv) 
in this case, cf., e.g., [2]-[4] and their references. For (iv.c), cf. Section 5. Properties 
(v.c,d,e) follow easily from the smoothness of the coefficients aij, ao in Q6 and the 
definition of ah. 

A number of important inequalities now follow from the above list, cf. [3], [4]. 
We let in the sequel P: L2 -* Sh denote the L2 projection operator onto Sh. Then 
there exist constants cj, j = O, 1, 2,. . ., such that for t, s E [O. t*I, p, E Sh: 

||Lhj ) (t)Th (s) ||, I lTh (s)Lhj ) (t)PI || cj , 

(1.2) i(L(j)(t)pIO)i < cjIIL1/2(s)PII iiL /2(t)bII, 

|| Lhj) (t)pll| < cj || Lh (s) PIl 

Also, as a consequence of (ii.a), there exists c such that 

(1.3) liv-PvII < ch'IIvIIs if 2 < s < r and v E Hf nDL. 

Moreover, we shall assume (for a justification, cf. Section 5) that for each v E L??, 
there exists a constant c(v) such that 

(1.4) hIIlPvII1 l,OO < c(v) . 

If u(t) is the solution of (1.1), we let W(t) = PI (t)u(t) = Th(t)L(t)u(t) denote the 
elliptic projection of u. As a consequence of our assumptions (i)-(iv), the elliptic 
projection will satisfy, cf. [3],[4], the following properties, some of which are just 
restatements, for convenience in referencing, of previously listed ones: there exist 
constants c, ci, ciJ such that for t, t' E [0, t*] 

(1.5) liv - Pi(t)vII < ch'IIvIIs, 2 < s < r, v E DL n H8, 
(1.6) liu(m)(t) - W(m)(t)ll < cmh8, 2 < s < r, m > 0O 

(1.7) IIL(')(t)W())(t')ii < cij, i,j > 0O 

(1.8) iu(t) - W(t)lo < ch? I log hl~r, r as in (ii.b). 
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We shall also need the property that for constants cj 

(1.9) 11W~i) (t)11iC-0 < Cj, j = O. 1, t E A0 t*], 

which we shall justify under some additional assumptions in Section 5. 
Full Discretizations. For the purpose of introducing the fully discrete approxi- 

mations, we consider the 'quasi-discrete' problem, i.e., define Wh: [0, t*] -- Sh such 
that 

(1.10) W 2)(t) + Lh(t)Wh(t) = Pf(t), 0 < t < t, 

where f(t) = f(t,u(t)). As Wh(t) will play no role in the analysis and the proofs, 
other than that of motivating the construction of the fully discrete schemes, we 
shall assume that supplementing (1.10) with initial conditions Wh(O), Wh,t(0) will 
produce a unique, sufficiently smooth solution Wh (t), < t < t*. 

Our time-stepping procedures will be based on fourth-order accurate rational 
approximations r(x) to cos(x), [3], of the form 

r(x) = (1 + p1x2 + P2X )/(1 + qx2 + q2X4) 

with q1, q2 > 0. We shall assume for accuracy and stability purposes that Pi = q - 

1/2, P2 = q2-ql/2+1/24, and that the pair (ql, q2) belongs to the stability regions 
of the q1, q2 > 0 quarterplane, [3]. Let k > 0 denote the time step, let tn = nk, n = 
0,1, 2, ... , J, and assume that t* = Jk. In the sequel we shall employ the following 
notation: Ln = Lh(tn), Lj) = Lj)(tn) Tn = Th(tn), TO) = Thj)(tn) fn = 

Pf (tn), f (i)n = Pf()(tn) = PfP()(tnU(tn)), Wn = Wh(tn) W(i)n = W() (tn). As 
in [3], approximating cosh(z) = cos(iz) by r(iz) in the formal relation Wn+1 + 
wn- 1= 2cosh(kDt)wn, Dt = d/dt, we have, for Wh smooth enough, 

(I - qik2D 2 + q2k4JD4)(wn+l + wn-) 

- 2(I - p1k2D2 + p2k4JD 4)wn + 0(k6w(6)). 

Differentiating now (1.10), we obtain 

wh 4) (t) Lh(t)(-Lh(t)Wh(t) + Pf (t)) - L 2) (t)Wh (t) - 2L ) (t)w ') (t) 

+ pf (2) (t). 

Substituting this in the above relation and using the notations q(T) = 1 +q1T+q2T2, 

p(T) = 1 + P1 + p2T2 Qn = q(k2Ln ), Pn = p(k2Ln), yields the following temporal 
discretization of (1.10): 

Qn+ l w+l - 2Pnwn + Qn-W1 -1 

= k2(qifn+l - 2pfn + q1fn-l) 

+ k4(q2Ln+lfn+l -2p2Lnfn + q2Ln~f- ') 

+ q2k4(L$(2)4wn+ -2L$(2)wn + L2)Wn- )+2(q2 -P2)k L W 

+ 2q2k4(L(l) $ w(1)n+l - 2L$l)w(i)n + L(1) 1W(1)n-1) 

+ 4(q2 -P2)k4L )w(1)n 

- q2k4 (f (2)n+ - 2f (2)n + f (2)n-1) - 2(q2 - p2)k 4f (2)n + 0(k6). 

