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Abstract. This is a preliminary note on a numerical time-dependent approach to the 
inverse scattering problem where the data given is back scattering. The results in one 
space variable are both computed and are quite comparable to the best existing results. 
A corresponding algorithm is developed for two variables. A major stage is the computa- 
tion of the forward problem for the wave equation with potential and with an incoming 
plane wave. Interesting developments are a boundary layer next to the propagating 
delta function and effective resolution of the scattered wave. It is assumed there are no 
bound states. 

In one-dimensional scattering many methods have been developed to determine 
q(x) on -oo < x < +oo from data, both prescribed and collected at infinity, on 
solutions of 

u2- q(x)u = Au 

for appropriate ranges of A. In higher numbers of space variables not much is 
known, and many of the methods that work well in one space variable cannot be 
carried over. 

This is a preliminary note on a numerical time-dependent approach to the prob- 
lem. An algorithm is developed for an arbitrary number of dimensions for the back- 
scattering problem, Section 1. The results in one space variable are both computed 
and analyzed, Section 2. The algorithm and differences when one goes to more 
than one space variable are described in Section 3; in particular, the development 
of a boundary layer when a plane wave impinges is described and analyzed in Sec- 
tion 4. In Section 5 computations of the forward problem for two space variables 
are described with special emphasis on the nature of the boundary layer as well as 
the prospective role of these computations in the two-dimensional back-scattering 
problem. 

It is assumed there are no bound states. 

1. Integral Equation for q in Terms of Back-Scattered Data. The inverse 
back-scattering problem is usually viewed, see for example [7], in the following way. 
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Let p be the solution in R' of 

Ap + (w2 - q(x))p = O 

which as IxI oo, = -eIxI behaves like 

exp(-iwe x) + s(w, e)IxI-(n-l)/2 exp(-iwlxl). 

Here, e is a unit vector. The inverse problem is to determine q(x), given s(w, e) for 
all real values of w and e over a sphere. 

We view the problem as a hyperbolic problem by considering P(e, t, x) to be the 
solution of 

(1.1) Utt - AU + qU = O 

which as t -oo becomes 6(t-e x). If q has compact support, then P _ 6(t-e x) 
for t < To (e). This can also be generalized for q decaying sufficiently rapidly at oo 
but we omit this here. We assume there are no bound states, for otherwise P -. oo 
as t -- oo. 

If we take the Fourier transform in time we find that the p given above is 
f+00 

Jeiwtp(e, t, x) dt. 

As t -- +oo, t - e* x > 0, one can show that for t - e x > e > 0 

(1.2) P -+ S(e,t - Ixl,e')Ixl-(n-1)/2 

where e' = x/IxI. The back-scattering problem is to find q, given S(e, t - IxI, -e). 
There is an integral equation which relates S(e, 8, -e), with 8 = t - IxI, to q 

through the solutions P for all angles. It involves a Radon transform for n > 2. 
We prove first a theorem relating averages of q to the back-scattering. We shall 
henceforth for convenience assume that q has compact support. 

Basic relation. Let Cn = f dn- Then 

+ q(x+ )Idx = -2Cnf S, (e,2e x - 1r2,e) r 2dr 
2le=OO 

-2j Pscat(e, 2e* (x - x'), x')q(x')Idx'j, 
e-2' <e-x 

where Pscat is defined below. 
To prove this relation, we make use of certain properties of P(e, t, x). 
First of all, we should regard the condition 

P = 6(t - e x) 

for t < To(e) as an initial condition. Hence, by a domain of dependence argument 
one has 

(1.3) P=_O fort-ex<0O. 

We write P as 6(t - e x) + Pscat(el t, x), and by propagation of singularities 
theory one finds 

(1.4) Pscat = (feq(xo+se)ds)H(t-e x)+C 
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with e xo = -oo and xo parallel to x. This holds for t - e* x < to, say. Here, C is 
continuous across t = e x and H is a Heaviside function. 

These properties of P are reflected in p by analytic continuation properties and 
asymptotic behavior for large 1w1, Imw < 0. 

