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Scattering by a Potential Using Hyperbolic Methods

By Alvin Bayliss, Yanyan Li, and Cathleen S. Morawetz*
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Abstract. This is a preliminary note on a numerical time-dependent approach to the
inverse scattering problem where the data given is back scattering. The results in one
space variable are both computed and are quite comparable to the best existing results.
A corresponding algorithm is developed for two variables. A major stage is the computa-
tion of the forward problem for the wave equation with potential and with an incoming
plane wave. Interesting developments are a boundary layer next to the propagating
delta function and effective resolution of the scattered wave. It is assumed there are no
bound states.

In one-dimensional scattering many methods have been developed to determine
g(z) on —00 < z < 400 from data, both prescribed and collected at infinity, on
solutions of

Uzz — q(T)u = du

for appropriate ranges of A. In higher numbers of space variables not much is
known, and many of the methods that work well in one space variable cannot be
carried over.

This is a preliminary note on a numerical time-dependent approach to the prob-
lem. An algorithm is developed for an arbitrary number of dimensions for the back-
scattering problem, Section 1. The results in one space variable are both computed
and analyzed, Section 2. The algorithm and differences when one goes to more
than one space variable are described in Section 3; in particular, the development
of a boundary layer when a plane wave impinges is described and analyzed in Sec-
tion 4. In Section 5 computations of the forward problem for two space variables
are described with special emphasis on the nature of the boundary layer as well as
the prospective role of these computations in the two-dimensional back-scattering
problem.

It is assumed there are no bound states.

1. Integral Equation for g in Terms of Back-Scattered Data. The inverse
back-scattering problem is usually viewed, see for example [7], in the following way.
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Let p be the solution in R™ of
Ap+ (w® —g(z))p=0
which as |z| — 0o,z = —e|z| behaves like
exp(—iwe - z) + s(w, €)|z|~ "~ 1/2 exp(—iw|z|).

Here, € is a unit vector. The inverse problem is to determine g(z), given s(w,e) for
all real values of w and e over a sphere.

We view the problem as a hyperbolic problem by considering P(e,t, z) to be the
solution of

which as t = —oo becomes §(t—e-z). If ¢ has compact support, then P = §(t—e-z)
for t < Tp(e). This can also be generalized for g decaying sufficiently rapidly at co
but we omit this here. We assume there are no bound states, for otherwise P — oo
as t — oo.

If we take the Fourier transform in time we find that the p given above is

+oo
/ e P(e,t,z) dt.

oo

As t — +o00,t —e-z > 0, one can show that fort —e-z>¢e>0
(1.2) P — S(e,t — |z],€)|z|~(n—1/?

where ¢/ = z/|z|. The back-scattering problem is to find g, given S(e,t — |z|, —¢).
There is an integral equation which relates S(e, s, —e), with s = t — |z|, to ¢
through the solutions P for all angles. It involves a Radon transform for n > 2.
We prove first a theorem relating averages of ¢ to the back-scattering. We shall
henceforth for convenience assume that ¢ has compact support.
Basic relation. Let Cp, = [ dQ™!. Then

oo

/ gz+z,)|dzy| = —2C,,/ Ss (e,2e -z — 312, e) T 2 dr
z, -e=0 0

- 2/ Pscat(e, 2e - (z - Z/), ZI)Q(x,)ldzll’
ez'<ex

where Py, is defined below.
To prove this relation, we make use of certain properties of P(e,t,z).
First of all, we should regard the condition

P=§ét—e-2)

for t < Ty(e) as an initial condition. Hence, by a domain of dependence argument
one has

(1.3) P=0 fort—e-z<0.

We write P as 6(t — e - z) + Pscat(e,t, ), and by propagation of singularities
theory one finds

(1.4) Pacas = -1 ( / " alzo + se) ds) H(t—e-2)+C

—00
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with e - 29 = —oo and z( parallel to z. This holds for ¢t — e - z < ¢, say. Here, C is
continuous across t = ¢ -z and H is a Heaviside function.

