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Abstract. We construct and analyze efficient, high-order accurate methods for approx-
imating the smooth solutions of a class of nonlinear, second-order hyperbolic equations.
The methods are based on Galerkin type discretizations in space and on a class of fourth-
order accurate two-step schemes in time generated by rational approximations to the
cosine, Extrapolation from previous values in the coefficients of the nonlinear terms
and use of preconditioned iterative techniques yield schemes whose implementation re-
quires solving a number of linear systems at each time step with the same operator. L?
optimal-order error estimates are proved.

1. Introduction. The problem. In this paper we shall study efficient, high-
order accurate methods for approximating the solution of the following initial and
boundary value problem: let {2 be a bounded domain in RN (N = 1,2,3) with
smooth boundary 912 and let 0 < t* < oo. We seek a real-valued function u =
u(z, t), (z,t) € Q x [0,t*] satisfying

N
Ut = _L(t, u)u + f(t,u) = Z 6i(aij(za t, u)aju) - ao(x,t,u)u
1,7=1
(1.1) + f(z,t,u) in Qx [0,t%],
u(z,t) =0 on 0 x [0, t*],

u(z,0) =u%(z) inQ,
ut(z,O) = U?(IL’) in Qa

where a;j, a0, f,u,u are given functions. We shall discretize (1.1) in space by
methods of Galerkin type and base the temporal discretization on a class of fourth-
order accurate, two-step multiderivative schemes generated by rational approxima-
tions to the cosine, [3]. By extrapolating from previous values in the coefficients of
the nonlinear terms we can implement the time-stepping schemes by solving only
linear systems of equations at each time step. These systems may then be solved
approximately by preconditioned iterative techniques, [12], [4], that require solving
a number of linear systems with the same operator at every time step.

Galerkin type methods, coupled with two-step schemes of second-order accuracy
in time, for the numerical solution of nonlinear problems similar to (1.1) have
been analyzed in the past, cf., e.g., [10], [11], [14]; in [14] the linear systems at
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each time step are solved by preconditioned iterative techniques. High-order linear
multistep methods were studied in [1] in the case of a semilinear problem. One of us,
[2], has recently analyzed high-order time-stepping methods (generated by rational
approximations to exp(¢z)) for (1.1) written in first-order system form. In this
paper we shall discretize directly the second-order equation in (1.1). Our analysis
relies in part on existing estimates in the case of the linear hyperbolic problem
with time-dependent coefficients, [3], while some of the techniques of estimating
nonlinear terms are adapted from the analogous techniques for parabolic problems
due to Bramble and Sammon, [5].

For integral s > 0 and p € [1,00], let W*P = W*P(Q2) denote the usual Sobolev
spaces of real functions on (2 with corresponding norm || - ||5 » and let H® = W*2
with norm || - ||s; (-,), resp. || - ||, will denote the inner product, resp. norm, on
L? = L%(Q), while | - | will be the norm on L® = L*®({1). As usual, H' will
consist of those elements of H! that vanish on 9 in the sense of trace. It is well
known, cf., e.g., [6], [9], that the problem (1.1) has a unique solution, in general for
small enough t*, under appropriate smoothness and compatibility conditions on the
data. Specifically, it is proved in [9] that if, for example, the coefficients a;;, ao, f
are sufficiently smooth functions of their arguments for (z,t,u) € Q@ = xRy xR,
with (ai;) symmetric and uniformly positive definite and a¢ nonnegative in Q, if
the initial data are such that u® € H™, v € H™~! for some m > [N/2]| + 2, and if
appropriate compatibility conditions are satisfied at ¢t = 0 (namely, if the functions
uj, § = 0,1,2,...,—where up = 4%, u; = @ and u;, j > 2, denote du(-,t)s=0
as computed formally in terms of ug and u; by the differential equation in (1.1)—
belong to I?I 1 for 0 < j < m — 1), then, for some t* > 0, there exists a unique
solution u of (1.1) as a C* map from [0,¢*] into H™*(Q) for k =0,1,...,m. By
Sobolev’s theorem, the solution will be classical provided m > [N/2] + 3.

We shall assume therefore in the sequel that the data of (1.1) are smooth and
compatible enough and ¢* is sufficiently small so that a unique smooth solution u
of (1.1) exists as above. As a consequence, we shall assume, for the purposes of
the error analysis of our schemes, that, in addition to u(z,t), temporal derivatives
3{ u(z,t) of high enough order also vanish for z € 9Q, t > 0. We remark that
the error analysis will not require any artificial compatibility conditions on the
nonhomogeneous term of the type, e.g., that f(z,t,u) =0 for z € 992, t > 0.

To introduce some more notation, suppose that u € [m;,m2] for (z,t) € O x
[0,t*]. We shall assume that, for some fixed § > 0, a;;, ap and f are defined and
are smooth functions of their arguments (z,t,u) in Qs = (I x [0,t*] x M;, where
M; = [m; — §,mq + §]. In particular, we shall repeatedly make use of the fact
that the a;j, ag, f and some of their partial derivatives satisfy Lipschitz conditions
with respect to the variable u in Mj, uniformly with respect to (z,t) € {1 x [0,¢*].
We assume that (a;;) is symmetric and uniformly positive definite and that ag is
nonnegative in Q5.

Following the notation of [5], we let Y = {g € W1 : g(z) € Ms, = € (1}. For
t € [0,t*] and g € Y, the operators L(t, g) defined by (1.1) form a smooth family of

o
selfadjoint elliptic operators on L? with domain Dy, = H? N H!. For such ¢ and g,
given w € L2, the boundary value problem L(t,g)v = w in {2, v = 0 on 8(2, has a
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unique solution v € D, which we represent as v = T'(¢, g)w in terms of the solution
o
operator T(t,g): L2 — Dy, defined by a(t, g)(Tw, ) = (w, p) Y € H!, where, for
te(o,t*],g€Y,
N

a(t, 9)(p,¥) = /ﬂ [E ai(2,,9)9:00;9 + ao(3,t, ) | dz, o,y € HY,

i,y=1

is a bilinear, symmetric and coercive form on ;I Ix ;I 1. If u is the solution of (1.1),
we shall use the notation L(t) = L(¢t,u(t)), T(t) = T(t,u(t)) for t € [0,¢*] and
regard L(t), T(t) as smooth families of bounded linear operators from H™*+2N Dy,
into H™, resp. H™ into H™t2 N Dy.

