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Abstract. In this paper, we present an essentially nonoscillatory spectral Fourier 
method for the solution of hyperbolic partial differential equations. The method is 
based on adding a nonsmooth function to the trigonometric polynomials which are the 
usual basis functions for the Fourier method. The high accuracy away from the shock is 
enhanced by using filters. Numerical results confirm that essentially no oscillations de- 
velop in the solution. Also, the accuracy of the spectral solution of the inviscid Burgers 
equation is shown to be higher than a fixed order. 

1. Introduction. In this paper we discuss shock-capturing techniques using 
spectral methods. In particular, we would like to present an essentially nonoscilla- 
tory version of the spectral Fourier method when applied to a nonlinear hyperbolic 
equation. The main difficulty in applying spectral methods to discontinuous prob- 
lems is of course the Gibbs phenomenon. In fact, this problem exists even on 
the approximation level. It is well known that if a discontinuous function f(x) is 
approximated by its finite Fourier series PNf, 

N 

(1. la) PNf E ikx 
k=-N 

27r 

(1.lb) fk = f(x)e ikx dx, 

then the order of convergence of PNf to f is only 0(1/N) for each fixed point. 
Moreover, PNf has oscillations of order 1 in a neighborhood of 0(1/N) of the 
discontinuity. 

In the applications, we usually have piecewise C' functions, and in this paper 
we will consider only those functions. It is known that it is possible to improve 
the accuracy of the approximation away from the shocks. There are currently two 
methods (see [7], [9]) that are being used. The first [9] amounts to modifying the 
Fourier coefficients by multiDlVing them by a decreasing function r(k). Some of the 
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commonly used filters are 

Irk - ea((k-ko)/N)2, Iki > ko, 
(1.2) Tk=1 II<0 

The second method [1] is based on convolving the approximation with an appro- 
priate C' function 0 (x, y) such that 

(1.3) PNf * '(X, y) - f (y)* 

While both (1.2) and (1.3) are effective away from the discontinuity, they do not 
eliminate the Gibbs phenomenon in the neighborhood of the shock. This is very 
important for the stability of the spectral method when applied to partial differen- 
tial equations. In fact, in Section 2 we show that the total variation of PNf grows 
like log N. It is easily shown that this is the case also for the filters in (1.2). 

In Section 2, we show that by adding a sawtooth function to the basis func- 
tions eikx one can control the Gibbs phenomenon. This, in conjunction with the 
filters (1.2)-(1.3), yields a higher-order essentially nonoscillatory approximation to 
a piecewise C' function. In Theorem 2, we prove that the total variation of the 
new approximation converges to that of the approximated function. We also prove 
that the convergence for the new approximation in the L1 norm is one order higher 
than that of the usual spectral approximation. 

Many modern nonlinear schemes for the solution of the conservation equation 

(1.4) Ut + f (U)X = 0 

are based on two distinct steps, namely reconstruction and time marching. We use 
the cell averaging formulation to rewrite (1.4) as 

(1.5) + ,ix-(f (uj+1/2) - f(uj-1/2)) = ? 

where 

AXL = Xj+l/2-Xj-l/2, U jA 
uj-/2dx, 

f (Uj+1/2) = f (U(Xj+1/2)). 

The first step, then, is to reconstruct the function u(x) from ui(x). It is here that we 
use the essentially nonoscillatory technique developed in Section 2. For the second 
step, the time marching, we use the third-order Runge-Kutta scheme developed in 
[13]. We try to avoid any modification technique, such as the application of limiters, 
in order to avoid deterioration of the overall accuracy. 

We demonstrate in the last section that the procedure applied to several model 
problems yields indeed essentially nonoscillatory results with an order of accuracy 
which is higher than algebraic away from the discontinuity. 

2. Essentially Nonoscillatory Approximation. In this section, we suggest 
a method to reconstruct an essentially nonoscillatory approximation to a piecewise 
C? periodic function from its first N Fourier coefficients. The approximation is 
essentially nonoscillatory in the sense that the total variation of the approximation 
converges to the total variation of the approximated function. Moreover, the ap- 
proximation converges in the maximum norm outside a small interval around the 
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point of discontinuity. Applying the filters (1.2)-(1.3) will increase the order of con- 
vergence away from the discontinuity, thus providing an essentially nonoscillatory 
spectral approximation. 

For simplicity, assume that u(x), 0 < x < 2wr, is a periodic piecewise CO' function 
with only one point of discontinuity at x8, and denote by [u] the value of the jump 
of u(x) at x8, namely 

(2.1) [ u(X) - u(x;). 

We assume also that the first 2N + 1 Fourier coefficients ui of u(x) are known: 

1 27r 

(2.2) fi = 2 a- u(x)e-ilx dx, -N < I < N. 