These properties of P are reflected in p by analytic continuation properties and
asymptotic behavior for large |w|, Inw < 0.

Of course, (1.2) gives the behavior of Pyca¢ for large values of t. We note that
we assume

(1.5) S and its derivatives tend to zero as t — |z| — oo.

Proof of Basic Relation. Let eg = (1,0,...) and let U = P(eop,t,z), V =
P(eg,s — t,z). Then from (U;V — V;U); — div(VVU — UVV) = 0 integrated
over the wedge t < T, t — z; > 0+, z; < T we have for T > s/2

(1.6) Je- (U = VaU)de| = 2 /t 2,0V (Us+ Uz, dal.
1<
Note there is no contribution from z; = —oco since P = §(t — e - ). The right-

hand side is obtained by integrating by parts. The boundary term vanishes because
V = P(eg,s — T, z) is identically zero for s — T — ¢ - z < 0, (1.3).

Next, let T be sufficiently large so that V = P(eg,s—t,z) =6(s —t — e - z) for
t = T. Then the left-hand side of (1.6) is

o /Tuummnard—zn—HmJﬁmw—t—hmMI
1.7 =

= [ (Pieo,s = T,) + Puleors = T, ) lda |
where 7, is the (n — 1)-dimensional vector (z2,z3,...,2,) and € = (e — T, z,).

For n = 1 we have simply P,(T,s — T') + P;(T,s — T). The right-hand side of
(1.6), by (1.4), is

(1.8) - /z o P(eo, s — 71, 7)g(z)|dz|.

We now let T — oo. In the left-hand side for n > 1 we may replace P by its
scattered data (1.2) since T — eg - € = 2T — s — oo. This yields

S'(e0,T — |, E/IEI)( 5— )
/ E[@-D72 e ) 14

Here, prime denotes the derivative with respect to the second argument. Let T' —
s/|€| = cosf. Then sinf = |z, |/|€| and

— €| =T(1 —sec8) + ssech.

By (1.5), S’ — 0 when its middle argument goes to infinity. So the main contri-
bution is from 6 = 0. There, the integrand tends to
Sl(eo, S — %T02, —80)

(T - 3)("‘1)/2.
and Idz L=z " 2d|z,|dO™, where ("~1 is a solid angle on the unit sphere in
R™ 1, and |z, |"2d|z.| ~ (T - s)"“ n"~20dsin ~ (T —s)*~16"~2 df. Setting
TY 20 = 7, we see that the integral tends to

2

[ o]
2/ S'(e0,s — 172, —eo)r™ "2 dr dQ™ 1.
0
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The remainders are easily shown to be of lower order as T — oo and hence
vanish.

Inserting this limit in the identity along with (1.5) we obtain, with C, =
f dQn—l’

[e o]
2Cn / S/(CO) s — %721 _CO)Tn_2 dr
0

—_ / P(eo, s — 1, 2)q(z)|dz].
z1 <00

This is easily reduced to the basic relation.

The formula can also be obtained directly by applying the fundamental solution
of the wave equation tomP = ¢P.

Since the right-hand side may be rewritten as

/(6(8 — 211) + Pscat(COa s — Iy, z))Q(z)ldzl’
we have that

8
/q (560 + Il) |dz |+ 2/ Pycat (€0, s — 21,7)q(7)|dz|

is given in terms of the scattering data. Since the second term is quadratic in g,
we may rewrite this as

/ (q (%eo + zl) —4qB (%eo +a:J_)) |[dz, |

(1.9) :
+ Z/Pscat(CO) s — zl,z)q(z)IdZ| = 0’

where ¢p is the Born approximation or linearized approximation for q.
Changing to general coordinates, we have

/ (q(se +z1) —gp(se+z1)|dz.|

+2 / Pycai(e,2s — e - z,z)g(z)|dz| = 0.
Letting the Radon transform

R.T.f(z) = /f(se+ z1)|dzL,

one gets
(1'10) Q(z) - qB(z) = 2(R'T‘)_1 / Pycat(€,25 — € I’, z’)q(z')|dz'l.