Since we are interested in fourth-order methods, we put q2 - P2 = (qi - 1/12)/2 
and drop the (presumably of 0(k6)) second-order central differences in the right- 
hand side of the above. We also replace the derivative w(i)n, using the relation 
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W(1)n =k-(WnWn-1) + kw(2)n/2 + O(k2) and computing W(2)n by (1.10). The 
resulting relation yields that up to presumably O(k6) terms, 

Qn+ 1Wn+l - 2Pn wn + Q-1 Wn-1 

k2(qlfn+l _ pfn + qjfn-1) k - 2pifl+q~fl 

(1.11) + k4(q2Ln+lfn+1 - 2P2Lnfn + q2Ln-1fn-1) 

+ (qi - 1/12)k4 {L12) Wn + 2Ll ) [k- 1(wn- wn-1 

+ (k/2)(-Lnwn + ffn)] _ f(2)n}. 

Motivated by (1.11), we can now state the fully discrete scheme. We shall seek 
Un E Sh approximating un = u(tn) for 0 < n < J. To avoid solving nonlinear sys- 
tems of equations at every time step, when called upon to evaluate the coefficients 
and the right-hand side at the advanced time level n + 1, we shall substitute (as 
was done in the parabolic case in [5]) for Un+1 an approximation Uf+1 to u+1 
obtained by suitable extrapolation from values of Ur, m < n. The precise formulas 
for the Un+l will be specified in Section 3. We shall also replace the derivatives 
L(j), f(j)n in (1.11) by appropriate difference quotients. To this end, we use the 
notations 

62L (Un+l, un, un-1) k-2 (L+(U-n+ 2Ln(Un) + L n-(U 1)), 

(1.12) bLn(u+1, Un-1) = (2k)-1(Ln+1(U 1) - 1- 

^2fnUn~lX Unix l) =_ k- + (Un) - 2fn(Un) + fn-1 (Un-)), 

where, for gn E Y, 0 < n < J, we put Ln(gn) = Lh(tn,gn) and fnf(gn) = 

Pf(tngn). Letting An = q(k2Ln(Un)), An = q(k2Ln(U)), B p = L 
we can finally state our fully discrete method, which we shall refer to as the base 
scheme: 

An+iun+l -U2BU +A-1n-1 = e(un+ Un, UAn1) 

-k (ql U n~l l- 2pf n(Un) + q nif (U n-1)) 

(1.13) +k4(q2L~ 1 (U'n+l)fn+l( 'n+l) - 2p2L (Un)fn(Un) 

+ q2Ln-1 (Un-1)fn-1 (Un-1)) 

+ (qi - 1/12)k4{62L (n+1, Un, Un-1)Un + 26L (Un+l, Un-1) 

[k-(Un -Un-1) + (k/2)(-Ln(Un)Un + fn(Un))] 

_ 2 fn ('n+ 1 un, un- 1)}. 

We shall compute Un+ 1 for 1 < n < J -1 from this scheme. In Section 3 we shall 
specify our starting procedure, i.e., the definitions of UO, U1 and the 'lagged' term 
U6n+1 1 < n < J - 1. In the same section we shall show that, under appropriate 
stability restrictions (in general that kh-' remain arbitrary but bounded as k, h -- 0 
and, for some choices of the parameters qj, q2, that kh-1 remain small), there exists 
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a constant c such that 

max 1u1 - U' II < c(k4 + hr), 
O<n< J 

i.e., that an optimal-order in space and time L2 error estimate holds. However, 
solving for Un+'1 by (1.13) necessitates solving linear systems with the operators 
An+1 that change with each time step. Using preconditioned iterative techniques 
following [12], [4], [3], we show in Section 4 how to modify the base scheme so 
that the resulting fully discrete methods require solving 0(1 log(k)I) linear systems 
at each time step with the same matrix and preserve the stability and accuracy 
of the base scheme. These results are preceded by a series of technical lemmata 
and 'a priori' stability and convergence estimates, which we present in Section 2. 
The paper closes with an appendix (Section 5) in which we collect evidence of the 
validity of several technical inequalities that are assumed in the previous sections. 
The proofs of the main result of Section 2, of some results of Section 3, and all of 
Section 5 can be found in the Supplement to the paper in the supplements section 
of this issue in Sections S2, S3, S5, respectively. 

2. Consistency and Preliminary Error Estimates. In this section we shall 
study the problem of existence of solutions and the consistency of the base scheme 
(1.13) and derive several preliminary error estimates and a priori stability results 
that will prepare the way for the main convergence theorem of Section 3. The 
proofs of many intermediate results can be found in detail in the Supplement to 
the paper in the supplements section of this issue. 

We begin with a technical lemma that supplements the inequalities of the type 
(v.c, d) in Section 1. 

LEMMA 2. 1. There exists a constant c > 0 such that for g E Y, t E [0, t*]: 

J ch 11u(t) -gIooIIL1 )II 
(2.1) II(Lh(t) - Lh(t, 9))VbI <? for Vk E Sh, 

ch- 111u(t) - gI IV1+1 ,. 

I ((L 2 (t) - L2 (tg ))4y p) I 

(2.2) < ch-1ju(t) - gj0(I1L 2(t)4II IILh(t)PII + IILh(t)/)II IIL 2(t)PII) 

+ ch-2Iu(t)912 - JIL12 (t) IL t), for p, i/ E Sh. 

Proof. The estimate (2.1) follows from (v.c,d) and (iv.a). Using, for p, V/ E Sh, 

((L2h(t) - L2(t, g))b, p) = ((Lh(t) - Lh(t, g))V/, Lh(t)p) 

+ (Lh(t, g)0, (Lh(t) - Lh(t, 9)) 

and noting that IILh(t,g)4I < ? I(Lh(t,g) - Lh(t))I I + IILh(t)4'II, we obtain (2.2) 
from (v.c), (iv.a) and (2.1). c 

The next result concerns the invertibility of the linear operator An+1 on Sh. In 
the sequel we denote en = U- n(J, 6n = Un- n. 
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LEMMA 2.2. Suppose that 1 < n < J - 1 and Un+l E Sh nfY. Then there 
exists a constant c such that for (p, / E Sh 

1((Qn+l- An+l)VX)i P 

2.3 ~ ~~ cqlk2h-116n+110011L 1/2fl 11 (2.3) n+01 IIL+~I I~iII I~~ 
( ) ~~~+cq2k h-1jen+1joo(jjl/lll|Ln+ l || + IlLn+0011 IlLn+11 Jn+1P1D) 

+ cq2k4h 2 n+l IoIIL / )11 L 1/21 11. 