Of course, (1.2) gives the behavior of Pscat for large values of t. We note that 
we assume 

(1.5) S and its derivatives tend to zero as t - Ixi -. oo. 

Proof of Basic Relation. Let eo = (1,0,...) and let U = P(eo,t,x), V = 

P(eo,s - t,x). Then from (UtV - VtUt)t - div(VVU - UVV) = 0 integrated 
over the wedge t <1' t - xi > 0+, xi < T we have for T > s/2 

(1.6) jt=T (UtV-VtU)IdxI = 2 f-=oV(Ut +Ux1)ldxl. 
x, <T t<T 

Note there is no contribution from x1 = -oo since P = 6(t - * x). The right- 
hand side is obtained by integrating by parts. The boundary term vanishes because 
V = P(eo, s - T, x) is identically zero for s - T - x < 0, (1.3). 

Next, let T be sufficiently large so that V = P(eo, s - t, x) _ 6(s - t - eo * x) for 
t = T. Then the left-hand side of (1.6) is 

I (Pt(eo, t, x)6(s - t - xi) - P(eo, t, x)6t(s - t - xi))IdxI 
(1.7) tT 

= f(Pt(eo, s - T, A) + Px(eo, s - T, ())IdxuI, 

where xl is the (n - l)-dimensional vector (X2, X3, ... , xn) and = (e - T, xl). 
For n = 1 we have simply Pt (T, s - T) + Px (T, s - T). The right-hand side of 

(1.6), by (1.4), is 

(1.8) - P(eo, s - xi, x)q(x)ldxl. 
21<T 

We now let T -. oo. In the left-hand side for n > 1 we may replace P by its 
scattered data (1.2) since T - * = 2T - s oo. This yields 

I S'(eo, T - kI /kI) (1 T 
10n-/2 

1 
1~kI)IxhiI. 

Here, prime denotes the derivative with respect to the second argument. Let T - 

sljl = cosO. Then sinG = Ixil/ki1 and 

T-I11 = T(1-secO) + ssecO. 

By (1.5), S' -- 0 when its middle argument goes to infinity. So the main contri- 
bution is from 0 = 0. There, the integrand tends to 

S'(eo, s - T02, -eo) 
2 - 

2(T -8) (n- 1)/ 

and IdxIi = Ifxi-2 dlxIi don-1, where Qn-1 is a solid angle on the unit sphere in 
Rn- 1, and Ix In-I2 dlxiI -| (T-S)n-1 sinn-2 OdsinO - (T-S)n-1On-2 dO. Setting 
T1/20 =r , we see that the integral tends to 

2 S'(eo, s- - e2,eo)rn-2 drdon-1. 
n~~~ 
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The remainders are easily shown to be of lower order as T -- oo and hence 
vanish. 

Inserting this limit in the identity along with (1.5) we obtain, with Cn = 

f dn- 1 

2Cn f S2(eo, $- n2,-eo)rn-2 di 

=-| P(eo, s - Xi, x)q(x)jdxj. 
21 <?? 

This is easily reduced to the basic relation. 
The formula can also be obtained directly by applying the fundamental solution 

of the wave equation to roP = qP. 
Since the right-hand side may be rewritten as 

I(6(s - 2xi) + Pscat(eo, $ - x1, x))q(x)I dx, 

we have that 

J q (eo+xl) dxlI+2 JPscat(eo, s -xi, x)q(x)I dx 

is given in terms of the scattering data. Since the second term is quadratic in q, 
we may rewrite this as 

(1.9) J (q (leo + - qB (leo + xi)) dix?I 

+ 2 JPscat (eol $ - xi, x)q(x) dxj = 0, 

where qB is the Born approximation or linearized approximation for q. 
Changing to general coordinates, we have 

I(q(se + x?) - qB(se + x?)IdxlI 

+ 2 Pscat (e, 2 - e x, x)q(x) jdxj = 0. 

Letting the Radon transform 

R.T.f(x) = J f(se + xi)Idx I, 

one gets 

(1.10) q(x) - qB(X) = 2(R.T.)1 J Pscat (e, 2s - e x', x')q(x') Idx'l. 