2. The One-Dimensional Case. For n = 1, outside of the support of g,
P = S(t + z) and the left-hand side of the equation is 25’(s). Thus

a(z) = —25,(c) - / Prcat(22 — 2/, 2')q(z) de.

T'<zT
In the one-dimensional case there are many methods for solving the inverse
problem. Numerically, the best methods are those that take advantage of the fact
that g(z) is determined by the values of S(s) for s < 2z. The methods of Bube
and Burridge [1] are extremely accurate. They change variables but essentially use,
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for determining ¢, the expression (1.4) and solve an equation like the hyperbolic
equation (1.1) from left to right. Deift and Trubowitz [3] solve the problem in the
Fourier transform plane also proceeding from left to right, see also Stickler [8]. In
both cases, the values of ¢(z) for large = are harder to compute and require extreme
accuracy in computing ¢ for small . The approach used here is an extension of
the previous work of Kriegsmann and Morawetz [6].

The basic relation provides us with an algorithm for determining ¢(z). We note
that it is a Volterra-like equation and that the values of P involve only the values
of ¢ up to z.

The algorithm for combining is: take a trial g, compute P, insert Pq in the
right-hand side of the basic relation and obtain a new value of ¢q. Thus, at the nth
iteration,

(2.1) gn = —28,(z) — 2 / Pr_1scat(2z — 2', 2 )gn—1(2') d’,
z'<z

where P,,_1 scat is the numerical solution of (1.1) with the data

q= QR—l(z)’
1 xz
Pn—l,scat(za I) = —5/ Qn—l(zl) dz’.

— 00

This works very well over a range of z. The numerical solution was obtained
in two ways: (a) in z,¢ coordinates with a t-mesh half the size of the z-mesh and
the data near t = z fitted by averaging and (b) in characteristic coordinates, using
a stable method for Goursat problems. The first iteration began with ¢ = 0, and
therefore ¢; is the Born approximation. In the cases of interest, ¢; is very different
from gq.

Details of the method are described below and a typical result is given in Figures
2.1 and 2.2. Our objective was to get the best results on a coarse mesh because
to carry out the corresponding algorithm in two space dimensions we must iterate
on functions of four variables such as P(e,t,z). From the basic relation one can
easily see that there are no simple domain of dependence arguments, and since
our objective is to do a two-dimensional computation, we tried to avoid using the
domain of dependence. However, if the range of =z was large compared to the
support of ¢, then the values of ¢ near the end of the support failed to converge.

Remark. To check out the algorithm in another way, the computations by method
(b) were also carried out in steps, successively accepting a value of ¢ up to say z;
after several iterations and then finding ¢ from z; to z; + Az using instead of (2.1)

gn=q° forz <z,
an = —2(Ss(2x) - S; (22))

- 2/ (Pn—l,scat(zz - zla ZI)Qn—l(z’)
z'<z

- P2z —2',2")¢*(z')) dz’ for z; < z < 71 + Az,

(2.1a)
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FIGURE 2.1
Here ¢ = Qiexp(—4(z — C1)?) + Qzexp(—4(z — C3)?)

+ Q3 exp(4 — (z — C3)?) with Q; = 0.55, Q3 = —0.35, Q3 = 0.35,
C; = 1.3, C2 = 3.00 and C3 = 4.4. The mesh size is 0.05.
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FIGURE 2.2

As in Figure 2.1 with mesh size = 1.
where g* is the “accepted” value of ¢ for £ < z1, and 0 for z > z;; S* is the scattered
field for ¢* and P2, is the scattered wave. Hence, for £ < z1, Pscat — Pycay and

scat
q* ~ —25,(2z) — 2/ Pycat (22 — 2, 2)q* d7’,
z'<z

where ~ means to some prescribed accuracy. By the basic relation, for z > z;,
g~ —2(S(2z) — S5 (2x))

- / (Pscat(2z - Z/, z/)Q(Zl) - s*ca.t (22 - I,’ 2:/)q"(x,)) dz'.
z'<z

This justifies (2.1a) and the iteration will converge for Az small enough.
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The results using this algorithm were undistinguishable from the previous ones.