If in addition there exists ar > 0 such that kh-1 < a, and if 16n+L1 o is sufficiently 
small (or if <e~1 K ch and k is sufficiently small), then An+i is invertible on 
Sh, and Un+1, defined by (1.13), exists uniquely, given Un, Un-1, Un+l1. 

Proof. Since 

Q l-An~l = qi k2 (Ln~ - L +1(U&n+l)) + q2k4(L~ - L2+1 ((n+ )) 

(2.3) follows from (v.c), (iv.a), (2.2). Putting / = p in (2.3) and using the 
arithmetic-geometric mean (agm) inequality gives 

I((Qn+1- An+1)p, p)I < c(kh-1 6n+1 I + k2h-2l16n+1I 
(I1oII2 + k2IIL1/{2pII2 + q2k41ILn+lpI 2). 

Letting Qn+l = I + k2Ln+1 + q2k4(Ln+l)2 2 one may easily see, cf. [4], that for 
positive constants ci there holds cj(Qn+9ip p) < (Qn+1p, p) < c2(Qn+1p, p) for 
every (p E Sh. Hence, 

(2.4) I((Qn+l- An+l)>p(p)I < c(kh-1 
1 Kn+ + + 1 eOi p0) 

for (p E Sh, and the invertibility of An+1 follows from that of Qn+i (q, Iq2 > 0) n 
Assuming that 1 < n < J - 1, that Un, Un-1, Un+l exist in Sh and that the 

hypotheses of Lemma 2.2 hold, we let En = un _ Wn, where Wn = W(tn) = 

PI(tn)Un. For pj E Sh, j = n-1, n, n + 1, we define 

(2.5) SnfOn = (Qn+l-An+1)+1 n+1 - 2(Pn - Bn)pn + (Qn-- An-l)A1 n-l 

and obtain, using (1.13), the error equation 

Qn+lEn+l - 2PnEn + Qn-jEn-1 

(2.6) = SnEn + Sn Wn + E(Un+1 Un, Un-1) 

(Qn+lW 1- 2PnWn + Qn-Wn-1) 

The next lemma is a consistency result for the scheme (1.13). (In the sequel we let 
U(j)n - u(j)(tn).) 

LEMMA 2.3. Let 1 < n < J - 1 and suppose that the solution u and the data 
of (1.1) are sufficiently smooth. Then 

Qn+iWn+1 - 2PnWn + Qn Wn-W 1 

(2.7) 
= yn + k2(qlfn+l - 2piffn + qfn-fl) 

+ k 4(q2Ln+lf - 2p2Lnf + q2Ln-f ) 

+ k4(q1 - 1/12)(PL(2) (tn)Un + 2PL(1) (tn)u(( )n _ f (2)n 



NONLINEAR SECOND-ORDER HYPERBOLIC EQUATIONS 307 

where for some constant c 

(2.8) . (yn , F>) I< ck2 (k4 + h r) (11,,pi + k2JjlLn~Pjj) Vff(p E Sh . 

Proof. See Section S2 in the Supplement to the paper. 0 

Defining now, for 1 < n < J - 1, 

A ((n+1, un, un-1 ) 

(6= (u+l, un, Un-1) - k2(qfn+l - 2pfn ? q fn-) 

- k4(q2Ln+l fn+ - 2p2Lnf + q2Ln-1 f 1) 

- k4 (q - 1/12)(PL(2)(tn)un + 2PL(1)(tn)u(l)n _ f(2)n 

we see that the error equation (2.6) may be written as 

Qn+iEn+l -2PnEn + QnjE n-1 

= SnEn + SnWn + A(Un+l Un, Un-1) _ yn 

with yn as in (2.7)-(2.8). Taking the L2 inner product of both sides of this equation 
with En+l - En-1 and using the symmetry of Qn, Pn, we obtain 

(Qn+iEn+lI En+l) -(Qn-,En-1En-1 

(2.17) - 2[(Pn+lEn+l, En) - (PnEn ,En-1)] 

= ((Qn+l- Qn-)En+1, En-1) - 2((Pn+l - Pn)En+1 En) 

+ (SnEn + SnWn + A n(U+1, Un, Un-1) - Yn, En+ - En- 

A basic error inequality is given in the following 

LEMMA 2.4. Suppose that 1 < m < 1 < J - 1, that Un, m - 1 < n < 1 +1 
and U , m < n < 1, exist uniquely in Sh (i.e, that the An+, are invertible for 
m < n < 1). Then 

r(l) < 77(l) + ck2(k4 + hr)2 (( - m + 1)k) /1+1 

+ ck j {IIEn+1 - E n-1112 
n=m 

(2.18) + k2(IL'/2 En+1 112 + llL1/2 Enl2 + llLn/2 Enll2) 