Quasi-Discrete Operators. For 0 < h < 1, let S, be a family of finite-dimensional
subspaces of W1 in which approximations to the solution of (1.1) will be sought.
For t € [0,t*] let Tx(t): L? — S be a family of linear, bounded ‘quasi-discrete’ (in
the sense that they depend on u(t), the solution of (1.1)) operators, that approxi-
mate T'(t). Following, e.g., [4], [5], [2], we shall assume that S, and T}, satisfy the
following list of properties, that will be used in the sequel, usually without special
reference. (Also, henceforth, ¢, ¢;, etc. will denote, as is customary, positive generic
constants, not necessarily the same in any two places, possibly depending on u, t*
and the data of (1.1), but not on discretization parameters such as h and the time
step, or elements of S, the fully discrete approximations, etc.)

(i) Tn(t) is a family of selfadjoint operators, positive semidefinite on L?, positive
definite on Sp uniformly in ¢ € [0,¢*].

(ii) There exists an integer r > 2 and, for j =0,1,2,..., constants ¢, such that
for2<s<r .

(@) NTDE) - T @)1 < il llo-2,
for all f € H°~2. (In general, for a vector- or operator-valued function u(t), we put
u) = DJu(t).) Moreover, there exists ¢ such that

(b) |(T(t) = Ta(t))floo < ch”|1og(R)"IT fllr,005
where 7=0if r >2 and 0 < 7 < 00 if r = 2, provided Tf € W™,

(iif) If Ln(t) = Th(t)~! on Sk, 0 <t < t*, assume that there exist constants c;,
J=1,2,..., such that

(LY (e, 0| < ¢;(La(s)p,0) Vo € Sh, t,5 € [0,87).

(iv) Assume that there exists a constant ¢ such that the following inverse as-
sumptions hold on S, (for a justification of (c) cf. Section 5):

(a) (Lh(t)wy ‘P) < Ch_2”<P"2 v¢ € Sh.a te [0’ t*]'

(b) [ploo < ch™/2|lp|| ¥ € Sp.

(©) lploo < eY(R)||LL(0)*?p| Yo € Sk, where 0 < 4(h) < h=1/2 for h small
enough.

(v) For t € [0,t*], g € Y, we postulate the existence of a symmetric bilinear
form ap(t,g)(:, ) on W1 x W1 which is positive definite on Sy, and of a linear
operator Lp(t,g): S, — Sp such that

(8.) Lh(t,U(t)) = Lh(t)a te [Oa t*]a
(b) an(t,9)(0,¥) = (Ln(t,9)0,¥),  ©.¥ € Sh, t€[0,¢7].
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Moreover, assume that there exists ¢ such that for ¢,y € Sy, g,9; €Y, s,t € [0,¢*]:

(©) 1((La(t) = La(t, ), )| < clult) — glooll Ly )l I * ),
() 1((La(®) = Ln(t, )0 ¥)| < ellu(t) — gll [@ll1,00l1 L3/ * )2,
(e) [(an(t,g1) — an(t,g2) — an(s,g3) + an(s, 94)) (e, ¥)|
<clllgr — g2 — g3+ 9all(1 + |g3 — g4loo)
+ 191 = galollgs — gall + It — sl llgs — galllllls.eoll L3> B)]
An example of a pair Sy, Tx(t) which satisfies the above properties (and from
which this list of assumptions is motivated) is furnished by the standard Galerkin

[¢]
method in which S, ¢ H! N W1 is endowed with the approximation property
o
glg (le = x|l + Rllw = xll1) < ch®||ulls, 1<s<r forue H NnH',
XESh

where the Tj(t): L2 — Sy are defined for f € L% by a(t,u(t))(Tn(t)f,x) = (f,x)
Vx € S, and where the bilinear form aj, coincides with a. For verification of (i)—(iv)
in this case, cf., e.g., [2]-[4] and their references. For (iv.c), cf. Section 5. Properties
(v.c,d,e) follow easily from the smoothness of the coefficients a;;,ap in Qs and the
definition of ap.

A number of important inequalities now follow from the above list, cf. [3], [4].
We let in the sequel P: L? — Sy, denote the L? projection operator onto S,. Then
there exist constants c;, j =0,1,2,..., such that for t,s € [0,t*], ©,9 € Sh:

ILY O Ta(s), I Tu () LY ()Pl < 5,

(1.2) (LY (e, )] < e ILY ()l 1L ()9,
1LY ®)ell < 5l Ln(s)ell-

Also, as a consequence of (ii.a), there exists ¢ such that

(1.3) |lv— Po|| < ch®|v|ls if2<s<randve H°NDy.

Moreover, we shall assume (for a justification, cf. Section 5) that for each v € L,
there exists a constant c(v) such that

(1.4) h||Pv||1,00 < c(v).

If u(t) is the solution of (1.1), we let W (¢) = Py(t)u(t) = Tx(t)L(t)u(t) denote the
elliptic progection of u. As a consequence of our assumptions (i)-(iv), the elliptic
projection will satisfy, cf. [3],[4], the following properties, some of which are just
restatements, for convenience in referencing, of previously listed ones: there exist
constants ¢, ¢;, ¢;; such that for ¢,¢' € [0,t*]

(1.5) [lv = Pr(t)v]| < ch’||v]|s, 2<s<r,veDLNH’,
(1.6) u™ () =W ()| < emh®,  2<s<r, m>0,
(1.7) LY @OWO @) < ey, 65 20,

(1.8) |u(t) = W(¢t)|oo < ch”|loghl, 7 as in (ii.b).
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We shall also need the property that for constants c;
(1.9) WO ()10 <cjy  §7=0,1, t €[0,¢%],
which we shall justify under some additional assumptions in Section 5.
Full Discretizations. For the purpose of introducing the fully discrete approxi-

mations, we consider the ‘quasi-discrete’ problem, i.e., define wy: [0,¢*] — Sj such
that

(1.10) wP (t) + Ly(t)ywn(t) = PF(t), 0<t<t,

where f(t) = f(t,u(t)). As wp(t) will play no role in the analysis and the proofs,
other than that of motivating the construction of the fully discrete schemes, we
shall assume that supplementing (1.10) with initial conditions wp(0), wp,¢(0) will
produce a unique, sufficiently smooth solution wp(t), 0 < ¢ < t*.