2. The One-Dimensional Case. For n = 1, outside of the support of q, 
P = S(t + x) and the left-hand side of the equation is 2S'(s). Thus 

q(x) = -2S.,(x) - Pscat(2X - x', x')q(x) dx. 
x<x 

In the one-dimensional case there are many methods for solving the inverse 
problem. Numerically, the best methods are those that take advantage of the fact 
that q(x) is determined by the values of S(s) for s < 2x. The methods of Bube 
and Burridge [1] are extremely accurate. They change variables but essentially use, 
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for determining q, the expression (1.4) and solve an equation like the hyperbolic 
equation (1.1) from left to right. Deift and Trubowitz [3] solve the problem in the 
Fourier transform plane also proceeding from left to right, see also Stickler [8]. In 
both cases, the values of q(x) for large x are harder to compute and require extreme 
accuracy in computing q for small x. The approach used here is an extension of 
the previous work of Kriegsmann and Morawetz [6]. 

The basic relation provides us with an algorithm for determining q(x). We note 
that it is a Volterra-like equation and that the values of P involve only the values 
of q up to x. 

The algorithm for combining is: take a trial q, compute P, insert Pq in the 
right-hand side of the basic relation and obtain a new value of q. Thus, at the nth 
iteration, 

(2.1) = -2S8(x) - 2 Pn-iscat(2x -xx)qn xl)dxl 
/<x 

where Pn-i,scat is the numerical solution of (1.1) with the data 

q = qn-1 W, 

Pn-i,scat(Xi X) =- J qn- (x) dxa. 

This works very well over a range of x. The numerical solution was obtained 
in two ways: (a) in x, t coordinates with a t-mesh half the size of the x-mesh and 
the data near t = x fitted by averaging and (b) in characteristic coordinates, using 
a stable method for Goursat problems. The first iteration began with q = 0, and 
therefore q, is the Born approximation. In the cases of interest, qi is very different 
from q. 

Details of the method are described below and a typical result is given in Figures 
2.1 and 2.2. Our objective was to get the best results on a coarse mesh because 
to carry out the corresponding algorithm in two space dimensions we must iterate 
on functions of four variables such as P(e, t, x). From the basic relation one can 
easily see that there are no simple domain of dependence arguments, and since 
our objective is to do a two-dimensional computation, we tried to avoid using the 
domain of dependence. However, if the range of x was large compared to the 
support of q, then the values of q near the end of the support failed to converge. 

Remark. To check out the algorithm in another way, the computations by method 
(b) were also carried out in steps, successively accepting a value of q up to say x1 
after several iterations and then finding q from x1 to x1 + Ax using instead of (2.1) 

qn =q* for x < x1, 

n= -2(S(2x) - S (2x)) 

(2.1a) - 2 (Pn-i1,scat(2x 
- x', x')qn 1 (x) 

-PS*Cat (2x- x, x')q* (x')) dx' for x1 < x < x1 +Ax, 
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FIGURE 2 .1 

Here q = Q, exp(-4(x - Cl)2) + Q2 exp(-4(x - C2)2) 
+ Q3 exp(4 (x - C3)2) with Q1 = 0.55, Q2 = -0.35, Q3 = 0.35, 
C= 1.3, C2 = 3.00 and C3 = 4.4. The mesh size is 0.05. 
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FIGURE 2.2 

As in Figure 2.1 with mesh size = 1. 
where q* is the "accepted" value of q for x < x1, and 0 for x > x1; S* is the scattered 
field for q* and P,*at is the scattered wave. Hence, for x < x1, Pscat,-, cat and 

q* -2S8(2x) - 2 Pscat (2x - x' x')q* dx', 
x<x 

where - means to some prescribed accuracy. By the basic relation, for x > x1, 

q - 2(S8(2x) - S*(2x)) 

-| L ,<(Pscat(2x - X', x')q(x') -Pscat(2x - x', x')q* (x')) dx'. 
T<x 

This justifies (2.1a) and the iteration will converge for Ax small enough. 
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The results using this algorithm were undistinguishable from the previous ones. 
Remark. If in iterating on the equation of the Basic Relation we are close to 

the situation that the main contribution to Pscat comes from the coefficient of the 
Heaviside function, then the equation tends to look like 

q(x) -2S8(2x) + J (J q(x") dxl) H(2(x - x'))q(x') dx' 

or with q(x) = 

h = -2S.,(2x) + f h(x')h(x') dx' = -2S, (2x) + h2(x). 