+ k4(IlLnEn+1112 + IILnEnEI2 + IILnEn-1112 

+ JjLn(En+1 - En-')112} 

+ (SnEn + SnWn +A(Un+1,unUn-1) En+1 En-), 
n=m 

where 

rl) l IEJ-3 - E1I2 + k2((ql-pl)/2)IIL'2(EE + EE)-II2 

(2.19) + k2((ql +pi)/2)IILj2 (E -Ei-1 

+ k4 ((q2 - P2)/2) 1Lj(E' + Ej'- )112 
+ k4((q2 + p2)/2)1Lj (E J- )11 

2 
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Proof. The proof follows by summing both sides of (2.17) from n = m to n = 1, 
proceeding as in the proof of Theorem 2.1 of [3]-noting that the analogs of (2.30) 
and (2.32) of [3] hold here too-and making use of the estimate, cf. (2.8): 

Ad (YnXE n+l - En-1 

n=m 

< c E (k3(k4 + hr)2 + kIlEn+l-En-1I2 + k5IlLn(En+l - En-1)I2). 0 
n=m 

We must now estimate the last three sums in the right-hand side of (2.18). 
This is carried out in Section S2 of the Supplement to the paper. Specifically, in 
Lemma 2.5 in the Supplement, we estimate the term Zn(SnEnEn+l -En-l) 
in a straightforward way, following estimates analogous to those that led to (2.3). 
The term En(SnWn En+ 1 - En-1) is estimated piecemeal in Lemmata 2.6, 2.7 
and 2.8 in the Supplement. (It turns out that further use of these estimates will 
be made in Section 3 in the cases 1 > m + 2 and I = m. Lemmata 2.6-2.8 deal 
with the case 1 > m + 2, while the term with I = m is easily estimated in (2.40), 
cf. Section S2.) Finally, the term En (((n+lX UnX Un-1 ) En+l - En -1) is broken 
into five parts which are then estimated in Lemmata 2.9-2.13 in the Supplement 
and complete the a priori estimation of all terms in the right-hand side of (2.18). 
For convenience in later use we collect below, summarize and simplify the results 
of Lemmata 2.4-2.13, distinguishing between the cases I > m + 2 and I = m. 

PROPOSITION 2.1. Suppose that 1 < m, 1 < J -1 and 1 > m + 2, that U3, 
mr-1 < j < 1 exist inShn Y, that U1+l exists in Sh, that Uj, m+ 1 < j <1 + 1 
exist in Sh n Y, that (1.4) and (1.9) hold and that there exists Ca > 0 such that 
kh-l < a. Then, with r7$)Q j = 1, 2,3, defined by (2.19), (2.24), (2.54) (cf. Section 
S2), respectively, given E1i E2 > 0, there exists a constant c(El, E2) > 0 such that 

IIE' + - E 112 + k2((q1 - pl)/2)IIL442(EL+1 + E')112 
+ k2 ((q1 + pl)/2)III 4L/2 (El+ - El) 112 

(2.88) + k4((q2 - p2)/2) Li+1 (E'+1 + El) 112 
7 

+ k ((q2 + p2)/2)IILi+ (E'+1 - El)112 < E Fj, 

where 

F1 = 7(1) + r(2) + (3) 

F2 = Elk2(IIL142? (El+' + El)112 + IIL1/2 (El+1 - El) 112) 

+ E2k4(IILI+l(El+' + El)112 + IILi+i(E+l - El))112) 

1+1 

+ C(E1,E2)k2 E II&jII2(j + 16I12 ) + E IleiII2(l +Iei) 

E= 1 J=1-2 
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F3 = ck2(k4 + h)2(- m+ 1)k, 

F4 = ck {IIE n+1 - EnII2 + k2(IIL 121 (En+1 + En)II2 
n=m-1 

+ IIL121 (En+1 - En)II2) 

+ k4 (ILn+1(En+1 + En)II2 + IILn+1(E n+1 -En)2) 

1-1 

F5 =ck e {Ien-l1I2IIEn+1 -En-1112 + len-212 EnE n-2112} 

n=m+1 

+ ck E { h2(Ien Il00 + le I. + len 1I) 
n=m 

X (IIEn+1 - En-1I2 + IIEn _ n-2 112) 

+ h-1 (le I + lenK + lel loo)IIEn~ -E 112 

+ k2h (Vn+l l 2En+1 112 + Ien 1IIL/2EIn I2 

+ IenIooIILl/{2iEn1IIg2) 

+ k2h1l(Ven+1Io + IenIOO + Ien1I|O)IILnji2i(En+ - En)II2 
+ k3h-2(Ven1 I0IILn/+En+1 12 + IelIoI ELle 2EnII2 

+ Ien1I .JILl{2iEn1II2) 

+ k3h-2(Ven~1I2 + IenI2 + Ien1Ilo,)IILnj+?i(En+1 -En1 

+ k4h-1(Ven~ KIIlLn+iEn~1 112 + IenIocIILnEnII2 
+ len-1loolILn2 En-1II2) 

+ k4h-1(16n+11 + lenIoo + len-1oo)ILn+1(En+1 - En 11 2} 

I-1 ( n+l 

+ck ? k2h-2 (6 n+2 2 + 1En12 + j le n12 | IILt/2EnII2 

+ k2hen-112 IL1 1En-12 ) 

F6 = ck E k2(IIen~'II2 + Ien 112 + IleIn le2)l 
n=m 

1-1 

F7 = ck k 4 _ +1 0n 1E + O 

n=m+ 1 

We also examine for later use the case 1 = m, 1 < m < J -1. Assuming that 
for such m,U3 exist in Sh flY for m -1 ? j ? m and in Sh for j = m + 1, that 

ne Sh l Y, that (1.4) and (1.9) hold and that there exists a > 0 such that 

kh-1 < Cl! then, with r41l) defined by (2.19), we have that, given ei > 0. 1 < i <4, 
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there exists a constant c _ c(el, e2, e3, e4) > 0 such that 

t1(1) < 77(l) +elk2(IIL /12Em+l112 + IL1,2lEm-112) 