Our time-stepping procedures will be based on fourth-order accurate rational
approximations r(z) to cos(z), [3], of the form

r(z) = (14 p12® + paz*) /(1 + q12* + gaz?)
with q1, 92 > 0. We shall assume for accuracy and stability purposes that p; = -
1/2, p2 = q2—q1/2+1/24, and that the pair (g1, g2) belongs to the stability region #
of the g1, g2 > 0 quarterplane, [3]. Let k£ > 0 denote the time step, let t, = nk, n =
0,1,2,...,J, and assume that t* = Jk. In the sequel we shall employ the following
notation: Lp = Lp(tn), LY = LY (t,), Tp = Talts), TV = TV (t,), /» =
Pf(tn), fO" = PFO(t,) = PO (tn,u(tn)), w" = wh(tn), "y = wl (tn). As
in [3], approximating cosh(z) = cos(iz) by r(iz) in the formal relation w*! +
w1 = 2cosh(kD;)w™, D, = d/dt, we have, for wy, smooth enough,
(I - ik D} + g2k DY) (w"+! + w" ™)

=2(I — p,k®>D? + pak* D})w™ + O(ksw,(le)).

Differentiating now (1.10), we obtain

wi (t) = — Lu(t)(~La(t)wa(t) + PF(t) — LD (t)wn (t) — 2L (6wl (2)

+ PfA ).
Substituting this in the above relation and using the notations ¢(7) = 14q17+¢q272,
p(1) = 1+p17+p27?, Qn = q(k%L,), P, = p(k*L,,), yields the following temporal

discretization of (1.10):
Q1w = 2P " + Qpow™ !
= (@™ =2 M+ @MY
+ ’C4(<12Ln+1.l"'+1 —2p2Lnf™ + g2Ln_1f*71)
+ q2k4(L£l2llw —2LPw" + LS?_)lw""l) +2(ga — p2)k* LPw™
+2q2k4(L£,1_,_1w(1)"+1 _ 2L£,1)w(1)" +L£ll_)1w(1)n—1)
+4(g2 — p2)k* LD wm
— gk (FOT = 27" 4 fOnTL) —2(gy — pp)k* SO + O(K°).

Since we are interested in fourth-order methods, we put g; — p2 = (q1 — 1/12)/2
and drop the (presumably of O(k®)) second-order central differences in the right-
hand side of the above. We also replace the derivative w(!)", using the relation
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wOn = =1 (w" —w" 1) + kw®" /2 4 O(k?) and computing w(?" by (1.10). The
resulting relation yields that up to presumably O(k®) terms,

Qnprw™! — 2P,w™ + Qn_w!
= k(g " -2 M 7Y)
(1.11) + k*(g2Lng1 M = 2p2 L /™ + @2 L1 f71)
+ (g1 — 1/12)k*{LPw"™ + 2L [k~ (w" — w™ 1)
+ (k/2)(—Lnw™ + ™)) = F®"},

Motivated by (1.11), we can now state the fully discrete scheme. We shall seek
U™ € Sy, approximating u™ = u(t,) for 0 < n < J. To avoid solving nonlinear sys-
tems of equations at every time step, when called upon to evaluate the coefficients
and the right-hand side at the advanced time level n + 1, we shall substitute (as
was done in the parabolic case in [5]) for U"*! an approximation U™+! to u™+t1
obtained by suitable extrapolation from values of U™, m < n. The precise formulas
for the U™+ will be specified in Section 3. We shall also replace the derivatives
LY ), f@7 in (1.11) by appropriate difference quotients. To this end, we use the
notations

B2 La(U™H, U™, U™Y) = k3 Loy 1 (0™H) = 2Lp(U™) + Loy (U™Y)),
(1.12) 5Ln((jn+1,Un—1) = (2k)_1(Ln+1(ﬁn+l) _ Ln—l(Un_l)),
62 fr (0L UR U = RO — 20 + O Y),

where, for g" € Y, 0 < n < J, we put L,(g") = Lp(tn,g") and f"(g") =
Pf(tn,g"). Letting A, = q(k?Ln,(U™)), An = q(k?Ln(U™)), Bn = p(k*Ln(U™)),
we can finally state our fully discrete method, which we shall refer to as the base
scheme:

Ap UM — 2B U™ + A, U = 00", U™, U Y)
= k2(qlfn+1(fjn+1) _ 2p1fn(Un) + qlfn—l(Un—l))
(113)  +k*(gaLny1 (U™ M (UHY) — 293 Lo (U™) S (U™)
+gaLn (U™ ) HU™Y)
+ (g1 — 1/12)k*{82L,, (U™, U™, U™ 1) U™ + 26 L, (U™+, U™ 1)
[ETHUT = UMY + (k/2) (Lo (U™MU™ + fH(U™))]
_ 62fn((jn+1’ U, U"_l)}.

We shall compute U™t! for 1 < n < J—1 from this scheme. In Section 3 we shall
specify our starting procedure, i.e., the definitions of U%, U! and the ‘lagged’ term
U nt+l 1 < n < J—1. In the same section we shall show that, under appropriate
stability restrictions (in general that kh~! remain arbitrary but bounded as k,h — 0
and, for some choices of the parameters q;, g2, that kh~! remain small), there exists
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a constant ¢ such that

max |Ju" — U"|| < c(k* + h7),
0<n<J

i.e., that an optimal-order in space and time L? error estimate holds. However,
solving for U™*! by (1.13) necessitates solving linear systems with the operators
/i,.+1 that change with each time step. Using preconditioned iterative techniques
following [12], [4], [3], we show in Section 4 how to modify the base scheme so
that the resulting fully discrete methods require solving O(|log(k)|) linear systems
at each time step with the same matrix and preserve the stability and accuracy
of the base scheme. ‘These results are preceded by a series of technical lemmata
and ‘a priori’ stability and convergence estimates, which we present in Section 2.
The paper closes with an appendix (Section 5) in which we collect evidence of the
validity of several technical inequalities that are assumed in the previous sections.
The proofs of the main result of Section 2, of some results of Section 3, and all of
Section 5 can be found in the Supplement to the paper in the supplements section
of this issue in Sections S2, S3, S5, respectively.

2. Consistency and Preliminary Error Estimates. In this section we shall
study the problem of existence of solutions and the consistency of the base scheme
(1.13) and derive several preliminary error estimates and a priori stability results
that will prepare the way for the main convergence theorem of Section 3. The
proofs of many intermediate results can be found in detail in the Supplement to
the paper in the supplements section of this issue.