This Riccati equation may not have a bounded solution. If we come near to this 
situation, the iteration will not work. 

A final feature about the one-dimensional problem is that there is a complete 
analogue between the impedance problem (variable sound speed) and the potential 
problem. The necessary change of variable is described in [1] or [3]. This is not 
true in more space variables. A solution to a wave equation with a variable speed of 
propagation which behaves like a delta function for t = -oo will for some directions 
develop caustics in its singular surface. 

3. Higher Dimensions. In two space dimensions, in which we want to com- 
pute, the formula (1.10) becomes 

(3.1) q(x) - qB(x) = 2 
J ds dO| F(2e * x+2se), 

where F(s, e) = 2 f Pscat(e,s - e x', x')q(x')Idx'j. 
The iterative algorithm to do this is: compute Pscat using a trial q, integrate to 

find F(s, e) and obtain a new q from (3.1). The uniqueness and existence is proved 
in [2]. 

For n > 3 we should be dealing with (1.1) and the Basic Relations of Section 1. 
We refer the reader to the work of Fadeev [4], Newton [5] and Prosser [7] for other 
approaches and the case n > 3. In [1] there is another hyperbolic approach. Unique- 
ness and existence under certain conditions where the scattered data is sufficiently 
small has been established by Prosser [7]. 

4. The Direct Problem and Its Boundary Layer. In Eq. (1.4) we have 
the description of the solution Pscat near the plane t = e * x. This expression was 
used only locally and is actually valid only in a neighborhood of t = e x. For large 
values of e x, the solution drops away very rapidly to zero as t - e x increases. 
This was first found computationally but can best be described analytically. 

Let the support of q lie inside IxI = a. Let e be (1,0,...) for convenience. 
Then Pscat satisfies the equation aJPscat = -qPscat for t - x1 > 0, Pscat = 

-2 fJl q(s, x-l) ds for t = X1, where q(x) = q(xl, xl). 
Then 

(4.1) Pscat = Piscat + P2scatX 
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where Piscat satisfies [IrPiscat =-qPscat in Rn x (-oo, +oo) and P2scat satisfies 
lJiP2scat = -q6(t - Si). Piscat --0 for t -+ -oo and for t -+ +oo satisfies the 

radiation condition for large IxI. 
We claim that P2scat behaves like a function of t(t -x) and xj as t (or xi) 

-4 oo, t - x1 bounded. 
We give the argument using the equation for Pscat = F and suppose there are 

three space variables. Thus, 

Ftt -AF = -q6(t - xl). 

Then 

(4.2) F= (t r1 q(x)I dxI 

with r = Ix - x'I. Let t - x-r = s, x = pcosO, x' = pmsin. Then 

4= 6r / ( (x s-l() + 1 1f)q(x ,pcosOpsinO)pdpd ds, 

where we have taken X2 = X3 = 0 for case of proof. Integrating the delta function, 
we have with x' =(.sI p) 

F ~~q (0(,p),p Cos0, p sin.O) dp dO F = r ((X q(( 2 j)+P p2)1/2 P(x ) )p pd 

and + /(x-x _)2 + p2 = t for s = 0, i.e., 2 = 2(t+x)-p2/2(t-x). We set 
X = 2(t + x - p2/(t - x)) and note that q has compact support: 

F= -1 f q(X, (t - X)1/2(t + X - 2X)1/2 cosfl, (t - x)1/2(t + x- 2X))1/2 sinO 

=41r ((X - X)2 + (t - x)(t + x - 2X))1/2 - (x - X) 
x (t-x) dX do. 