+ 62k4(IILm+lEm+l 112 + IILrm+Em-lI I2) 

+ 63k IILM/Em 112 + 64k2 IILM%2Em-1l2 

m 
+ ck2 [IIm+lll2(1 + lVm+12) + j llej 112(l + IeJ1)] 

+ ck3(k4 + hr)2 + ckIlEm+l -Em-l12 
m+l 

+ ck3 ( IILY/2Ej12 + IILl/2(Em+l - Em) 112 
ij=m-1 

+ I1l/2(Em -Em-1)112) 

m+l 
+ ck5( E IlLjEj312 + IILm(Em+l -Em-1)112 

^=m-1~~~~~M1 1 
(2.89) + Ckh-l(I6m+l oo + Iem100 + lemloo)llEm+l - Em-l 

+ ckh-2(iVm+l i2 + iem12 + Iem-112.) 

x (IlEm+l - EmI2 + IlEm - Em-1112) 

+ ck3h-l(lVm+l I0 IIL1/2Em+l 112 + leml0ooIIL /2EmI112 

+ lem-1 12 IL1/2 % Em- 1112) 

+ k3h-l(Vlm+lloo + lemloo + lem-100)III 14/2 (Em+l - Eml)112 
+ ck4h-2(1Im+112 IIL1/2iEm+l 112 + Iem12JIL1/2Em 112 

+ lem-1 l IJIL1/2 Em- 1112) 

+ k4 h-2(1m+112 + 1emI2 + Iem-1I )IIL/+1(Em+1 - Em2)112 

+ ck5h-l(lVm+l loo IILm+lEm+l 112 + lemlooIILmEm 112 

+ lem-lIloolILm-lEm-lI2) 

+ ck5h-l(lVm+llI + lemloo + lem-ll0o)IILm(Em+l - Em ) 112 

+ck3(II6m+lII2 + llemll2 + 11em-1112). 

3. Starting and Convergence of the Scheme. In this section we shall com- 
plete the base scheme (1.13) by specifying U?, U1, and the formulas for computing 
U&+1. We shall then prove, in Theorem 3.1, an optimal-order L2-error estimate for 
the base scheme. The starting will be done in two phases: first we specify U0 and 
compute U1 using a single-step method; we also prove some associated error esti- 
mates. The values Uj, j > 2, will be computed using the base scheme. It turns out 
that it is necessary to analyze the error of the approximation Uj, 2 < j < 5 (and 
compute the associated UJi) in a special way. Finally, we specify Uj for j > 5 and 
prove the main stability-convergence result. The proofs and statements of many 
intermediate results appear in the Supplement to the paper. 
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Computing U?, U1. We shall take 

(3.1) U0 = W? = ToL(O)u0. 

To define U1, let Sh2 = Sh x Sh and, adopting the notation of [3, Section 3] or [2], 
introduce the inner product ((ID,'1))n = (p01 i'1) + (Tn0p2, i2) for 1 = (91, 2)T, 
X = (V1, 2 E Sh2, and the associated norm Iilln= ((,))/2 Let i(z) be the 
(2,2)-Pade approximant to ez, i.e., let 

(3.2) i(z) = (1 + z/2 + z2/12)/(1 - z/2 + z2/12) P(z)ld(z). 

Defining 

Lm = h(tm)- (L ? ) 

Lm(g) = Lh(tmg)= (-L(g 0) ' g E Y 

and U0 E Sh2 as 

(3.3) U? = (U1?, U20)T = (W0? W(1)0)T _W 

(so that U0 = U1 = W?), compute for j = 1, 2,3, U1 E Sh by 

(3.4) (j= U0 + P[jku(1)0 + (jk)2u(2)0/2! + (jk)3u(3)0/3!]. 

It is assumed that in (3.3), (3.4), 1 1 and WM1)0 = (Th(t)L(t)u(t))(1)It=o 
will be evaluated using the differential equation in (1.1) at t = 0. As U1 we shall 
then take 

(3.5) U1 =U1 

where U1 = (Ul, U21)T E Sh2 is the solution of the linear system 

(3.6) A1Ul = BOU0 + F0 

with 

(3-7) A1 = (kL1 (U1)) 

+ (k2/12) [(6k)-1 (-L3(U13) + 6L2 (U2)-3L1 (UI) - 2LO(U0))], 

(3.8) Bo = p(kLo(U?)) 
+ (k2/12) [(6k)-1 (2L3(J13) - 9L2(U12) + 18L1 (UI )-llLo(U0))], 

F0 = (k2(f0 - f1(U1))/12 

kf0/2 + (k2/12) [2f3(U3) - 9f2 (U2) + 18f '(UI) - 11f0]/6k 

+ kf1(UI)/2 

- (k2/12) [-f3(U13) + 6f2 (U12) -3f1(UI) )-2f0(U0)]/6k)T. 

For the proof of convergence of the overall scheme we shall need error estimates for 
U1 in a special norm. For this purpose we state and prove some preliminary results 
in the Lemmata 3.1 and 3.2 of the Supplement. These results lead to Proposition 
3.1 and (3.29) (see Supplement), which summarize the error analysis at the time 
levels tj, j = 0, 1. 
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Computing U-, UT), 2 < j < 5. We then compute (and estimate the errors of) 
a few steps (2 < j < 5) of the numerical solution Uj using the cosine base scheme 
(1.13). To do this, we must also provide the necessary U-, 2 < j < 5. It turns 
out that the error analysis must be done in a special way for these first few steps. 
We start with the preparatory Lemma 3.3, the heart of the step-by-step estimation 
argument, albeit good only for a few time steps. Its statement and proof can be 
found in the Supplement. 