Remark. If in iterating on the equation of the Basic Relation we are close to
the situation that the main contribution to Pic,t comes from the coefficient of the
Heaviside function, then the equation tends to look like

q(z) = —2S,(2z) + /m (/m q(z") da:”) H(2(z — 2'))q(z') dz’

or with g(z) = h,
h = —28,(2z) + /z h(z')h(z') de’ = —28,(2z) + %hz(z).

This Riccati equation may not have a bounded solution. If we come near to this
situation, the iteration will not work.

A final feature about the one-dimensional problem is that there is a complete
analogue between the impedance problem (variable sound speed) and the potential
problem. The necessary change of variable is described in [1] or [3]. This is not
true in more space variables. A solution to a wave equation with a variable speed of
propagation which behaves like a delta function for ¢ = —oo will for some directions
develop caustics in its singular surface.

3. Higher Dimensions. In two space dimensions, in which we want to com-
pute, the formula (1.10) becomes

(3.1) q(z) — gB(z) = / /+7r ds df 2F 2e-z+ 2s,€),

where F(s,e) =2 [ Pscat(e,s — €~ 2',2')q(z')|dz’|.

The iterative algorithm to do this is: compute Psc,¢ using a trial g, integrate to
find F(s,e) and obtain a new ¢ from (3.1). The uniqueness and existence is proved
in [2].

For n > 3 we should be dealing with (1.1) and the Basic Relations of Section 1.
We refer the reader to the work of Fadeev [4], Newton [5] and Prosser [7] for other
approaches and the case n > 3. In [1] there is another hyperbolic approach. Unique-
ness and existence under certain conditions where the scattered data is sufficiently
small has been established by Prosser [7].

4. The Direct Problem and Its Boundary Layer. In Eq. (1.4) we have
the description of the solution Pic,t near the plane ¢ = e - . This expression was
used only locally and is actually valid only in a neighborhood of ¢t = e - z. For large
values of e - z, the solution drops away very rapidly to zero as t — e - = increases.
This was first found computationally but can best be described analytically.

Let the support of ¢ lie inside |z| = a. Let e be (1,0,...) for convenience.

Then Picay satisfies the equation MiPscay = —qPacat for ¢ — 21 > 0, Picat =
-3 ff;o q(s,z1)ds for t = z, where ¢q(z) = q(z1,21).
Then

(4'1) Pycat = Pigcat + P2scaty
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where Pigcat satisfies MPigcat = —qPscat in R™ X (—00,4+00) and Pogcat satisfies
MP2gcat = —q6(t — 81). Piscat = 0 for t — —oo and for t — +oo satisfies the
radiation condition for large |z|.

We claim that Pygcat behaves like a function of ¢(t — z,) and z, as ¢ (or z1)
— 00, t — 7 bounded.

We give the argument using the equation for Pscay = F and suppose there are
three space variables. Thus,

Ftt — AF = —q6(t - Itl).
Then

1 a(

— ) ! /
= a(«')ldz'|

(4.2)

with r = |z — 2/|. Let t — :c’l -r=s, z’2 = pcos, = = psind. Then

— -1 :
F= —/ (=7 )2+p )1/2(311) q(z', pcos @, psinb)pdpdf ds,
where we have taken z2 = z3 = 0 for case of proof. Integrating the delta function,
we have with =} = &(s, p),

1 q(&(0, p), pcos b, psin )
Cdn ] ((z1 - €2+ )2 = (z— é)Pdpdo

and £+ /(z—€)2+p2 =tfor s =0, ie., £ = 3(t + ) — p?/2(t — ). We set

X = 4(t+z - p?/(t — z)) and note that g has compact support:

F =

-1 [q(X,(t—2)Y2(t+z—-2X)"2cos0,(t — 2)'/2(t+ z — 2X))/?sin @
E/ (G-XP+(-2)(+2-2X)2—(z—X)
x (t — z) dX df.