We begin with a technical lemma that supplements the inequalities of the type
(v.c, d) in Section 1.

LEMMA 2.1. There ezists a constant ¢ > 0 such that forg €Y, t € [0,t*]:

ch[u(t) - glool L3/ (8)]
(2.1)  |I(La(t) — La(t, @))% < Jor ¥ € Sn,
ch™Hu(t) = gll ¥ll1,00

I(L2(t) — Li(t,9))9, 0)|
(2:2) < ch™Mu(t) — gloo (1LY 2 (@)BI ILa ()0l + ILa @I LY (O)ell)
+ch™?u(t) — gl L 2 @I LY 2 )ell,  for o, € Sh.

Proof. The estimate (2.1) follows from (v.c,d) and (iv.a). Using, for ¢, ¢ € S,

(LE(®) = L3 (6, 9))9, 0) = ((Ln(t) — La(t,0)), Lu(t)e)
+ (Lh(t, g)"/}, (Lh(t) - Lh(t! g))tp)
and noting that || Lx(t,9)¢| < ||(La(t,9) — La(t))¥|| + ||Ln(t)¥]|, we obtain (2.2)
from (v.c), (iv.a) and (2.1). O

The next result concerns the invertibility of the linear operator fin“ on Sp. In
the sequel we denote e = u™ — U™, é" =u™ — U".
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LEMMA 2.2. Suppose that 1 <n < J —1 and U"*! € S, NY. Then there
exists a constant ¢ such that for o, € Sy,
|(@n41 — Ans1)¥,0)|
< equk?h e oo IL 1wl el
+ogak*h e oo (L0l Lol + [ Lsal 1210l
+eqak* b2 e L Ll L e

If in addition there exists a > 0 such that kh™! < a, and if |e""'1|oo 18 sufficiently
small (or if |€"t!|o < ch and k is sufficiently small), then A,y is invertible on

Sk, and Uny 1, defined by (1.13), ezists uniquely, given U™, U1, Un+1,

(2.3)

Proof. Since
Qnt1 — Ant1 = @1k*(Lng1 — Log 1 (U™FY) + k(L2 — L2, (U™ 1Y),
(2.3) follows from (v.c), (iv.a), (2.2). Putting ¥ = ¢ in (2.3) and using the
arithmetic-geometric mean (agm) inequality gives
|(@ni1 = Ant1)0, )| < c(kh™1 e |oo + KZR72|E" 1|2
(lell? + KL ol + a2k | L ao]?)-

Letting Qny1 = I + k2Lpny1 + g2k*(Lnt1)?, one may easily see, cf. [4], that for

positive constants ¢; there holds ¢;(Qn+10, ) < (Qn.,.l ©,¢) < c2(@ni1, @) for
every ¢ € Si. Hence,

(24)  |((Qnt1 — Ant1)o, ©)| < c(kh™ e oo + K2R 2 (€1 |2)) (Qni190,0)

for ¢ € Sp, and the invertibility of An+l follows from that of Qr+1(g1,92 >0). O

Assuming that 1 < n < J — 1, that U", U1, U"*! exist in S, and that the
hypotheses of Lemma 2.2 hold, we let E® = U™ — W", where W" = W (t,) =
P;(tn)u™. For p; € Sp, j =n—1,n,n+ 1, we define

(25)  Snen = (Qn+1 — An+1)Pnt+1 — 2(Pn — Bn)en + (Qnot1 — An—1)@n—1
and obtain, using (1.13), the error equation
Qni1EMY — 2P, E™ + Qn_ E"!
(2.6) =S,E"+S,W" + e, um,ur)
—(Quyp W™ — 2P, W™ + Qp_ W™Y).
The next lemma is a consistency result for the scheme (1.13). (In the sequel we let

u(])" = u(j) (tn)')

LEMMA 2.3. Let1 <n < J—1 and suppose that the solution u and the data
of (1.1) are sufficiently smooth. Then

QrWnt — 2P, W™ + Q,_,W™!
=Y"+ k2 (quf" - 2pi M+ M)
+ k*(q2Lns1 /™ = 2p2Ln f™ + g2 Ln_y f*71)
+ k*(q1 — 1/12)(PL@ (t,)u™ + 2PLM (t,)uVI" — f(DIn)

(2.7)
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where for some constant ¢
(2.8) (Y™ @)l < ck?(k* + BT (llell + K[| Lnell) Ve € Sh.

Proof. See Section S2 in the Supplement to the paper. 0O
Defining now, for1 <n<J —1,
At U Ut
=00, U™ U™ ~ (/" = 21 /" + 1 fY)
— k*(q2Ln41 /™! = 2p2Ln f™ + qaLn—1 f*71)
— k*(q1 — 1/12)(PL® (tp)u™ +2PLW (8, )uD — sy,

(2.16)

we see that the error equation (2.6) may be written as

Q'n+1Em+l - 2PnEn + Qn—lE,n_1
=S,E" + S, W" + AU, U™, U ) - Y™,

with Y™ as in (2.7)—(2.8). Taking the L2 inner product of both sides of this equation
with E"*t! — E"~1, and using the symmetry of Q,, P,, we obtain
(Qn+1En+l,En+l) _ (Qn_lEn—l,En_l)

— 2[(Pp41E™1 E™) — (P,E™, E™ )]

= ((Qn+l - Qn—l)En+1, En_l) - 2((P'n+l - Pn)En+laEn)
+ (SnEn +S,W" + A((jn+l’Un’Un—l) _ Yn,E'n+1 _ En—l).