Then we define in an inductive fashion Uj+1 for j = 1, ... , 4 as follows: 

(3.38.2) U2 = 8U1 - 7U?- 6kPu(1)0 - 2k2Pu(2)0 

(3.38.3) U3 = (9/2)U2 - 9U1 + (11/2)U0 + 3kPu(1)0 

(3.38.4) U4 = 4U3 - 6U2 + 4U1 - U0, 

(3.38.5) Us = 4U4 - 6U3 + 4U2 _ U1. 

In these formulas, the U-, 2 < j < 4, are computed successively by (1.13), once 
the required Ut, i < j and UP have been computed. 

For the motivation behind this special choice of U(j+ for 1 < j < 4 and the 
relevant error estimation we refer the reader to the Supplement. Here, for purposes 
of easy reference, summarizing the results of Proposition 3.1, Lemma 3.3 and the 
subsequent discussion in the Supplement, we state: 

PROPOSITION 3.2. Suppose that there exists Ca > 0 such that kh-1 < r, that 
k, h are sufficiently small and assume the stability conditions on (qj, q2) of Lemma 
3.3. Suppose also that (1.4), (1.7), (1.9) hold and let UO, U0, U1j7 1 < j < 3, be 
given by (3.1), (3.3), (3.4). Then U1, the solution of (3.6), exists uniquely. Define 
U1 by (3.5). Then 

for j = 1,...,4: 
define (j7+1 by (3.38.j + 1), 
then Uj+1, the solution of (1.13) for n = j, exists uniquely. 

Moreover, Uj E ShfnY, < j <5, (P E ShfnY, 2 < j < 5. If EJ =Uj-Wi 

(E? = 0), if Ej,jp, is defined by (3.31) and if ej = ui - U3, e = ui - U3 as usual, 
we have 

(a) Ej, j_ < cjk2(k4+h )2, 1 < j < 5, 
(b) jEj3II < cjk(k4 + hr), 0 < j < 5, 

(c) Ile)II < cj(k4 +hr), < j < 5 
(3.39) (d) Ie-k,? < h, 0 < j < 5, 

(e) 1&j+ -Hj < cj(k4 + hr), 1 < j < 4, 
(f) 1V+1100 < h, 1 < j < 4. 

Stability and Convergence of the Base Scheme. We now proceed to the central 
result of this section. Having already defined and estimated Un, 0 < n < 5, and 
Uf~lX 1 < n < 4, we shall let, for 5 < n < J - 1, provided of course that the U3, 
j < n exist, 

4 

(3.40) Un+1 = Z C!Un+lj = 4Un - 6Un-1 + 4Un-2 - un_3 
j=1 

and compute Un+1 as the solution of (1.13). 
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THEOREM 3. 1. Assume all hypotheses and definitions of Proposition 3.2. Then, 
with Un+l defined by (3.38.n + 1) for 1 < n < 4 and by (3.40) for 5 < n < J - 1, 
the Un, 2 < n < J. exist uniquely as solutions of (1.13). Let En = Un - W' and 
let Ejj-, be given for j > 1 by 

Ejj__ = - Ej-E-l1II2 + k2IIL1/2(Ei Ej-1)112 

(3.41) + k2IIL1/2 (E) + Ei-1)II2 + k4 ILj(Ej- E-1) 12 

+ k4IILj(Ei + Ej-1)I2. 

Then there exists a positive c, independent of h and k, such that 

(3.42) max (IIE l+(Ejj_)/2) < c(k4 + hr), 
k j= 1 

(3.43) max IlUn _ Un I < c(k4 + hr). 
o<n<J 

Proof (by induction). Let 1 be an integer such that 5 < 1 < J - 1. We make the 
following induction hypothesis on 1: 

(a) Un, 0 < n < 1 exist (as solutions of (1.13) for n > 2) in Sh n Y, 
(b) IIEnII + En l(Ejj_1)1/2 < ae'tn(k4 + hr), 0 < n <1 

(3.44) (c) lenloo < h, < n <1 
(d) Un+l, j< n < 1, belong toShf Y, 
(e) jep+1100 < hi 1 < n < 1. 

(In (3.44.b), a is a finite positive constant, independent of k, n, h or 1, whose value 
will be specified in the proof.) Obviously, the hypothesis holds for 1 = 5, cf. (3.39). 
Also, if k is sufficiently small, (2.4) shows that Al+, is invertible, i.e., that U'+1, 
the solution of (1.13) for n = 1, exists uniquely in Sh. We now turn to Proposition 
2.1 which we shall use for m = 3. All its hypotheses are fulfilled and therefore, 
for any E1l E2 > 0, there exists a constant c(E1, e2) > 0 such that (2.88) holds for 
m = 3 and our current 1 (> m + 2 = 5), or any other 1' such that 5 < 1' < 1. As a 
preliminary note we remark that the induction hypothesis (3.44.b) gives 

(3.45) IIenII < IIEnII + IjUn _ WnII < Oeatn(k4 + hr) + chr, 0 < n <1. 

Consequently, in view of (3.44.d), (3.40), we have, for 5 < n < 1 

4 4 

IVIn+lI? Zajen+l-j + Un+lZajUtn+ i 

j=1 j=1 

4 

< c(k4 + hr) Z(aeatn+-j) + c(k4 + hr). 
j=1 

Combining with (3.39.e), we have 

( 4 ? 