The objective is to construct an essentially nonoscillatory spectrally accurate ap- 
proximation to u(x) from the fil's. We start by noting that the Fourier coefficients 
uit's contain information about the shock position x8 and the magnitude [u] of the 
shock. In fact we can state 

LEMMA 1. Let u(x) be a periodic piecewise CO' function with one point of 
discontinuity x8; then for IIl > 1 and for any n > 0, 

n ____ I2U ~k)] 2*r u n 
(2.3) u = e-lzs Ex + 7- ] +e dx. 

k=O2- 

Proof. Since 

1 
- 

27r il d - 
Xs i d + 

27r 

ut = ukxje-" d u~x~e- dx+- u(x)e-1x dx, 
2w Jo 2w J- 2w Jx 

we can integrate by parts to get 
(2.4) iti~~e ~ u(x+) - u(x;-) 1 2iru u(x)e-ilxdx 

(2.4) ult = e-ilx, u8s) iUZ + 2 () dx; 
2wril 2w- ii 

the rest is obtained by induction. This completes the proof. 0 

As an example, consider the sawtooth function F(x, x8, A) defined by 

(2.5) F(x8, xA) = A{ - x < x8 

27r -x, x > x. 

Note that the jump of the function, [F], is A and all the derivatives are continuous: 
[dkF/dxk] = 0 for k > 1. That means that the expansion (2.3) can be terminated 
after the first term, yielding the following results for !k, the Fourier coefficients of 
F(x, x8, A): 

e-ikx, 

(2.6) fk(X8,A) = A ik IkI > 1, 

fo(x8,A) = A( -x x,). 

This example suggests that we can rewrite (2.3) as 

(2.7) fit = .fl(x8, [u]) + e-its n- [u( ) ] + 1 u U(n)()e-il1. E (il)k+1_ + 2 I i) 
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The order 1 oscillations in approximating u(x) by its finite Fourier sum 

N 

(2.8) PNU = E fleilx 
1=-N 

are caused by the slow convergence of 

N 

(2.9) FN(X, Xs, [U]) = fi(xs, [u])eilx 
1=-N 

to the sawtooth function F(x, x8, [u]). Therefore, those oscillations can be elim- 
inated by adding a sawtooth function to the basis of the space to which u(x) is 
projected. To be specific, we seek an expansion of the form 

(2.10) VN(X) = E atetlx + E A e-v eilx 
1Il<N IlI>N 

to approximate u(x). The 2N + 3 unknowns al (Ill < N), A and y are determined 
by the orthogonality condition 

r2 

(2.11) j (u - vN)e-ikxdx = 0, IkI < N + 2. 

The system of equations (2.11) leads to the following conditions: 

(2.12) at= il, IIl <N 

(where fi are the usual Fourier coefficients of u(x), see (2.2)) and 

(2.13a) (N + 1)e = UN+1, 

(2.13b) i(N + 2) ei(N+2)Y = UN+2 

Solving (2.13) for A and y one gets 

(2.14a) eiy - (N + 1)iN+l 

(N + 2)fiN+2' 

(2.14b) JAI = (N + 1)I|iN+11I 

The sign of A is determined by (2.13). 
Note that in the expansion presented in (2.10) the second sum starts at II = 

N + 1. This is due to the fact that we make the additional basis function F(x, y, A) 
orthogonal to eikx, thus we use F(x, y, A) -FN(x, y, A) in the expansion (2.10). The 
procedure described in (2.14) is second-order accurate in the location and jump of 
the shock. In fact, we can state 

THEOREM 1. Let u(x) be a piecewise C? function with one discontinuity at 
x. Let y and A be defined in (2.14); then 

(2.15) ly- xs = 0(1/N2), IA - [u]I = 0(1/N2). 
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Proof. From (2.3) we get 

ei(N+l)x, [u']+ ( 1/ 
- (N+1)N+1 [ i(Nz+1) + (N+1)2JJ 

(N+ 2)UN+2 e-i(N+2)x, [[U] + i(N+2) +0 ((N+2)2)] 

= etXi [l o + 2(hN+)] 2. 

By the same token, 

[4 }2 [uI]2 1~~~~1/2 
AI = (N + 1)IiN+lI = [[u] -(N + 1)2 + (N + 1)2] 

= [U]| [1 + O N2 ) 

It should be noted that a better approximation to the shock location xs and its 
magnitude [u] can be obtained if we add to the basis functions a function of the 
form 

(2.16) E [4 + T= e-ilyeilx 

and extend (2.11) to IkI < N + 3. In practice, however, (2.10) is enough to get an 
essentially nonoscillatory scheme. 