(2.17)

A basic error inequality is given in the following

LEMMA 2.4. Suppose that 1 <m <1< J-1,thatU", m—-1<n<I[+1
and U™, m < n < I, exist uniquely in Sy (i.e, that the A, are invertible for
m <n<l). Then

) < 0D + ek (k* + )2 (L — m + 1)k)

l
+ck Z {”En+1 _ En—l”2

n=m

+ R (1LY 2B + L 2E P + L2 E )

(2.18)
+ K (|ILn E™ Y ? + | Lo E™||? + | L E™ 1)
+ [ Ln(E™ — E"7)|%}
1
+ Z (SnEn +S,wn +A(U"+1,Un,Un_l),En+1 _ En—l)’
n=m
where
) = (|BY - B + k(a1 — p0) /2Ly (B + EP7Y))2
2 /25 _ pa—1y)2
(2.19) + (a1 +p)/2)|LY/ (BT — B

+ k(g2 — p2) /21 L; (B + B )2
+k4((g2 + p2) /2| L; (B7 — E7H)|1%.
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Proof. The proof follows by summing both sides of (2.17) from n = m to n =1,
proceeding as in the proof of Theorem 2.1 of [3]—noting that the analogs of (2.30)
and (2.32) of [3] hold here too—and making use of the estimate, cf. (2.8):

l
Z (Yn,En+1 _ En—l)

n=m

l
<ec Z (kS(k4 + h‘r)".’ + k"En+l _ En—1”2 +k5"Ln(En+l _ En—1)||2). o

n=m

We must now estimate the last three sums in the right-hand side of (2.18).
This is carried out in Section S2 of the Supplement to the paper. Specifically, in
Lemma 2.5 in the Supplement, we estimate the term Y, (S,E", E"*! — En~1)
in a straightforward way, following estimates analogous to those that led to (2.3).
The term Y, (S,W", E"*! — E"~1) is estimated piecemeal in Lemmata 2.6, 2.7
and 2.8 in the Supplement. (It turns out that further use of these estimates will
be made in Section 3 in the cases | > m + 2 and | = m. Lemmata 2.6-2.8 deal
with the case | > m + 2, while the term with | = m is easily estimated in (2.40),
cf. Section $2.) Finally, the term Y, (A(U"+1,U", Un~1), En+! — En~1) is broken
into five parts which are then estimated in Lemmata 2.9-2.13 in the Supplement
and complete the a priori estimation of all terms in the right-hand side of (2.18).
For convenience in later use we collect below, summarize and simplify the results
of Lemmata 2.4-2.13, distinguishing between the cases ! > m + 2 and | = m.

PROPOSITION 2.1. Suppose that 1 < m,l < J —1 andl > m + 2, that U7,
m—1<j <1 existin SyNY, that U+ ezists in Sy, that U/, m+1<j <1+1
exist in S, N'Y, that (1.4) and (1.9) hold and that there exists @ > 0 such that
kh=! < a. Then, withn$), j = 1,2,3, defined by (2.19), (2.24), (2.54) (cf. Section
S2), respectively, given €1,e9 > 0, there exists a constant c(e1,€2) > 0 such that

B — B + k(a1 — p1)/2)II L L2 (BFE + EY)1?
+ k(g1 + p1) /2| L{ 2 (BT — EY)|1?
(2.88) +k*((g2 — p2)/2) | Lis1 (BT + EY)|?

7
+k* (g2 +p2) /2| Lia (B — EN|P < Y Fy,
i=1

where

Fy = nfd) + 02 +nfd,
Fy = et k2 (| L2 (B + EY|? + | L2 (B - EY|1?)
+ eakt (| Lug1 (BH + EY|2 + | Lig1 (B! — EY|?)

i+1 l
+e(en,e)k® [ IEIPA+1E15)+ Y 1P +1e1%) |,

7=1 J=1-2
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F3 = ck®(k* + h")2(l - m + 1)k,
l
Fy=ck Y {IE™ - E"|? + K2(| LY, (B™! + E")|?
n=m-—1
+ L (EmH — E™)|1%)
+ k4 (| Lng 1 (B + EM)|? + | Lnga (B = E™)|%)),
-1
Fs=ck Y {le"ZIE™! — E* Y2 + |e" 2% | E" — E*2||%}

n=m+1

l
+ek Y {hT2(EMZ + lenZ, + e
n=m

x (| E™*! — E1|12 + | E" - E*2|)2)
B8 oo + [€"|oo + €% oo [ B! — EM 2
+ K2R (€7 oo | LY/ 2 E™HY |12 + (€™ oo LY/ 2 ET 12

+ e Yool L2 B2 17)
+ K2R (1€ oo + [€" oo + 1€ o) LL/21 (B = E™)|?
+ KRR G IL L B + e[S Ly 2B

+ e Y2 L2 B )

[} n—
IR + e + e )Ly (B — B2
R oo [ L B[P + [€%lool L B
416" ool Ln—1 E"1?)
+ KR(E oo + [eloo + 6" oo L1 (B™H = E* )|}

-1 n+1
+ck Y k22 (|é"+2|?,o+|é"|zo+ S e | 1Ly ene

n=m+1 J=n—2

+ k2h2r(|en—1|go + |en—2 go ,

l
Fo=ck Y K2([le™ % + [le|1* + 1),
n=m
-1
Fr=ck Y [le"*2—ém?(1+[e"%). O

n=m+1

We also examine for later use the case l = m, 1 < m < J — 1. Assuming that
for such m, U7 exist in S, NY form —1 < j < m and in Sy, for j = m + 1, that
U™t € S, NY, that (1.4) and (1.9) hold and that there exists a > 0 such that
kh~! < @, then, with nj(-l) defined by (2.19), we have that, given ¢; > 0, 1 <17 <4,
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there exists a constant ¢, = c(e;, €2, €3, €4) > 0 such that
1 1/2 r1/2 _
Marr S 1) + k2 (1L 3 E™ 2 + | L3 EPH )
+ &2k (| Lm 1 E™FH? + | Ll E™Y%)
+ ek | L 2E™ 1?4 eak? | Lo 2B

m

+eek? [lem T2+ em ) + D [l + e[
j=m-—1
+ ck3(k* + hT)? + ck||[ E™+! — E™Y||?
m+1 .
+ck® [ S0 L E? + |LY2 (BT - E™)|?
j=m-1
+ | LY2(E™ - E™Y)|?
m+1 '
+ ck® Z IL;E?||? + |Lm(E™! — E™1)||2
j=m-1
(2.89) + kR (|6™H oo + [€™]oo + |€™ o) | E™HY — E™Y|J2

+ ckR™2(|e™ 2, + ™2 + ™)
x (|[E™! — E™|? + |E™ — E™Y?)
+ k3R oo || LY2 L EM Y| 4 |67 oo | LY 2E™ |2
—_ 1/2 —
+ e Y2 LA 2 L ET|?)

m—1
+ kBT (|6 oo + [€™oo + (€77 o) | L2 (E™HY — EM1|2
+ ek RT3 (e I La2 L EMH? 4 e 2 1LY 2E™ )2
—_ 1/2 —
+ e 2L BT ?)