We want to see how the limit behaves if t — 0o, t —z — 0 and t(t — z) = 7 is finite.
Introducing the variable 7, we have as limit

1 q(X, /2ncos b, /2nsin @) nt=!
i GRG0

— Z—:/q(X, vV'2ncos6,/2nsin @) dX db.

Hence, F tends to a function of #. It has the right limit as # — 0 and thus the
linearized solution tends to a function of , =3, 3.
For two space variables z,y we have

P / (', y)8(t — ')
2scat = & = o0 ((t—t)2 2z’(t —-z)—(y—y)?)1/2

/ q(z',y') dz’ dy’

Ta) - —2w(t-2) - (y-y)2) %

Here the range of integration is over the domain where the square root is real.
Setting y — ¢’ = pcos@ with (t — z)(t + z — 2z') = p?, we have

_ 1 . /
F= 27r/q(:c,y pcosf)dddz'.
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And for large t, p> — 2n + 92 /2% — 21'n/z, where again n = z(¢t — z), and thus
F— —%/q(z',y— 21 cos 0) df dz’ = F(n,y).

We proceed to get the solution as a solution of a simple partial differential
equation. Let V(n,z,) be an approximate solution to the wave equation for n =
(t — z;) finite; then

(2t — 21)2Viyy + 2V = Vipt? — ALV =0,
where A, is in the space orthogonal to 1, or
(t+t7 )2 = 2)Vyy + 2V, — ALV =0,

or
20Vpn + 2V, — ALV +t729%V,, = 0.

We could find a series in powers of 2 but we look only at the leading term,
which satisfies the equation

(4.3) 2(nVy)y — ALV =0

with the boundary condition V(0) = - fj':: q(z1,z1) dz1. The solution is unique.
If we multiply by V;, we have

: 1
(77V,,2),, + V,,2 —divy (V,ViV)+ §|V¢V|?, =0,

and if we integrate with respect to z, we have

d 2 1 2 //" 2 -
(4.4) an (/ (nVn +2|V_|_V| ) dr, + A V, dndz, ) =0.

Hence, uniqueness and existence follow by standard projection methods. For any
given ¢ we can easily find the solution in the boundary layer, and as n — oo the
identity (4.4) can be used to show [ |V;|?|dz.| — O faster than 1/n. However,
solving the equation (4.3) backward to find V(0,z ) from V (n,z,) appears to be
ill-posed, as the equation behaves like the heat equation as n — 0.

5. Computing the Forward or Direct Problem and Application to the
Back-Scattering Problem. In order ultimately to apply the algorithm of Section
3, it is necessary to be able to compute the forward problem for Picat(e, ¢, z). This
has been done in two ways.

A. The first way is to use a mesh with At = %Aml = %AZ2. On the edge,
t = z1, as we can always rotate the variables so that e = (1,0); we have the
values Pic,y given by the boundary condition Pscay = —% ff;o q(s,z2) ds, (1.4).
(A/Azy, At/Azs < /2/2 is the fundamental stability bound in two dimensions.)

We use the standard difference scheme for the operator [J and we note in Figure
5.1 the circled points which cannot be reached in a step forward in time. They are
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1 . .
t X ® X
l X ® X t=z
X
— T —
FIGURE 5.1

Stencil near the surface t = z;.

obtained by taking a weighted mean with the points to the left and right (marked
by x). The boundary layer eventually is not resolved by the mesh, and as one
approaches this situation the computation develops an oscillation. We denote the
approximate scattered wave solution by w(z,y,t).

The scheme described above is stable and has been tested on a range of potentials.
Attempts to find a stable fourth-order extension have been unsuccessful so far. To
illustrate a sample computation, we consider potentials of the form

(5.1) q(z,y) = co2ze=oC*+) g >0,
q(z,y) =0, z<0.
In the computation we took o = 5, leading to a highly peaked potential.