We want to see how the limit behaves if t -+ oo, t - x - 0 and t(t - x) = 2 is finite. 

Introducing the variable q, we have as limit 

1 f 
q(X, V cos O, Vsin O)2t1 dXdO 

4- J (x-X)(1 + r/(x - X)) - (x - X) 

4!J q(X, V' cos V, 'i sin O) dX dO. 

Hence, F tends to a function of 2. It has the right limit as 2 -* 0 and thus the 

linearized solution tends to a function of ,1, X2, X3. 

For two space variables x, y we have 

P~ct=F 1 1 q(x', y 6tx/) 
P2scatF= = 21r ((t-t')2-2x'(t-x)-(y-y')2)1/2 

= I q(x', y') dx' dy' 
21r J(t2 - X2 - 2x'(t - x) - (y - y)2)1/2 

Here the range of integration is over the domain where the square root is real. 
Setting y - y' = pcosO with (t - x)(t + x - 2x') = p2, we have 

F =-2 J q(x',y - p cos O) dO dx'. 
2irJ 
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And for large t, p2 227 + 2/x2 - 2x'27/x, where again 2 = x(t - x), and thus 

F -2 | q(x', y - /; cos O) dO dx' = F(rq, y). 

We proceed to get the solution as a solution of a simple partial differential 
equation. Let V (,qx) be an approximate solution to the wave equation for 7 = 

(t - xi) finite; then 

(2t -x)2V,77 + 2V,7 -V7t2 -1V = 0, 

where A I is in the space orthogonal to xi, or 

((t + t-l)2 -t2)V, + 2V, -z1V =0, 

or 

277V,7,7 + 2Vl7- Ln1V + t 222Vr, = 0. 

We could find a series in powers of t-2 but we look only at the leading term, 
which satisfies the equation 

(4.3) 2(2V7),7 - A 1V = 0 

with the boundary condition V (0) =-2 ' q(x1, xl) dxi. The solution is unique. 
If we multiply by V, we have 

(7V,2) , + V2 - div 
(V,,VV) 

+ -IV?V 

and if we integrate with respect to xl we have 

(4.4) d-(J v (y2 + 2 IV1v 2) dxj + J j V2 dn dxi) = 

Hence, uniqueness and existence follow by standard projection methods. For any 
given q we can easily find the solution in the boundary layer, and as 27 -n oo the 
identity (4.4) can be used to show f IV, 12 dx Ii - 0 faster than 1/27. However, 
solving the equation (4.3) backward to find V(0, xl) from V(27, xl) appears to be 
ill-posed, as the equation behaves like the heat equation as 2- 0. 

5. Computing the Forward or Direct Problem and Application to the 
Back-Scattering Problem. In order ultimately to apply the algorithm of Section 
3, it is necessary to be able to compute the forward problem for Pscat (e, t, x). This 
has been done in two ways. 

A. The first way is to use a mesh with At = 2Ax1 = 2Ax2. On the edge, 
t = xi, as we can always rotate the variables so that e = (1,0); we have the 
values Pscat given by the boundary condition Pscat = x- if q(s, X2) ds, (1.4). 

(A/Ax1, At/Ax2 < v//2 is the fundamental stability bound in two dimensions.) 

We use the standard difference scheme for the operator O and we note in Figure 
5.1 the circled points which cannot be reached in a step forward in time. They are 
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T 
t x (i x 

x 
t- X -4 

FIGURE 5.1 
Stencil near the surface t = x1. 

obtained by taking a weighted mean with the points to the left and right (marked 
by x). The boundary layer eventually is not resolved by the mesh, and as one 
approaches this situation the computation develops an oscillation. We denote the 
approximate scattered wave solution by w(x, y, t). 

The scheme described above is stable and has been tested on a range of potentials. 
Attempts to find a stable fourth-order extension have been unsuccessful so far. To 
illustrate a sample computation, we consider potentials of the form 

q(x, y) = ca2xe-'(x2 +Y2) X> ?0, 
(5.1) q(x, y) =0, x <0. 