+ ek R (€ 2 + 1€ + I B Loty (BT — BT

+ck®h ™ (1€ oo | L4 1 E™ |12 + €™ |oo | L E™ 1

+ |em_1|00||Lm—lEm_1||2)
+ cksh—l(lém+1|°° + |em|°o 4 |em—1|°o)”Lm(E-m+l _ Em—l)”2
+ k3 (€12 + lle™ 12 + [le™ %)

3. Starting and Convergence of the Scheme. In this section we shall com-
plete the base scheme (1.13) by specifying U®, U!, and the formulas for computing
Un+!. We shall then prove, in Theorem 3.1, an optimal-order L2-error estimate for
the base scheme. The starting will be done in two phases: first we specify U° and
compute U using a single-step method; we also prove some associated error esti-
mates. The values U7, j > 2, will be computed using the base scheme. It turns out
that it is necessary to analyze the error of the approximation U7, 2 < 5 < 5 (and
compute the associated U7 } in a special way. Finally, we specify U7 for j > 5 and
prove the main stability-convergence result. The proofs and statements of many
intermediate results appear in the Supplement to the paper.
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Computing U®,U'. We shall take
(3.1) U° =w?O = T,L(0)u°.

To define U?, let S2 = S), x Sy, and, adopting the notation of 3, Section 3] or [2],
introduce the inner product ((®, ¥)), = (v1,%1) + (Tnpz,v%2) for ® = (1, p2)T,
U = (1,%2)T € 82, and the associated norm | @], = ((®, ®))~/%. Let #(z) be the
(2,2)-Padé approximant to €?, i.e., let

(3.2) F(2) = (1+2/2 +22/12)/(1 — 2/2 + 2% /12) = (2)/§(2).
Defining

Lo = La(tm) = (_gm (I)> ,
Lin(9) = Li(tm,9) = ( 0o I

’ € Y)
_Lm(g) 0) I
and U° € S? as

(3.3) Ul = (U, U9)T = (WO, who)T = wo
so that U0 = U9 = W9), compute for j = 1,2,3, U? € S, by
1
(3.4) 0] = U+ Pjku® + (k)*u(®0/2! + (jk)>u®0/31].

It is assumed that in (3.3), (3.4), u®9, 430 and WO = (T}, (t)L(t)u(t))V]s=o
will be evaluated using the differential equation in (1.1) at ¢t = 0. As U! we shall
then take

(3.5) Ul =U},
where U! = (U1,U3})T € S} is the solution of the linear system
(3.6) A U! =BU°? + F°
with
(37) A, = G(kLy(U7)) ) A )
+ (kK /12)[(6k) ! (~L3(U}) + 6L2(UF)—-3L1 (U}) — 2Lo(U?))],
By = (kLo(UO))
38) + (k?/12)[(6k)~ (2L3(U3?) — 9L2(U?) + 18L (U})—11Lo(U))],
3 1 1
FO = (k*(f° - 1 (O1))/12,
39) kfO/2+ (K /12)[2/%(0F) — 9£*(UF) + 1811 (U1) — 11/°)/6k

+kf1(01)/2

— (K2 /12)[=3(0}) + 6£2(0F) - 3f*(U1) - 2/°(U°)]/6k)T

For the proof of convergence of the overall scheme we shall need error estimates for
U! in a special norm. For this purpose we state and prove some preliminary results
in the Lemmata 3.1 and 3.2 of the Supplement. These results lead to Proposition

3.1 and (3.29) (see Supplement), which summarize the error analysis at the time
levels t;, 7 =0,1.
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Computing U7,U7, 2 < j < 5. We then compute (and estimate the errors of)
a few steps (2 < j < 5) of the numerical solution U’ using the cosine base scheme
(1.13). To do this, we must also provide the necessary U?,2<j<5. It turns
out that the error analysis must be done in a special way for these first few steps.
We start with the preparatory Lemma 3.3, the heart of the step-by-step estimation
argument, albeit good only for a few time steps. Its statement and proof can be
found in the Supplement.

Then we define in an inductive fashion U7*! for j = 1,...,4 as follows:

(3.38.2) U? = 8U' — 7U° - 6kPuM)0 — 2k2 Py(2)0,
(3.38.3) U3 = (9/2)U% — 9U* + (11/2)U° + 3kPu1O,
(3.38.4) U* = 4U% —6U? +4U' - U°,

(3.38.5) U° = aU* — 6U® + 4U% - U,

In these formulas, the U7, 2 < j < 4, are computed successively by (1.13), once
the required U?, 7 < j and U7 have been computed.

For the motivation behind this special choice of Ui+l for 1 < 7 < 4 and the
relevant error estimation we refer the reader to the Supplement. Here, for purposes
of easy reference, summarizing the results of Proposition 3.1, Lemma 3.3 and the
subsequent discussion in the Supplement, we state:

PROPOSITION 3.2. Suppose that there exists a > 0 such that kh™! < a, that
k, h are sufficiently small and assume the stability conditions on (q1,q2) of Lemma
3.3. Suppose also that (1.4), (1.7), (1.9) hold and let U°, U°, U7, 1< j < 3, be
given by (3.1), (3.3), (3.4). Then U, the solution of (3.6), exists uniquely. Define
Ul by (3.5). Then

forg=1,...,4

define U7+ by (3.38.5 + 1),

then U7*1, the solution of (1.13) for n = j, exists uniquely.
Moreover, U7 € S, NY,0< <5 U7 €8, NY,2<j<5 IfEI =U —WJ
(E® =0), if E; j_1 is defined by (3.31) and if ! = v/ — U7, &/ = u! — U7 as usual,
we have

(a) Ejj—1 <c¢;k*(k*+h7)?,  1<j5<5,
b) ||E7|| < ck(k* + RT), 0<j<5,
i J
(3.39) () NIl < c;(k* + A7), 0<j<5,
' (d) e’ <, 0<j<5,
e é.‘i+l Sé'k4+hr, ISJ.S‘I,
v
() 16 oo < h, 1<j<4.

Stability and Convergence of the Base Scheme. We now proceed to the central
result of this section. Having already defined and estimated U™, 0 < n < 5, and
Untl 1<n< 4, we shall let, for 5 < n < J — 1, provided of course that the U7,
7 < n exist,

4
(3.40) Ot =3 o Ut =l = Ut — U + U2 - UR
7=1

and compute U™t as the solution of (1.13).
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THEOREM 3.1. Assume all hypotheses and definitions of Proposition 3.2. Then,
with U defined by (3.38.n+ 1) for 1 <n <4 and by (3.40) for5<n<J -1,
the U™, 2 < n < J, exist uniquely as solutions of (1.13). Let E® = U™ — W™ and
let E;;_1 be given for j > 1 by

Ejjo1 = 1B = B + KL (B - )P
(3.41) + KL (BT + B + kAL (B — B
+ KL (B + BT

Then there exists a positive ¢, independent of h and k, such that

(3.42) JJax, (llE"ll +EI(E“ 1)1/2) < c(k* + 1),
j
(3.43) max _|[u™ — U"|| < c(k* + A").