In order to demonstrate that the procedure described in (2.10), (2.12), and (2.14) 
is indeed essentially nonoscillatory, we recall the definition of the total variation of 
a function. 

Definition. The total variation of u over [0, 2wx]-TV[u]-is defined as 

n 

(2.17) TV[u] = supE Iu(xi) -u(xi-)l 
i=1 

where 0 < x0 < xl < < Xn < 2ir is a partition of [0, 2ir]. The supremum is 
taken over all partitions. 

It is clear that if u'(x) E L1 then 

27r 
(2.18) TV[u] = j Iu'(()I di. 

If we approximate the function u(x) by its finite Fourier series PNU defined in (2.8), 
then it is well known that the total variation of PNU need not approximate that of 
u. In fact we can state 

LEMMA 2. Let the sawtooth function F(x, 0, 1) and its Nth Fourier approxima- 
tion FN(x, 0, 1) be defined by (2.5) and (2.9); then 

(2.19) TV [F] = 47r, 

(2.20) TV[FN] = 0(log N). 
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Proof. Equation (2.19) follows directly from the definition of total variation. As 
for (2.20), we note that 

f2lrf2ir N 

TV[FN(XI0,1)] =/ IF' (XO 1)Idx= t j ei dI 
1=-N 

1i0 

(2.21) f2ir sin(NA | 1 d 

sin 2X 

= | |sin(N+2)X d +O(1) 

j sin 2X 
The first term on the right-hand side of (2.21) is the Lebesgue constant. It is known 
[14, p. 67] that it grows like log N. Hence (2.20). 0 

We can therefore conclude that TV(PNu) does not converge to TV[u]. This 
reflects the existence of large oscillations in the neighborhood of the discontinuities. 

The situation is different for VN defined in (2.10). In fact we can state 

THEOREM 2. Let u(x) be a piecewise CO' periodic function with one point of 
discontinuity x8, and a jump of [u]. Let A and y be such that 

(2.22) Iy-xsI = Al, IA-[u]I =A2- 
Let VN be defined in (2.10); then 

(2.23) TV[VN] < TV[u] + Lo loN + L1lAlNlogN + L2A2 logN, 

(2.24) IIVN - UhIL < COlN4 + Clz/1 log N + C2LA2* 

We present the proof in a series of lemmas in order to clarify the role of each 
one of the terms on the right-hand sides of (2.23) and (2.24). 

LEMMA 3. Let FN (X, a, 1) and FN (x, f, 1) be defined by (2.6) -(2.9) and A = 

a -,f > 0. Then, if A < 1/N, 

(2.25) TV[FN(x, a, 1) - FN(x,/3, 1)]= O(AN log N), 

(2.26) lIFN (x, a, 1) - FN(X, f, 1)IIL1 = O(A log N). 

Proof. Since FN(XI a, 1), FN(X, f, 1) are trigonometric polynomials, they are CO' 
functions. Therefore 

{2X 

TV[FN(X, a, 1)- FN(X, , 1)]= j IF'(X, a, 1) - FN(x, f, 1)1 dx 

(2.27) = j E [eil(xa) - eil(zxf)] dx 

p2ir Na a 0 
=4 |sin I (x- 2 )sin 1 2 dx. 

Upon defining al = sin I2 we can rewrite (2.27) as 

(.) T2x,1-Fxf,1=j2X N 

(2.28) TV[FN(x, a,1) - FN(Z~x,,1)] = 4 a, sin I do; 
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we note that the at are positive and monotone in 1, aO, - a0 < 0. Define now 

(2.29) BI= E sin ke 
k=O 

to get 
N N 

Zal sin 1 = Z o(BI()B- 1 

(2.30) N 

= Z(al-1 - at)BI1 + UNBN. 

1=1 

Therefore, 
2Xr N 2Xr 

al sin cd? < UN ] BN(a) dI 

(2.31) N 

+ Z(oi - a1-)] IBI- (I)I do. 
1=10 

Denote now 
2rem 

(2.32) 
it 

=<< 
max I d((l ; 

from (2.28) and (2.31) we obtain 

(2.33) TV [FN (x, a, 1) - FN (X, A, 1)] < 8/IUN. 

In order to estimate ,u, we first note that 

(2.34) B1(s) = (I+1) sin (i/2 sn 2 sin ~/2 

Therefore, 

(2.35) II I d ? sinl~/2 d( =i*. 

But pI is exactly the Lebesgue constant; therefore, 

(2.36) Pt = O(log 1). 

Since UN < NA, we get 

TV [FN (X, a, 1) - FN (X, A, 1)] = O(A N log N). 