(3.46) len+l 1 
1 < c(k4 + hr) E afeatn+ 1- + *~4 + hr), 1 < n < l 
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We now embark upon estimating the terms Fi of the right-hand side of (2.88). 
We immediately conclude by (3.39a, c-f) that 

(3.47) F1 = r_ 1) + ?7(2) + r(3) < ck2(k4 + hr)2. 

Now, using the L? bounds (3.44.c,e), we shall estimate for the time being 

F2 < eik2(IIL 1/2(E1+1 + E')112 + IIL1/2 (E1+1 - E')112) 

+ E2k4(IILi+i(E'+1 + E')112 + IILi+i(E'+1 - E')112) 
(3.48) {1+1 

+ C(E1,E2)k2 E(i II 112 + - lEes 112) 
Vj=1 j=1-2 

We also immediately note that 

(3.49) F3 < ck2(k4 + hr)2, 

I 

(3.50) F4 < ck EEn+1,n 
n=2 

Using (3.44.c,e), it is straightforward to see that 

(3.51) F5 < ck En+ln + ck2h2r. 
n=2 

Then, using (3.44.b) and (3.45), (3.46), we obtain 

(3.52) F6 < ck2(k4 + hr)2 + ck3(k4 + hr)2a2e2at3(e2ak(1-1) - 1)/(e2ak 1). 

For the purpose of estimating F7, note that by (3.38.4,5) and (3.40) we have for 
4 < n <-1 

4 
11n+2 _n II1 < (Un+ -E a3- Un+- - (Un a.-un-3 

+ S a1[(un+2i - _W +2-i) -(un3-j_ n-) 

j=1 

4 

+ 5 4U2 Wn- -3) _ (Un-3 - 
n- 

4 

< ck5 + ckhr + C S IIE 2 -E II. 
j=1 

Hence, using (3.44.c) and (3.39.a), we obtain 

1-1 

(3-53) F7 < ck2(k4 + hr)2 + ck E IIEn+1 -EnII2. 
n=2 
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Collecting terms, we see that from (3.47)-(3.53) and (2.88) there follows that, with 
71 () defined by (2.19), 

?7l) < ck2 (k4 + h r)2 + ck E 

n=2 

+ elk2(IILI+44(E1+1 + E')112 + IIL+1/4(E1+1 - E')112 

(3.54) + E2k4(IILI+l (E'+1 + E') 112 + IILi+i(E'+ - E') 112) 
(1+1 I 

+ C(El, E2)k2 (E 16j112 + E 1jej112 
j=1 j=1-2 

+ ck3(k4 + hr)2af2e2at3(e2rk(l-l) - 1)/(e2ok - 1). 

(Let us remark again that, e.g., (3.54) holds if we replace I by any integer 1' such 
that 5 < 1' < 1.) At this stage, the stability assumptions on ql, q2 yield-basically 
as in the proof of Theorem 2.1 of [3] that it is possible, by taking k and E1, E2 
sufficiently small, to hide the third and fourth term in the right-hand side of the 
above in analogous terms of the left-hand side, which may be subsequently bounded 
below by a positive constant times El+ ,,. Hence we obtain for k sufficiently small 

'1+1 I 

El+,,, < ck2(k4 + hr)2 + ck2 Eyj112 + I jej 112 

ij=j j=l-2 

(3.55) + ck3 (k4 + hr)2a 2e2at3 (e2ak(l-1) - 1)/(e2ak - 1) 
1-1 

+ ck EEn+ln 
n=2 

Inserting now the assumed (by (3.45) and (3.46)) bounds for e I < j < 1+1, 

IeO 1, 1-2 < j < 1, we see, in view of (3.39.a), that for all 1', 0 < 1' < 1, there holds 

1'-1 
(3.56) El,+1,,, < ck2(k4 + hr)2Al, + ck En+ 1,n 

n=O 

where 

Al, 1 + o2e2atlI + ko2e2ot3 (e2ak(l-1) - 1)/(e2ak-1). 

By Gronwall's lemma we conclude therefore, since for x > 0, x(ex - 1)-i < 1, that 

(3.57) (En+1,n)1/2 < ck(k4 + hr)(1 + ae'7tn + V/eatn+2), 0 < n < 1 

where c is independent of a. We shall eventually choose a > 1; hence 

IIEn+l- EnII + (En+l n)1/2 < ck(k4 + hr)ueatn+2 0 < n < 1. 

Since E0 = 0, summation yields 

(3.58) IIE'+lII + E(En+ ,n)1/2 < (k4 + hr)(c*e2ak)>eatl+I 
n=O 

where the positive constant c* is independent of a; we assume c* > 1. Now-with 
20/20 hindsight -choosing a = 2c* and picking k small enough so that e4c.k < 2, 
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gives c*e2,k < a, i.e., that in the above 

(3.59) IIE+1'I l+ Z(Ejj_1)1/2 < oe atJ+ (k4 + hr), 
j=1 

which is (3.44.b) for n = I + 1. With this choice of a, (3.57) implies 

(3.60) IIL1/24EL+1 II < c(k4* hr) 

i.e., in view of (iv.c), that IEL+1lko : ch3/2. Hence, leL+l100 < ch3/2 < h for h 
sufficiently small. This is (3.44.c) for n = I+ 1; the fact that U'+1 E Y also follows. 