In the computation we took a = 5, leading to a highly peaked potential. 
In Figure 5.2 we plot w(x, y, t) as a function of x and y for several values of 

t. Here, e = 1. It is apparent that as t increases, the solution is composed of a 
smooth, propagating component and a nonpropagating steeply changing boundary 
layer, in agreement with the theory of the preceding section. For large values of 
t the boundary layer is not well resolved and localized oscillations develop. The 
oscillations become more severe as t increases due to the narrowing of the boundary 
layer. The grid size for the computations in Figure 5.2 is 0.04. 

In order to ascertain the effect of the lack of resolution of the boundary layer on 
the physically relevant cross section, we plot in Figure 5.3 the back-scattered cross 
section V/iw(l - r, 0, t) taken at r = 10 for various grid sizes and for various values 
of e. It can be seen that the cross section is smooth and is mesh converged even 
though oscillations are present in the boundary layer. For large E the breakdown is 
due to the fact that errors from mesh effects are as important as changes in q. We 
recollect that q has the dimensions of (length)-2 so that q-1/2 of the order of the 
mesh size is not a reasonable computation. 

In order to elucidate the structure in the boundary layer, in Figure 5.4 we plot 
w(x, 0, t) for t = 6, 7,8,9, 10 for different grids and different values of C. The results 
are presented only in a vicinity of the boundary layer. It is apparent that the 
oscillations are grid-dependent and are smaller as the grid is refined. The more 
important feature is that the scattered wave stays very much the same. 

A sample computation using 801 points in the x direction and 401 points in the 
y direction and run for 14 units of time required - 55 sec . on the Cray 1-S. In this 
case we had the mesh size h = 0.04. No symmetry around y = 0 is assumed, even 
though the solution is symmetric. A calculation with h = 0.08 and using Nx = 401 
and Ny = 301, which gave an accurate cross section, required 15 sec. We also ran 
on the Cray X-MP at the Naval Research Laboratory. 
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FIGURE 5.2 

A time series of the scattered wave. The speed of propagation is 1. 
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FIGURE 5.3 

Back-scattered cross sections. 
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FIGURE 5.4 

Structure of the boundary layer. 



334 ALVIN BAYLISS, YANYAN LI, AND CATHLEEN S. MORAWETZ 

The far field boundary conditions in y are very sensitive near the plane t = x. 
The radiation condition u - F(t - r, 0)/\F, when implemented numerically, proved 
unstable in all implementations near this plane. (It is incorrect.) The computations 
presented above were obtained using the boundary condition 

(5.2) u - F(t-y, x), 

which proved stable. Very little reflections were observed for (5.1) provided the 
boundary included at least twice the support of q. We are presently attempting a 
correct radiation condition in a region bounded away from the boundary layer. 

It is clear that no uniform grid will provide adequate resolution of the boundary 
layer for large t. An accurate computation of the boundary layer would require 
either a severely stretched mesh or the use of the boundary layer equations de- 
veloped previously. Although the computations suggest that the far field can be 
accurately computed without resolving the boundary layer, because the oscillations 
do not propagate, it remains to be seen what effect these oscillations will have on 
the iteration scheme proposed above. We note that the functional F(x; q) does not 
involve data near the boundary layer for q of compact support. 

B. The second scheme used a Goursat algorithm for the variables t - x1,t + 
xi. With a mesh size in x2 that is twice the mesh size in x1, t the scheme was 
stable. Using only 50 x-points, 30 y-points, the program was run for t < 3.0. The 
computation with the coarse mesh size in x1 equal to 0.1 gave similar results to the 
fine mesh for the case where q is given by (5.1). The machine was a Cyber 180. 