To obtain (2.26), we follow the same arguments as above. Similar to (2.27) and 
(2.28) we have 

2X7r 27X N 

(2.37) | IFN (xaC1) - FN (xpl)I dx < 2A + 4 JZ&cosl| do, 

where &I = al/l, 1 < I < N. The &I's are positive and monotone in 1, al-at l1 < 0. 
If we define 

(2.38) Z=cosk( = cos (I+ 1)t sinl/2 
(2.38) k=1co 

k~=c 
2 sin ~/2' 
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then similar to (2.33) we have 

2ro 

(2.39) j IFN (x, a, 1) - FN (X, A, 1) I dx < 27rL + 8ii&, 

where ,u is defined in (2.32) with B1 replaced by Bl of (2.38). Notice that (2.35) also 
holds for Bi(x) and I&iI < A. (2.26) now follows from (2.35), (2.37) and (2.39). 0 

LEMMA 4. Let FN(x, ax, A) and FN(X,,A, B) be defined in (2.6)-(2.9). Denote 

(2.40) Ia-I = All, IA-BI = A2 

Then 

(2.41) TV[FN(x,aA) -FN(x,l, B)] < K1LA1NlogN+ K2A2logN, 

(2.42) IIFN(x, a, A) - FN(x, f, B)IlL1 < CpAj logN + C2A2 

for K1, K2, C1, C2 independent of N. 

Proof. We have 

(2.43) TV[FN(X, a, A) - FN(X, Ai, B)] < TV[FN(X, a, A) - FN(x, fi, A)] 
+ TV [FN (x,A, A) -FN (x,f3, B)]. 

The first term in the right-hand side of (2.43) is bounded by (2.25); for the second 
term, 

TV[FN(x, f, A) - FN(x, :, B)] = TV [(A ] 

1=-N 

(2.44) 2 N 

< IA-BIl E e"(x-) dx 
1=-N 

1:00 

< K2A2logN. 

Similarly, we have 

IIFN(x, a, A) - FN(x,/3, B)IIL1 
(2.45) < IIFN(x, a, A) - FN(X, A, A)IlL1 + IIFN(x, f, A) - FN(X, f, B)IIi1 

= IIFN(x, a, A) - FN(x,3, A)IIL1 + IA - BIIIFN(x,/3, 1)IIL1 . 

The first term on the right side of (2.45) is bounded by (2.26). For the second term, 

(2.46) IA - BIIIFN(x,f,, 1)IIL1 = LA2IIFN(x,fl, 1)IIL1 < C2LA2. 

The assertion (2.42) now follows from (2.45), (2.46). 0 

LEMMA 5. Let S(x, a, A) and SN (x, ,A) be defined by 

?? eil(x-a) N eil(X-a) 
(2.47) S(x, a, A) = A E ei(i(),2 SN(x, a, A) = A E e(i)x2) 

1=-0 1=-N _____ (il) 
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Then 

(2.48) TV[S(x,a,A) - SN(x,a,A)] < K3 N 

(2.49) IIS(x,a,A)-SN(x,a,A)IIL1 <K4 logN 
N2 

for K3, K4 independent of N. 

Proof. It is clear that 
O27 

TV(S(x, a, A) - SN(X, a, A)) = j IF(x, a, A) - FN(X, a, A)I dx. 

The estimates (2.48)-(2.49) then follow from [14, p. 185]. 0 

We are now ready to prove Theorem 2. 
Proof of Theorem 2. First we prove (2.23). In view of (2.3) we can write 

(2.50) u = F(X, X8, [u]) + S(x, X8, [U']) + g(x) 

and therefore 

(2.51) PNU = FN(x, x8, [u]) + SN(X, X, [u']) + PNg(x). 

We can also rewrite (2.10) as 

(2.52) VN (X) = PNU + F(x, y, A) - FN (x, y, A) 

hence 

VN(X) = FN(X,XS, [u]) + SN(X,XS, [u']) + PNg(x) + F(x,y,A)-FN(x,y,A) 

or 

VN(X) = [FN(X, x8, [u]) - FN(X, y, A)] 

(2.53) + [F(x, y, [u]) + S(x, y, [u']) + g(x -y + x8)] 
+ [SN(X, X8, [U']) - S(X, Y, [U'])] + [PN9(X) - 9(X - Y + X8)] 

+ [F(x, y, A) - F(x, y, [u])]. 

The second term on the right-hand side is just the original function u shifted, 

(2.54) F(x, y, [u]) + S(x, y, [u']) + g(x - y + x8) = u(x - y + x8); 

also from (2.48), 

TV[SNp(x, x8, [u']) - S(x, y, [u'])] < TV[SNp(x, x8, [u']) - SN(X, y, [u'])] 

(2.55) + TV[SNp(x, y, [u']) - S(x, y, [u'])] 

< Klog N 
<KN 

and finally, since g(x) is smooth enough, 

(2.56) TV[PNg-g(x-y + x8)] < ? 