Finally, if 1 + 1 = J, we are done. If 1 + 1 < J, define U'+2 = 4 
and obtain, by (3.57), (3.60) for h sufficiently small, that 

4 4 

e6+2 1 < U1+2 -E aju +2-i + L aj (U1+2- - W+2-i) 

j=1 00 j=1 00 

4 

+ E: %jE+2-j 

j=1 00 

< c(k2 + h / + -(h)(k4 + hr)) < hi 

which establishes (3.44.d,e) for n = I + 1. The inductive step is complete; (3.42) 
and (3.43) follow from (3.44.b). 0 

4. Preconditioned Iterative Methods. The implementation of the base 
scheme (1.13) requires, at each time step n, the solution of a linear system with 
operator An+1, which changes from step to step. Following [12], [4], [3], we shall 
use preconditioned iterative techniques with suitable starting values to approximate 
Un+1 in a stable and accurate way by solving a number of linear systems per step 

with an operator that does not change with n. Most of the required estimates are 

similar to those of Section 3 and follow in general lines the analogous estimates 

in [3]. Hence we shall just state here the relevant algorithms and results without 

proofs. 

We shall denote by Vn, n > 0, the new fully discrete approximations to be 

computed, to distinguish them from Un, the solutions of the base scheme (1.13). 

To establish notation, following [4], let H be a finite-dimensional Hilbert space 

equipped with inner product (., )H and norm 11 IIH = (., X)/2. To approximate the 
solution x E H of a linear system Ax = b, b E H, where A is a selfadjoint, positive 

definite operator on H, we suppose that there exists a positive definite, selfadjoint, 

easily invertible operator PA (the preconditioner) and constants 0 < AO < Al, such 

that 

(4.1) AO(PAz, Z)H < (Az, Z)H < Al (PAz, Z)H, z E H. 

Then, there are iterative methods, for solving the system Ax = b, which, given an 

initial guess x(?) E H, generate a sequence x(i), j > 1, of approximations to x in 

such a way that calculating x(j+1), given x(i), 0 < i < j, only requires multiplying 

A with vectors, solving systems with operator PA and computing inner products 

and linear combinations of vectors. Moreover, there is a smooth decreasing function 
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a: (0,1] -. [0,1) with a(1) = 0 and a constant c such that IIPA1/2(X - X(j))IIH < 
c[u(Ao/AI)]j IIPAI/2 ( - X(0)) IIH. In our applications we shall perform at each step 
n, 1 < n < J, jn iterations, sufficiently many so as to achieve, with x = X(in) 

IPA 1/2 (X_-X)IIH < AnlPA 1/2 (x - x( )I)IH, 

where fin > 0 are small preassigned tolerances. We shall always take fin = 0(k'), 
v > 1, so that, as a consequence of the geometric convergence of the iterative 
method, jn = 0(1 log(k)1). 

We follow the structure and notation of Section 3. As a first step we seek 
Vi u', j = 0,1. We let VO = U0, Vj = Uj, 1 < j < 3, where U0, U1 are given 

by (3.3), (3.4), respectively. Suppose that V1 E Sn2 is the exact solution of 

A1V1 = BoV0 + F0, 

i.e., let VI = U1, cf. (3.6). We now let H = Sh2i (a *)H be the L2 x L2 inner product 
on H, A* be the associated adjoint of Al and To be the operator diag(I, TO) on 

Sh2. To is a selfadjoint positive definite operator on H, but Al is not. For our 

purposes we regard VI as the exact solution of the problem 

(A*ToA1)Vl = AtTo(BoVo + F0), 

which will be the system on H to be solved by iterative techniques. As precondi- 
tioner we use, with f > 0, the operator 

PA = diag((I + ,ik2Lo)2, (I + ,ik2Lo)To(I + fik2Lo)) 

(it satisfies (4.1)) and compute, by a preconditioned iterative method satisfying our 

stated general properties, V1 - [V1 VflT as an approximation to V1 satisfying 

IIPA1/2(Vl - V1)IIH < f111IPA1/2(VI - V(o)1)IIH, 

where we take flu = min(dy, k4) for some constant 0 < y < 1 and where V()1 - V. 
We set V1 = VI'. 

For the rest of this section we let H = Sh and (., .)H be the L2 inner product 
on Sh. We compute first V3, 2 < j < 5, (and the needed extrapolated values V3, 
2 < j < 5) as approximations to the exact solutions V3, 2 < j < 5, of the cosine 
scheme, cf. (1.13), 

An+lV + -2BnVn +An Vn- =e(vn+l vn vnl) n> 1, 

where, although we use the same notation An+1, An, Bn as before, we mean of 
course that An+I = q(k2Ln+I(Vl+l)), Bn = p(k2Ln(Vn)), An = q(k2Ln(Vn)) 
etc. The operator An+I will now play the role of A. As preconditioner we shall 
choose the time-independent operator 

PQ = (I + fk2Lo)2X > 0, 

for which (4.1) is satisfied, cf. [3]. The approximations Vj+', 1 < j < 4, to Vj+ 
are then computed so that 

1PQI/2(Vn+l - Vn+1)I ? <fn+uIIPQI/2(Vn+l V(O)n+l) 

holds for n = j, 1 < j < 4. We take fin+l = min(-y,k4) and V(O)n+l = vn; 
the V'j, 2 < j < 5, are given by the formulas (3.38.j), replacing Uj by V3. We 
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continue for n > 5 by computing Vn1 by (3.40) with Uj = V', and U I~1 as 

the approximation to the solution V+ of (4.8), so that (4.10) is satisfied, where 
now fn+I = min(-y, k) and V ()n+I = 5Vn _ 1OVn-I + 1OVn-2 - 5Vn-3 + Vn-4. 
It may be proved, under the assumptions of Theorem 3.1, that all intermediate 
approximations exist uniquely; moreover, there exists a constant c > 0 such that 

IIVn _ Un I < c(k4 + hr), i.e., that Vn asymptotically satisfies the same type of L2 
optimal-order error estimate as does Un. 
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