0<n<J

Proof (by induction). Let [ be an integer such that 5 <! < J — 1. We make the
following induction hypothesis on I:

(a) U™, 0<n<!exist (as solutions of (1.13) for n > 2) in S, NY,

(b) (1Bl + 71 (Ejj-1)"/? S o’ (k* + k"), 0<n<l
(344) (¢) |e"|o <h, 0<n<l,

(d) U™*t,1 <n <, belong to S, NY,

(€) "o <h, 1<n<l

(In (3.44.b), o is a finite positive constant, independent of k, n, h or [, whose value
will be specified in the proof.) Obviously, the hypothesis holds for I = 5, cf. (3.39).
Also, if k is sufficiently small, (2.4) shows that A, is invertible, i.e., that U+,
the solution of (1.13) for n = I, exists uniquely in S,. We now turn to Proposition
2.1 which we shall use for m = 3. All its hypotheses are fulfilled and therefore,
for any 1,2 > 0, there exists a constant ¢(e1,e2) > 0 such that (2.88) holds for
m = 3 and our current ! (> m + 2 = 5), or any other !’ such that 5 <!’ <I. As a
preliminary note we remark that the induction hypothesis (3.44.b) gives

(3.45)  [le"| < |E™|| + [[u™ = W"|| < o€”*n(k* + A7) +ch”,  0<n<I
Consequently, in view of (3.44.d), (3.40), we have, for 5 < n <,

4
§ :ajeﬂ+l—]

j=1

lle™*H < +

4
un+l _ E :ajun+l—j
7=1

4
S ek + 1)) (oetn+1=5) + c(k* + A7)
Jj=1

Combining with (3.39.e), we have

4
(3.46) len || < c(k* + A7) (Z ae"t"“‘f) +e(k*+h7), 1<n<l
j=1
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We now embark upon estimating the terms F; of the right-hand side of (2.88).
We immediately conclude by (3.39a, c-f) that

(3.47) Fr=n8" + 0 + 1Y < ck?(k* + h7)2.
Now, using the L* bounds (3.44.c,e), we shall estimate for the time being

Fy < er k(| L2 (B + BN + | L2 (B - BY|1?)

(3.48) + &2k* (| Li+1 (B + EY|? + || Lig 1 (B = EY|J?)
3.48

I+1 l
+e(ene)k® | IR+ Y Il |-
j=1 j=1-2
We also immediately note that
(3.49) F3 < ck®(k* + h7)?,
l
(3.50) Fy<ck)  Entin

n=2
Using (3.44.c,e), it is straightforward to see that

!
(3.51) F5 <ck)  Enp1n+ck®h?.

n=2

Then, using (3.44.b) and (3.45), (3.46), we obtain

(3.52)  Fg < ck®(k* + h")? + ck3(k* + h7)20%e%t3 (e27F (-1 _ 1) /(e27% —1).

For the purpose of estimating F7, note that by (3.38.4,5) and (3.40) we have for

4<n<l-1
4 4
utt? =Y ot | - [t =) agun
i=1 i=1

ut2-I Wn+2—j) _ (un—j _ Wﬂ—j)]

”én+2 _ é"” <

+ 4

+ y Uynt2-i Wn+2—j) _ (U'n—j _ Wn—.‘i)]

4

> ol
1=1

4
> al
7=1

4
< ck® +ckh +c¢ ) ||E"TET - En|.
j=1

Hence, using (3.44.c) and (3.39.a), we obtain

-1
(3.53) Fr < ck®(k* + h)? +ck Y |[E™H — EM2.

n=2
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Collecting terms, we see that from (3.47)-(3.53) and (2.88) there follows that, with
nJ(-l) defined by (2.19),

l
n[(.},)]_ < C’C2 (k4 + hr)2 +ck Z E’n+1,n

n=2
+ etk (IL A (EHY + EY|? + | L2 (BH - EY|P?)
(3.54) +eak* (I L1 (B + EYI? + | Liga (BT — EN|?)
I+1 ] l )
+elene)k® [ ST+ 3 e
J=l Jj=1-2

+ C’C3(k4 + hr)2a2e2at3(e2ak(l—l) _ 1)/(e2ak _ 1).

(Let us remark again that, e.g., (3.54) holds if we replace ! by any integer !’ such
that 5 <1’ <[.) At this stage, the stability assumptions on ¢q;, g, yield—basically
as in the proof of Theorem 2.1 of [3]—that it is possible, by taking k¥ and e1, &5
sufficiently small, to hide the third and fourth term in the right-hand side of the
above in analogous terms of the left-hand side, which may be subsequently bounded
below by a positive constant times Ej;,;. Hence we obtain for k sufficiently small

I+1 l
Ei1 < ck®(k* +h7)? + ck? (E 1712+ ||ef||'~’)

j=1 j=1-2
(355) + ck3(k4 + hr)20,2e2at3 (e2ok(l—1) _ 1)/(62ak _ 1)
-1
+ck Z En+1,n~
n=2

Inserting now the assumed (by (3.45) and (3.46)) bounds for ||&7||, I <7 <1+1,
lle?|l, I =2 < 5 < I, we see, in view of (3.39.a), that for all ', 0 < I’ < I, there holds

I'—1
(3.56) Epgrp < ck®(k* +h")?Ap +ck D Engin,

n=0
where
Ay =1 +0,2e2at,/ + ko2e20ts (e2ak(l'—1) _ 1)/(e2ak _ 1)‘

By Gronwall’s lemma we conclude therefore, since for z > 0, z(e* —1)~! < 1, that
(3.57) (Ent1n)? < ck(k* + R7)(1 + 0t + Joetn+2),  0<n <,
where c¢ is independent of 0. We shall eventually choose ¢ > 1; hence

|EM — E™M| + (Eng1.0)Y/? < ck(k* + B")oet+2, 0<n<l.
Since E° = 0, summation yields

l
(3:58) IES M+ 3 (Brr1,n)'/? < (K + 1) (cae™ e,

n=0
where the positive constant ¢, is independent of o; we assume c, > 1. Now—with
20/20 hindsight —choosing o = 2c. and picking k small enough so that e*¢-¥ < 2,
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gives c.e2°% < g, i.e., that in the above

1
(3.59) IEH I+ Y (Eji-1)"? < o+ (k% + 1),
Jj=1
which is (3.44.b) for n = + 1. With this choice of o, (3.57) implies
(3.60) ILIFE ) < e(k? + A7),

i.e., in view of (iv.c), that |E*1|, < ch3/2. Hence, |e't!|o < ch®2 < h for b
sufficiently small. This is (3.44.c) for n = [ +1; the fact that U'*! € Y also follows.