Therefore from (2.53) and Lemmas 4 and 5, 

(2.57) TV[VN] < TV[u] + L0 N + L1\l1NlogN + L2A2 logN. 



398 WEI CAI, DAVID GOTTLIEB, AND CHI-WANG SHU 

Next we prove (2.24) following the same argument above. From (2.50), (2.51) 
and (2.52), 

VN (X) -U(X) = [FN (X, X8, [U]) -FN (x, y, A)] 

(2.58) + [SN(X, X8, [U ])- S(X, X8, [U'])] 
+ [F(x, y, A) - F(x, x8, [u])] + [PNg(x) - g(x)]. 

The first term will be bounded by (2.42), the second term by (2.49); for the third 
term, 

r2,r 

(2.59) jIF(x, y, A) -F(x, x8,[u])I dx < Cl Al + C2A2 

Now since g(x) is smooth enough, we have 

(2.60) ||PN9 - 9gIL1 = ) 

Therefore from Lemma 4, Lemma 5 and (2.59)-(2.60), 

IIVN - UIL1 <CO lN + C1A1 log N + C2L\2, 

and the proof is completed. O 

COROLLARY. The method suggested in (2.15) yields 

IA-[u]l = O( ) and IY-x~ j = ? 
1 

and therefore 

(2.61) TV[VN] < TV[u] + K loN 
N' 

(2.62) IIVN - UIIL1 < C N2 

Thus, the total variation of VN converges to that of u. Convergence of VN to 
u in the L1 norm is one order higher than in the case of PNU, for which the rate 
of convergence in L1 is O(log N/N). The method therefore yields a reconstruction 
technique which is total variation bounded. 

We conclude this section by pointing out that a similar result for collocation 
method and/or for Chebyshev expansions can be developed along the same lines. 
Computationally, we observe similar results for Galerkin and collocation methods 
(see Section 4). In practice, collocation is used more often than Galerkin, especially 
when solving a nonlinear PDE (Section 3). 

3. Essentially Nonoscillatory Spectral Schemes. In this section we apply 
the techniques discussed in Section 2 to solve the PDE (1.4): 

(3.1a) Ut + f(u)x = 0, 

(3. lb) U(X,0) = U0(x). 

If the cell average of u is defined by 

1 x+Ax/2 
(3.2) iu(x, t) = X -Ax/ u(,t)d 
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then (3.1) can be rewritten as 

(3.3a) 2-up(,t) + Li [f (u + 2,t)) - f (u - 
X 

t))] =0, 

(3.3b) !I(x, 0) = 'U (x). 