In Figure 5.2 we plot w(z,y,t) as a function of z and y for several values of
t. Here, ¢ = 1. It is apparent that as t increases, the solution is composed of a
smooth, propagating component and a nonpropagating steeply changing boundary
layer, in agreement with the theory of the preceding section. For large values of
t the boundary layer is not well resolved and localized oscillations develop. The
oscillations become more severe as ¢ increases due to the narrowing of the boundary
layer. The grid size for the computations in Figure 5.2 is 0.04.

In order to ascertain the effect of the lack of resolution of the boundary layer on
the physically relevant cross section, we plot in Figure 5.3 the back-scattered cross
section /rw(l —r,0,t) taken at r = 10 for various grid sizes and for various values
of €. It can be seen that the cross section is smooth and is mesh converged even
though oscillations are present in the boundary layer. For large € the breakdown is
due to the fact that errors from mesh effects are as important as changes in g. We
recollect that ¢ has the dimensions of (length)~2 so that ¢—!/2 of the order of the
mesh size is not a reasonable computation.

In order to elucidate the structure in the boundary layer, in Figure 5.4 we plot
w(z,0,t) for t = 6,7,8,9, 10 for different grids and different values of €. The results
are presented only in a vicinity of the boundary layer. It is apparent that the
oscillations are grid-dependent and are smaller as the grid is refined. The more
important feature is that the scattered wave stays very much the same.

A sample computation using 801 points in the z direction and 401 points in the
y direction and run for 14 units of time required ~ 55sec. on the Cray 1-S. In this
case we had the mesh size h = 0.04. No symmetry around y = 0 is assumed, even
though the solution is symmetric. A calculation with A = 0.08 and using Nz = 401
and Ny = 301, which gave an accurate cross section, required 15 sec. We also ran
on the Cray X-MP at the Naval Research Laboratory.
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TIME - 4.00000

TI®E - 6.00000 ‘ TINC - 8.00000

TIFE - 10.00000 TIME = 12.00000

FIGURE 5.2

A time series of the scattered wave. The speed of propagation is 1.
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FIGURE 5.4
Structure of the boundary layer.
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The far field boundary conditions in y are very sensitive near the plane t = z.
The radiation condition v ~ F(t —r,8)//r, when implemented numerically, proved
unstable in all implementations near this plane. (It is incorrect.) The computations
presented above were obtained using the boundary condition

(5.2) u~F(t-y,z),

which proved stable. Very little reflections were observed for (5.1) provided the
boundary included at least twice the support of g. We are presently attempting a
correct radiation condition in a region bounded away from the boundary layer.

It is clear that no uniform grid will provide adequate resolution of the boundary
layer for large t. An accurate computation of the boundary layer would require
either a severely stretched mesh or the use of the boundary layer equations de-
veloped previously. Although the computations suggest that the far field can be
accurately computed without resolving the boundary layer, because the oscillations
do not propagate, it remains to be seen what effect these oscillations will have on
the iteration scheme proposed above. We note that the functional F'(z;q) does not
involve data near the boundary layer for ¢ of compact support.

B. The second scheme used a Goursat algorithm for the variables t — z;,t +
1. With a mesh size in z2 that is twice the mesh size in z;, ¢t the scheme was
stable. Using only 50 z-points, 30 y-points, the program was run for ¢ < 3.0. The
computation with the coarse mesh size in z; equal to 0.1 gave similar results to the
fine mesh for the case where ¢ is given by (5.1). The machine was a Cyber 180.

To use either of these methods in the iterative algorithm based on (3.1), we have
a very large integral to compute on each iteration, namely

// Pscas(e e (22 — 7'),2")q(2')|d=’| |de|.
ezr'<ex .

The values of Pi.a; are generated for each e, and we may rotate the variables and
compute

/ Preas (€0, 281 — &, 2)q(Us')|d2’|

with U a unitary matrix that transforms e into ey and Pscat denoting the scattered
wave from g(Uz’). Then the order of computations is: for each ¢ compute values
of P for each fixed row z} = const running through the values of z5. The product
Pg|Az’| at each point is to be added for all #j and the sum is then accumulated
at all values of z; = Z(¢ + z}). Since in method A, t = jAt and 2} = 2mAt,
z; = (m + j/2)At, this operation should be performed only at every other time
step.