Finally, if I + 1 = J, we are done. If [ + 1 < J, define U'*2 = Y°1_, o;U'+2~7
and obtain, by (3.57), (3.60) for h sufficiently small, that

4 4
|él+2|oo < |ut*? = Z aju’“"j + Zaj(u’“" — Wt+2—j)
j=1 J=1

(o] [o <]

4
pl+2—j
+ Z a; E
Jj=1 oo

< c(k? + h3? + r(h)(k* + k7)) < h,

which establishes (3.44.d,e) for n = [ + 1. The inductive step is complete; (3.42)
and (3.43) follow from (3.44.b). 0O

4. Preconditioned Iterative Methods. The implementation of the base
scheme (1.13) requires, at each time step n, the solution of a linear system with
operator A,;, which changes from step to step. Following [12], [4], [3], we shall
use preconditioned iterative techniques with suitable starting values to approximate
U™*! in a stable and accurate way by solving a number of linear systems per step
with an operator that does not change with n. Most of the required estimates are
similar to those of Section 3 and follow in general lines the analogous estimates
in [3]. Hence we shall just state here the relevant algorithms and results without
proofs.

We shall denote by V™, n > 0, the new fully discrete approximations to be
computed, to distinguish them from U™, the solutions of the base scheme (1.13).
To establish notation, following [4], let H be a finite-dimensional Hilbert space
equipped with inner product (-,-)x and norm || - ||z = (-, ~);{2. To approximate the
solution Z € H of a linear system AZ = b, b € H, where A is a selfadjoint, positive
definite operator on H, we suppose that there exists a positive definite, selfadjoint,
easily invertible operator ¥ A (the preconditioner) and constants 0 < Ag < A, such
that

(4.1) M(PAz 2)g < (Az,2)g < M (P Az 2), z€H.

Then, there are iterative methods, for solving the system AZ = b, which, given an
initial guess z(*) € H, generate a sequence z(%), j > 1, of approximations to Z in
such a way that calculating zU+1), given z(¥), 0 <1 < j, only requires multiplying
A with vectors, solving systems with operator A and computing inner products
and linear combinations of vectors. Moreover, there is a smooth decreasing function
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o: (0,1] — [0,1) with o(1) = 0 and a constant ¢ such that ||PAY2(z — z())| g <

clo(Mo/ M) ||PAY2(Z — ()| . In our applications we shall perform at each step

n, 1 <n < J, j, iterations, sufficiently many so as to achieve, with z = zln)|
IFAY2(Z - )i < Ball®AY? (2 = 2O) ||,

where (8, > 0 are small preassigned tolerances. We shall always take 8, = O(k"),
v > 1, so that, as a consequence of the geometric convergence of the iterative
method, jn, = O(|log(k)|).

We follow the structure and notation of Section 3. As a first step we seek
Vi=uyl, j=0,1. Welet VO =U% V{ = 0!, 1<j <3, where U, U are given
by (3.3), (3.4), respectively. Suppose that Ve S? is the exact solution of

A, V' =BV + FO,

ie.,let V' = UL, cf. (3.6). We now let H = S2, (-,-)u be the L2 x L? inner product
on H, A} be the associated adjoint of A; and Ty be the operator diag(I,Tp) on
SE. Ty is a selfadjoint positive definite operator on H, but Aj is not. For our

purposes we regard V' as the exact solution of the problem

(AiToA1)V' = AjTo(BoV® + FP),
which will be the system on H to be solved by iterative techniques. As precondi-
tioner we use, with 8 > 0, the operator

P A = diag((I + Bk?Lo)?, (I + Bk*Lo)To(I + Bk*Lo))
(it satisfies (4.1)) and compute, by a preconditioned iterative method satisfying our
stated general properties, V! = [V}, V!]T as an approximation to V' satisfying
IPAY2(V! — V)|l < BiIPAYA(V - VOL|g,

where we take #; = min(~, k%) for some constant 0 < v < 1 and where V(0! = V0.
We set V1 = V.

For the rest of this section we let H = S and (-,-)y be the L? inner product
on S,. We compute first V7, 2 < j < 5, (and the needed extrapolated values V7,
2 < j < 5) as approximations to the exact solutions V7, 2 < 5 < 5, of the cosine
scheme, cf. (1.13), '

Ap V" 2B V™ + A VPt =@ VR VY, n> 1,

where, although we use the same notation An+1, An, B, as before, we mean of
course that Apyy = q(k*Lpy1(V™Y)), By = p(k*L,(V™)), An = q(k2L, (V™))
etc. The operator A,4; will now play the role of A. As preconditioner we shall
choose the time-independent operator

PQ=(+pBKLo)?, B>0,

for which (4.1) is satisfied, cf. [3]. The approximations V7*1, 1 < 5 < 4, to 7!
are then computed so that
IPQUAV™ ! — V|| € s [FQUAT™ - VO

holds for n = j, 1 < j < 4. We take fBn4; = min(y,k?) and V(On+l = yn,
the V7, 2 < j < 5, are given by the formulas (3.38.5), replacing U’ by V7. We
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continue for n > 5 by computing V**+! by (3.40) with U7 = V4, and Un*! as

the approximation to the solution v of (4.8), so that (4.10) is satisfied, where
now fp41 = min(vy, k) and VOn+l = 5y — 10V~ 4+ 10V"~2 — 5yn—3 L yn—4,
It may be proved, under the assumptions of Theorem 3.1, that all intermediate
approximations exist uniquely; moreover, there exists a constant ¢ > 0 such that
V™ —um|| < c(k* + h7), i.e., that V™ asymptotically satisfies the same type of L?
optimal-order error estimate as does U™.
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