Hence a semidiscrete conservative scheme 
(34) ~ ~~d L(T) = 

(3.4) Tuj = L(~U)j = - (fj+1/2 - fj-1/2) 
t 

~~~~~~~Ax 
will be of high order if the numerical flux f4+1/2 approximates f(u(xj + Ax/2, t)) 
to high order. This is the approach used in the MUSCL type semidiscrete finite 
difference TVD and ENO schemes [11], [4]. Notice that (3.4) is a scheme for the 
cell averages Uji. However, in evaluating fj+1/2, which should approximate 
f(u(xj + Ax/2, t)), we also need accurate point values uj+1/2 = u(xj + Ax/2, t). 
For finite difference schemes the reconstruction from cell averages to point values 
is a major issue and causes difficulties, especially in several space dimensions [4], 
[5]. For spectral methods, this is very simple because U is just the convolution of u 
with the characteristic function of (xj-1/2, xj+1/2). To be precise, if 

N 

(3.5) u(x) = E ale"' 
1=-N 

(we have suppressed the time variable t), then 
N 

(3.6) U(x)= E dleilx 
1=-N 

with 

(3.7) al = uial, l = (lAx/2) for 0 < I1I < N, uo = 1. 

Notice that for collocation or Galerkin with Ax = 2ir/2N, we have IlAx/21 < r/2 
for IIl ? N, hence 2/ir < al < 1. The division or multiplication by 01 thus causes 
no stability difficulty. We point out that al resembles the Lanczos filter [8, p. 65], 
which in our notations is sin(lAx)/lAx, and approaches zero when IIl -- N. 

The easy transform between u and U is also valid in several space dimensions and 
for other spectral expansions (e.g., Chebyshev expansions). We omit the details. 

We now state our scheme as (3.4) with 

(3.8) 4+1/2 = f(VN(Xj+1/2 0) 

where VN is defined by (2.10). We obtain the Fourier coefficients ail of U from {Uj} 
by collocation, and obtain al of u needed in (2.10) by (3.7). The main difference 
between the conventional spectral method and the current approach is that we use 
the essentially nonoscillatory reconstruction VN instead of the oscillatory PNU in 
(3.8). 

The scheme, as it stands, can only treat a solution of not more than one discon- 
tinuity. However, it can be easily generalized. 

We remark that if u is smooth, (2.10) keeps spectral accuracy because A deter- 
mined by (2.14) will be spectrally small. 
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To discretize (3.4) in time, we use the high-order TVD Runge-Kutta methods in 
[13]: 

(3 9) U(i) Z[aikU(k) + I3ikAtL(U(k))], i = 1, .. ., r, 
k=O 

U(?) =U : U(r) =:Un+l. 

3 In Section 4, we use a third-order scheme r = 3 with ce1o = I1o = 1, 020 = 4 
I320 = O& 021 = 321 = 4, 030 = 3i 330 = 031 = 3531 = 0, &32 = I832 = 2. We use 

4 3 ~~~~~~~~~~~~~3. 
a small At so that the temporal error can be neglected. These methods are TVD 
(or TVB) if the Euler forward version of (3.4) is TVD (or TVB). In light of (2.61) 
we expect the total variation of (3.4)-(3.8)-(3.9) to grow at most at the rate of 
O(ln N). In practice, we observe stable results (Section 4). 

In summary, a suggested algorithm can be: 
(1) Starting with {u;}, compute its collocation Fourier coefficients {iii} and the 

Fourier coefficients {al} of u by (3.7). 
(2) Compute the shock location y and the shock strength A by (2.14). 
(3) Compute VN(x) by 

VN(X) = ao + rE (al - -l e 1) eilx + F(x, y, A) 
1=-N 

1$0 

and a filtered {U } by 

_j* =_n + E r_ 
di 

-l-e-il) eilxj + F(x ,y A), 

1$0 

where ri is some filter, e.g. (1.2). 

(4) Use fij+/2 = f(VN(Xj+l/2,t)) in (3.4), and use 

i-i 

U = 
[CikU* (k) +I3ikAtL(U(k))], i = 1,... , r, 

k=O 

in (3.9). 
As in the finite difference case [11], [12], we may also apply limiters to obtain 

provable TVB schemes while still keeping spectral accuracy. Let 

(3.10) uj = uj+1/2 -Uj Uj+1 = uj+1 -U3+1/2, 

where Uj+1/2 = VN(Xj+1/2, t) in (3.8). We limit the increments by 

imod) =MjjAUAj z(mod) 
(3.11) j(mod) = m(2,A+u ), 

=(mod) - - ) 

where m is the minmod function with TVB correction: 

J a1, if jaiI < MAx2, 

(3.12) m(a1,. . ,ak) = s mminIail, if lail > M/\2 and sign(ai) = s Vi, 

1 0, otherwise, 
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with M = 2M2 or M = Mj = 2(3 + 1OM2)M2 Ax2/(LAx2 + IA+UjI + IA_Uj I). 
Here, M2 is the maximum of Iuozz in some region around the smooth critical points 
of u0(x). See [12], [2]. 

The flux (3.8) is modified to 

(3.13) fj+1/2 = h(uj + jj(mod) zj - -(mod)) (3-13) fj+1/2 3 Uj~~j - uj+1 

where h is any monotone flux [3]. We then have the following lemma. 

LEMMA 6. Scheme (3.9)-(3.13) is TVB and formally spectrally accurate in 
space (i. e., the spatial local truncation error in smooth regions is spectrally small), 
if the filtering (1.3) is used. 