To use either of these methods in the iterative algorithm based on (3.1), we have 
a very large integral to compute on each iteration, namely 

fj||,<e xPscat(ee (2x - x'),x')q(x')Idx'l I del. 
ems' <ems 

The values of Pscat are generated for each e, and we may rotate the variables and 
compute 

fPscat (eo 2xi - x1, x')q(Ux') jdx'j 

with U a unitary matrix that transforms e into eo and Pscat denoting the scattered 
wave from q(Ux'). Then the order of computations is: for each t compute values 
of P for each fixed row x1 = const running through the values of x2. The product 

PqjLix'j at each point is to be added for all x2 and the sum is then accumulated 
at all values of xl = 2(t + x1). Since in method A, t = jL~t and x1 = 2mL~t, 
x1 = (m + j/2)LAt, this operation should be performed only at every other time 
step. 

6. Other Relations for q in Higher Dimensions. The basic relation of 
Section 1 is an integral relation for q in terms of back-scattering data. However, 
there are other possible inverse problems. For example, suppose all the scattered 
field from 6(t - x1), i.e., S(eo, t - Ixj, e'), is known; can we find q(x)? Here at least 
we can say that if S = 0 then q _ O, a conclusion we cannot draw from our basic 
relation. The method uses a generalization of the Deift-Trubowitz trace formula 
derived in the time-dependent framework. 
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THEOREM. For q of compact support, 

(6.1) Aq = +42 |9 J P(-eo, -t, x)P(-e', s- t, x)S,(eo, 8, e') de' ds dt 
1 00 

with 

S(eo, s, e') = Cn S (eo, s + 2r2 e') rn-2 dr 

Cn = c(n), where S is the scattered field and n is the number of space dimensions. 

Remark. This formula can be transformed into the frequency domain and is 
easily seen to become 

LAq = 4 J | p2 (-eo, w, x)S(eo, w, e) de' dw, 

where p is the Fourier transform of P and 

S(eo, r, e') = cn e-wt2 S(eo, w, e')tn-2 dt. 

Here, denotes Fourier transform. 
An iteration for finding q from S could be done by using trial q's to find p and 

determining a new q from the above formula. 
Proof of the Theorem. We obtain a preliminary formula using the two solutions 

P(eo,t,x) and P(-eo,-t,x). 

We would like to consider 
+00 

Pt(eo, t, x)P(-eo, -t, x) dt, 

but it does not exist. But we can form, as we shall see, 

{+0 1+00 (Pt (eo, t, x)Px1 (-eo, -t, x) + Px1 (eo, t, x)P,(-eo, -t, x)) dt 

(6.2) -00 
r+o 00 

- / as (Pt(eo, t, x)P(-eo,-t, x)) dt = I. 

We must extend (1.3) to more terms, and we find 

P(eo, t, x) = 6(t - xl) - 2 J q(s, X2) dsH(t - x1) + B+(x)C(t -xi), 

where C = H. On the other hand, 

P(-eo, -t, x) = 6(t - x) + - J q(s, x2) ds(1 - H(t - x1)) + B- (x)C* (t -x), 

where C* = 1 - H. 
The two solutions have common support only on t = x1, so we can use the above 

expansions. 

The product 6'(t - x1)6(t - x) integrates to zero. The cross term 

6'(t- x1) (2 J q(s, X2) ds) (1 - H(t - x1)) 

-2 |J q(s, X2) ds6(t-xl)6(t-X x), 
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when integrated with respect to t, gives, when differentiated with respect to x1, 

| -2b(t- Xl)b(t- xi)l q(s, X2) ds) dt) 

which vanishes. All these formulas can be established using limits of Gaussians 
instead of delta functions. 

The remaining terms yield 

jo a (S(t - xi)(1 - H(t - xi)) (- 
x 

f q(s, x2) ds) ( q(s, x2) ds) 

+ 6'(t - xl)B-(x)C*(t - x1) + 6(t - x)B+(x)H(t - xi)) dt 

=- x1 (j q~sxq(s,X2)ds q(sx2)ds) + - 2(-B- +B+) 

= --q(x) f q(s, X2) ds - -q(x) f q(s, X2) ds 

+ --(-B_+ B+) 29x 
or 

I=- a((j| q(s, x2) ds) + q(8,X2)ds + -(-B + B+). 