6. Other Relations for ¢ in Higher Dimensions. The basic relation of
Section 1 is an integral relation for ¢ in terms of back-scattering data. However,
there are other possible inverse problems. For example, suppose all the scattered
field from 6(t — 1), i.e., S(eq,t — |z|,€’), is known; can we find ¢(z)? Here at least
we can say that if S = 0 then ¢ = 0, a conclusion we cannot draw from our basic
relation. The method uses a generalization of the Deift-Trubowitz trace formula
derived in the time-dependent framework.
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THEOREM. For q of compact support,
(6.1) Ag= +4 /+°°/P —eg, —t,z)P(—¢€',s — t, z)Ss(eq, s,€') de’ dsdt
with
S(eo,8,€') = cn / S (eo, s+ %T2,6’) ™ 2dr,
¢n = c(n), where S is the scattered field and n is the number of space dimensions.

Remark. This formula can be transformed into the frequency domain and is

easily seen to become

2

Ag = 48—2/wp2(—e0,w,z)‘3(eo,w,e) de’ dw,
o0zt

where p is the Fourier transform of P and
oo
S(eg,w,e€') = cn/ e_“"tZS(eo,w,e’)t"'2 dt.
0

Here, = denotes Fourier transform.

An iteration for finding ¢ from S could be done by using trial ¢’s to find p and
determining a new ¢ from the above formula.

Proof of the Theorem. We obtain a preliminary formula using the two solutions

P(eg,t,z) and P(—eg,—t,z).

We would like to consider
+o0
Pt(eO, t, z)P(_CO) _t)' 2:) dt,

—00

but it does not exist. But we can form, as we shall see,

+o0
/ (P:(eo,t,z) Py, (—e0, —t,z) + Pz, (€0,t,z)Ps(—€0, —t,z)) dt
(6.2) -

+o00 a
_ / 2 (P.(eo,t,7)P(—e0,—t,)) dt =
—o0 811

We must extend (1.3) to more terms, and we find
z1

Pleo,t,z) = 6(t — 71) — %/ a(s,33) dsH(t — 21) + By (2)C(t — 1),

—00

where C = H. On the other hand,
z1

P(-eg,—t,z) =6(t —z) + %/ q(s,z2)ds(1 — H(t — z1)) + B_(z)C*(t — z),

oo
where C* =1 — H.
The two solutions have common support only ont = z;, so we can use the above
expansions.
The product é'(t — z1)é

(t—1x) mtegrates to zero. The cross term
1
8'(t—m) (5 q(s,z2 ds) (1-H(t—11))

- 1/ q(s,z2)dsé(t — z1)6(t — z1),
2 [s o}
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when integrated with respect to ¢, gives, when differentiated with respect to z,
] 1 too
/E (—Eé(t— z1)6(t — zl)/_oo q(s,xz)ds) dt,
which vanishes. All these formulas can be established using limits of Gaussians

instead of delta functions.
The remaining terms yield

/;w bz_l (6(t — )1 - H(t - 1)) (-% /oo o(s, zg)ds) (% ]_oo o(s, zz)ds)

+6'(t — 21)B_(z)C*(t — z1) + 6(t — )B4 (z)H(t — :1:1)) dt -

1 0 1 z1 o1
=—§a—z;([ alo,zz) ds [ 4(8,22)d8)+$1-§(—3—+3+)

[ <] —00

=300 [ asm)ds— 3a(o) [ alo,za)ds

9
+ 5557 (~B-+ B4)

1
2

I= _115% ((/_:q(S,zz)ds)z_'_ (/0:1 q(s,zz)ds)z) +_;_(_9%:(—B_ + By).