Proof. The proof for TVB can be found in [11], [12]. By [1], the local truncation 
error is spectrally small in smooth regions if the limiter (3.11) returns the first 
argument. The proof that (3.11) always returns the first argument in smooth 
regions, including at critical points, can be found in [2]. El 

We remark that the scheme (3.4)-(3.8)-(3.9), with or without the TVB limiting 
(3.11), yields almost identical results in our numerical examples (Section 4). This 
indicates the good stability property of the scheme (3.4)-(3.8)-(3.9). We also re- 
mark that (3.13) yields a TVB scheme regardless of the underlying method (3.4). 
However, accuracy in smooth regions may be lost if the underlying method (3.4) is 
globally oscillatory, because the limiters (3.11) may be enacted in smooth regions to 
counterbalance these spurious oscillations. Numerical examples in Section 4 verify 
these remarks. In [10], McDonald also used some limiters to obtain a TVD spectral 
scheme. However, the accuracy in smooth regions is questionable in view of the 
above remarks. 

4. Numerical Results. We use several numerical examples to illustrate the 
methods introduced in the previous sections. 

Example 1. We use the approximation (2.10)-(2.12)-(2.14) on the following 
function 

(4.1) ) { ~~~~siln X 0 < X < 0.9, 
(4.1) U(x)=12 0??09 

-sin X 0.9 < x < 27r. 

Notice that [u(k)] :$ 0 for all k > 0. Both Galerkin and collocation methods are 
tested. Exponential filters (1.2) with m = 4, ko = 0 are used. 

In Table 1, we list the errors of the shock location and shock strength determined 
by (2.14). Notice that the second-order accuracy (2.15) is verified. 

Figure 1 displays the numerical solution of the Galerkin approximation (2.10)-- 
(2.12)-(2.14) with N = 64. Figure 2 is the error of the approximation on a log- 
arithm scale. We have found the same kind of results for collocation approxi- 
mation. In Table 2 we list the L1 error and numerical order in a smooth re- 
gion (in this case, we define the smooth region to be 0.8 away from the discon- 
tinuity). We can see Galerkin and collocation have the same order of accuracy. 
There is no 0(1) error near the discontinuity, overall we achieve 0(logNN/N2) for 
L' convergence, verifying (2.62). For comparison we refer the reader to [7]. 
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FIGURE 1 

Example 1, Galerkin approximation. Solid line is the exact 
solution, the pluses the numerical solution, N = 64. 

FIGURE 2 

Example 1, error of the Galerkin approximation on loga- 
rithm scale for N = 8,16, 32,64, 128. 
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FIGURE 3 

Galerkin approximation of (2.11) with N = 32 for the 
steady state solution of the astrophysics problem [6]. 

FIGURE 4 

Usual Galerkin approximation for the steady state solution 
of the astrophysics problem, N = 32. 
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Example 2. We apply (2.10)-(2.12)-(2.14) on a discontinuous function which is 
the steady state solution of an astrophysics problem [6]. Figure 3 is VN in (2.10) 
with N = 32. For comparison, Figure 4 is the usual Galerkin approximation PNU 
with N = 32. The improvement is apparent. 

Example 3. We solve the Burgers' equation 

(4.2) Ut + (2) =0, 

u(x, 0) = 0.3 + 0.7 sin x, 

using scheme (3.4)-(3.8)-(3.9) and (3.4)-(3.9)-(3.13). We find the shock location 
and strength with (2.14). In our computation, we find that the coefficients of 
modes in the range of 'Na N314 give us the best results to detect shock location 
and strength. It can be proven that in this range of modes (2.14) will not fail in 
the presence of possible transition points in the numerical solutions. The errors 
of (3.4)-(3.8)-(3.9) in smooth regions (1.6 away from shock when it appears), at 
t = 0.8 (before shock), t = 1.42 (when the shock just develops), and t = 2.00 (after 
shock) are listed in Table 3. The numerical solutions are displayed in Figures 5-6. 
The error at t = 2.00, in logarithm scale, is displayed in Figure 7. 

We seem to observe higher than algebraic order in smooth regions both before 
and after the shock develops. This might be the first time superalgebraic accuracy 
is observed in a shock-capturing spectral scheme solving a nonlinear PDE with 
shocks. The usual 0(1) Gibbs oscillation near the shock is also absent in all of 
our calculations. We also notice that the TVB limiter (3.11) does not change the 
numerical results significantly in the smooth region (see Table 4). Actually, we 
observe the same order of accuracy in the smooth region, comparing Table 4 with 