We next compute B?. We have, by standard theory, 

1 [xi ( 1fxi 
2B+ + -/ q(s, X2) ds + q (-2 q(s, X2) ds) = 0, 

2 
c00 x2U 2F '' 

2B_ I1- f q(s, X2) ds + q (+ q(s, X2) ds) = 0. 

Hence, 

a92 1 a2 /xi \2 

X2 (B+ -B) + q - ax2 q(s X2) )s 

(6.3)-1 21 (f| q(s, x2)ds)=0. 4 ax2 

Thus we have from (6.2), /axi1 =- Aq or 

(6.4) Aq = -4 ] f (Pt(eo, t, x)P(-eo, t, x)) dt. 

This is similar to a preliminary formula of Deift and Trubowitz [3] but we note 
that the Fourier transform of P is not the Jost function. That solution would have 
to behave like 6(t - xi) as xi -- -oo, and in higher than one space dimension this 
solution does not exist in general. 

We next relate P(e, t, x) to its scattered data S(e, s, e'). We define S by 

(6.5) S(e, s, e') = Cj | S (e, s + 1r2, e') rn-2 dr 

for n > 2. 
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Here, cn depends only on the dimension. To determine S from S for n = 3 is 
a simple integration. For n > 3 we differentiate with respect to s several times, 
and then the exponent in r can be reduced to 1 since S, = rS, and the right-hand 
side can be integrated. For n = 2 the transform is an Abel transform and can be 
inverted uniquely. 

Then we have the following 

LEMMA. If S is given by (6.5), then for t > e * x, 

P(e, t, x) = P(-e, t, x) + J P(-e', 8 - t, s)S(e, s, e') de' ds. 

Proof. The right-hand side is a solution of the differential equation since it is 
an integral over solutions. We are assuming here that S decays sufficiently rapidly 
when its middle argument goes to infinity. Let t be sufficiently large so that on the 
range of s where S is not, say, less than E, P(-e', s - t, x) = (s - t + e' x). Then 
the right-hand integral is 

I 6(s-t + e' x)S(e, s, e') ds de'+ 0(E) 

= J S(e, t-e' x, e') de' + 0(E) 

= J S(e, t - IxI + Ix(1 - e' x/IxI), e') de' + 0(E) 

= S (e,t-Ixl+Ixl2sin 2 , el) de' + O(E), 

where e' x/Ixj = cosO. 
The leading term vanishes as IxI oo, t - IxI bounded, except near 0 = 0. Using 

the methods used in proving our first basic relation, we find that the right-hand 
side tends as IxI -- oo and E -O 0 to 

IX-(n-1)/2Cn JS (e, t-1xl + 2, 1 rn-2 dr, 

which by the definition of S is IxK-(n-1)/2S(e, t - jx, x/IxI). Hence the right-hand 
interval behaves for t > e x like Pscat(e, t, x) as t -- oo, (1.3). This uniquely 
determines Pcat (e, t, x) for t > e x by domain of dependence arguments extending 
to infinity. 

Remark. It follows that Pscat 0 if S or S(e, s, e') 0 and hence, by (1.3), 
q 0_ . This is related to Marchenko's formulas, see [2]. 

We then have 

(6.6) q = J 2(P, - P., )(-e', s - x1, x)S(e, s, e') dsde'. 

The same kind of dependence arguments show, since 

P(-e, -t, x) = f P(e', s - t, x)6(s)6(e + e') de ds', 

that as t -- +oo 

P(-e, -t, x) + J P(e', s - t, x)S(e, s, e') ds de' 

has the same data as P(e, t, xk). Hence it is P(e, t, x). 
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Note that the boundary layer described in Section 3 is not a part of the data at 
00. 

The analogue of the Deift-Trubowitz formula is obtained by substituting the 
t-derivatives of 

P(e, t, x) = P(-e, -t, x) + f P'(-e', 8 - t, x)S(e, 8, e') de' ds 

in (6.3) with e = eo. Since f PPt dt = 0 and the remaining terms can be integrated 
by parts with respect to 8, we have completed the proof of the theorem. 
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