We next compute By. We have, by standard theory,

z1

1 1 1
2Bq, + -A] q(s,z2)ds +q <——/ q(s, zz)ds) =0,
2 —oo 2 —o0

1 %1 1 [*
2B_;, — §A q(s,z2)ds+q (+—/ q(s,xz)ds) =0.

+o0o 2 —00
Hence,
92 192 ([™ ?
25;:7(B+—B_)+Aq— 1922 (/ q(s,xz)ds)
(6.3) ! 1T

192 (/“‘ )
—— q(s,z2)ds ) =0.
4022 \J_o (

Thus we have from (6.2), 81/8z; = —;Aq or

400 2
(6.4) Ag=—4 / o (Puleo, t, 2)P(~e0,1,2))dt.
oo 1

This is similar to a preliminary formula of Deift and Trubowitz (3] but we note
that the Fourier transform of P is not the Jost function. That solution would have
to behave like 6(t — ;) as £; — —oo, and in higher than one space dimension this
solution does not exist in general.

We next relate P(e,t, ) to its scattered data S(e, s,e’). We define S by

oo
(6.5) S(e,s,¢') =cn / S (e, s+ %72, el> 2 dr
0

for n > 2.
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Here, ¢, depends only on the dimension. To determine S from S for n = 3 is
a simple integration. For n > 3 we differentiate with respect to s several times,
and then the exponent in 7 can be reduced to 1 since S; = 7S, and the right-hand
side can be integrated. For n = 2 the transform is an Abel transform and can be
inverted uniquely.

Then we have the following

LEMMA. If S is given by (6.5), then fort > e -z,
P(e,t,z) = P(—e,t,z) + / P(—€,s—t,8)S(e,s,€') de ds.

Proof. The right-hand side is a solution of the differential equation since it is
an integral over solutions. We are assuming here that S decays sufficiently rapidly
when its middle argument goes to infinity. Let ¢ be sufficiently large so that on the
range of s where S is not, say, less than e, P(—¢/,s—t,z) = 6(s—t+¢€ - z). Then
the right-hand integral is

/6(3 —t+¢€-z)S(es,€)dsde’ + O(e)
= /S(e,t —¢ z,¢)de' +O(e)
- / S(est — |2 + |a|(1 — ¢ - z/|z]), &) de + O(e)
= /S (e,t — |z| 4 |z|2 sin? g,e’) de’ + O(e),

2

where ¢’ - z/|z| = cos¥.

The leading term vanishes as |z| — 0o, t —|z| bounded, except near § = 0. Using
the methods used in proving our first basic relation, we find that the right-hand
side tends as |z| — oo and € — 0 to

|z|_("_1)/2c,,/S (e,t - |z| + 172, _z_) ™ 2dr,
2 e

which by the definition of S is |z|~(®~1)/2S(e,t — |z|,z/|z|). Hence the right-hand
interval behaves for t > e - z like Pacat(e,t,z) as t — oo, (1.3). This uniquely
determines Piyca¢(e, t, z) for t > e- z by domain of dependence arguments extending
to infinity.

Remark. It follows that Pyat = 0 if S or S(e, s,€’) = 0 and hence, by (1.3),
¢ =0. This is related to Marchenko’s formulas, see [2].

We then have

(6.6) q= / 2(Ps — P;,)(—€',8 — 21,2)S(e, 5,¢') dsde’.
The same kind of dependence arguments show, since
P(—e,—t,z) = /P(e’, s—t,2)6(s)6(e +¢')deds,
that as t — 400
P(—e,—t,z) + / P(e',s —t,z)S(e,s,¢')dsde

has the same data as P(e,t,zk). Hence it is P(e,t, ).
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Note that the boundary layer described in Section 3 is not a part of the data at
00.
The analogue of the Deift-Trubowitz formula is obtained by substituting the
t-derivatives of

P(e,t,z) = P(—e,—t,z) + / P'(—€,s—t,1)S(e, s,€') de’ ds

in (6.3) with e = €. Since [ PP, dt = 0 and the remaining terms can be integrated
by parts with respect to s, we have completed the proof of the theorem.
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