Table 3. This indicates that the scheme (3.4)-(3.8)-(3.9) is by itself very stable. 

Finally, we run the usual spectral scheme (i.e., with VN in (3.8) replaced by 
PNU) with the TVB limiter (3.11). The errors in smooth regions (1.6 away from 
shock) are listed in Table 5 (compare with Table 4). Clearly we only get first-order 
accuracy in smooth regions after the shock develops. This indicates that TVB 
limiting can make a scheme stable but may not preserve the accuracy. 

Example 4. 2-D Steady State. We solve a 2-dimensional scalar conservation law 

U t + (82 ):r + Uy = 0, (XI y) E [0, 2Xr] x [-1, 1], 

(4.3) u(x, 0, t) = sin x, 

u(O, y, t) = u(2ir, yt), y E [-1, 1], t > 0. 

We know that (4.3) has a steady state solution uO (x, y). uO (x, y) actually will be 
the solution to (4.2) if we replace t by y and set u(x, 0) = sin x in (4.2). 

As mentioned in Section 3, (3.4)--(3.8)-(3.9) can be extended to 2-dimensional 
cases and we can use either the Fourier or Chebyshev method in each of the spatial 
directions. To solve for the steady state of (4.3), we use the Fourier method in the 
x-direction and the Chebyshev method in the y-direction. The criterion we set for 
the steady state is that the relative L1 residue between two consecutive time stages 
be less than 10-6, i.e., 

(4 un+ 1 _ Un I|I < 10-6 
(4.4)~ ~ ~~IU~IL 
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FIGURE 5 

Example 3, inviscid Burgers' equation with initial data 
u(x, 0) = 0.3 + 0.7 * sin(x), time t = 2.0, N = 64. Solid line 
is the exact solution, the pluses the numerical solution. 

FIGURE 6 

Example 3, same as Figure 5, except time t = 4.0. 



406 WEI CAI, DAVID GOTTLIEB, AND CHI-WANG SHU 

-4 

t i~~~~~~~~~~~~~~~~~I 

-80 

0 2 4 6 

FIGURE 7 

Example 3, inviscid Burgers' equation, u(x, 0) = 0.3+0.7* 

sin(x). Errors of numerical solutions at time t = 2.00 in 
the logarithm scale for N = 16,32, 64,128. 

Figure 8 displays the profile of the steady state at y = 0.38 and y = 1.00. We 
used 32 points in the x-direction and 8 points in the y-direction. Figure 9 is the 
contour plot for the numerical steady state solution. 

TABLE 1 

Errors of shock location and strength, Example 1. 

Galerkin Collocation 

Location Strength Location Strength 

N Error Order Error Order Error Order Error Order 

8 0.15(0) 0.12(-1) 0.36(0) 0.20(-1) 
16 0.24(-1) 2.6 0.22(-2) 2.4 -0.21(0) 0.8 0.12(-1) 0.7 
32 0.49(-2) 2.3 0.48(-3) 2.2 -0.14(-1) 3.8 0.38(-2) 1.7 
64 0.11(-2) 2.1 0.11(-3) 2.1 -0.32(-2) 2.2 0.11(-2) 1.8 
128 0.26(-3) 2.1 0.27(-4) 2.1 -0.77(-3) 2.0 0.28(-3) 1.9 
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FIGURE 8 

Example 4, steady state solution at (a) y = 0.38 (b) y= 
1.0. Solid lines are the exact solution, the pluses the nu- 
merical solution. 
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TABLE 2 

L1 Error in Region I = {x E [0, 27r], Ix - x51 > 0.8} 

and Region II = [0, 27r], Example 1. 

Galerkin Collocation 

Region I Region II Region I Region II 

N Error Order Error Order Error Order Error Order 

8 0.32(-1) 0.14(0) 0.23(-1) 0.31(-1) 
16 0.32(-2) 3.30 0.75(-2) 4.27 -0.21(-2) 3.46 0.61(-2) 2.34 
32 0.24(-3) 3.75 0.17(-2) 2.11 0.23(-3) 3.20 0.17(-2) 1.79 
64 0.51(-5) 5.55 0.39(-3) 2.14 0.54(-5) 5.40 0.49(-3) 1.86 
128 0.12(-7) 8.67 0.96(-4) 2.04 0.12(-7) 8.82 0.13(-3) 1.92 

TABLE 3 

Errors in smooth region for (4.2). At t = 0.8, the smooth region is [0, 27r]. 

At t = 1.42, 2.0, the smooth region is 1.6 away from the shock. 

t =0.8 t = 1.42 t = 2.0 

N LI Error Order LI Error Order LI Error Order 
16 

0.94(-2) 0.39(-2) 0.44(-2) 
32 3.57 1.66 1.40 

0.79(-3) 0.13(-2) 0.16(-2) 
64 5.00 5.17 5.28 

0.25(-4) 0.35(-4) 0.42(-4) 
128 7.58 7.71 6.58 

0.13(-6) 0.16(-6) 0.44(-6) 

F IGURE 9 

Example 4, contour plot of the steady state solution. 
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TABLE 4 

Errors in smooth regions for (4.2) of new spectral scheme with 

TVB limiting (3.11). For both t = 1.42 and 2.0, the L' errors 

are taken in the region 1.6 away from the shock. 

t = 1.42 t = 2.0 

N LI Error Order L1 Error Order 
16 

0.64(-2) 0.63(-2) 
32 1.90 1.67 

0.17(-2) 0.20(,-2) 
64 5.55 5.29 

0.36(-4) 0.50(-4) 
128 7.75 7.11 

0.17(-6) 0.36(-6) 

TABLE 5 

Errors in smooth regions for (4.2) of the usual spectral scheme with 

TVB limiting (3.11). For both t = 1.42 and 2.0, the L' errors 

are taken in the region 1.6 away from the shock. 

t = 1.42 t = 2.0 

N L1 Error Order L1 Error Order 
16 

0.25(-1) 0.16(-1) 
32 0.98 * 

0.98(-2) 0.17(-1) 
64 1.50 1.17 

0.34(-2) 0.79(-2) 
128 0.84 0.76 

0.19(-2) 0.47(-2) 
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