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Abstract. This is the second paper in a series in which we construct and analyze a 
class of TVB (total variation bounded) discontinuous Galerkin finite element methods 

for solving conservation laws ut + Ed I(fi(u))xi = 0. In this paper we present a 
general framework of the methods, up to any order of formal accuracy, using scalar 
one-dimensional initial value and initial-boundary problems as models. In these cases 
we prove TVBM (total variation bounded in the means), TVB, and convergence of the 
schemes. Numerical results using these methods are also given. Extensions to systems 
and/or higher dimensions will appear in future papers. 

1. Introduction. We consider numerical solutions of the hyperbolic conserva- 
tion law 

d 

(1.1) Ut + ui(u))Xi = 0 

i=1 

equipped with suitable initial or initial-boundary conditions. Here, 

U = (Ui, . . .,Um)t, X = (X1,i *,Xd), 

and any real combination of the Jacobian matrices 

d a fi 

i=1 

has m real eigenvalues and a complete set of eigenvectors. 
In this paper we treat the special case of (1.1) with d = m = 1. We use this as 

a model to present the framework of the schemes, to prove theoretical results, and 
to highlight the essential ingredients of the methods, while keeping in mind that 
these methods are naturally extendable to d > 1 and/or m > 1. 

The main difficulty in solving (1.1) is that solutions may contain discontinuities 
even if the initial conditions are smooth. Among the successful numerical methods 
for solving (1.1) we mention the modern nonoscillatory conservative finite difference 
methods such as TVD (total variation diminishing), TVB (total variation bounded) 
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and ENO (essentially nonoscillatory) schemes (see, e.g., [7]-[10], [20]-[28] and the 
references listed there). These methods are usually total variation stable (in con- 
trast with only L2-stability of many traditional numerical methods, which may be- 
have erratically if discontinuities are present) for one-dimensional scalar nonlinear 
problems (d = m = 1 in (1.1)), hence can capture shocks sharply without -introduc- 
ing oscillations. Extensions of these methods to higher dimensions and/or systems 
usually work well in rectangular coordinates or in general geometries by using con- 
formal mapping (two-dimensional case) or some other mapping. Finite difference 
schemes have the big advantage of being simple to code, but they usually achieve 
high-order accuracy by using a wide stencil, hence they may "pollute", i.e., lose ac- 
curacy in a fairly large region near shocks, and they usually are difficult to apply in 
complicated geometries and/or boundary conditions. The first difficulty (polluting) 
may be considered overcome by ENO schemes via an adaptive stencil idea, but the 
second difficulty remains, rendering finite difference methods not as flexible as finite 
element methods in treating complicated geometries and/or boundary conditions. 
There is also considerable ongoing research on finite element methods for solving 
(1.1). We mention in particular the successful streamline diffusion method intro- 
duced by Hughes et al. [11], [12], [14]-[161. Oscillations are usually greatly reduced, 
and, by assuming an Loo bound of the numerical solution (in the second-order case 
the Loo bound was recently proved for Burgers' equation [16]), convergence to the 
entropy solution can be proven [15], [16]. However, these methods are implicit in 
time, even in semidiscrete formulation (i.e., discretize spatial variable only). To 
advance in time, some iterative method is usually needed, and the question of con- 
vergence can be very subtle (see, e.g., [1]). This might be a serious drawback in 
practical computations, especially for the hyperbolic problem (1.1) which, unlike 
parabolic problems, seems more natural for explicit methods. Another successful 
finite element method for solving (1.1) is the characteristic Galerkin method, e.g. 
[19] and the references listed there. By following the characteristic directions in the 
evolution step, the severe CFL restriction can be removed. High-order accuracy 
can be obtained by a reconstruction procedure similar in flavor to ENO schemes 
using cell-average approaches [10]. This reconstruction procedure again uses a wide 
stencil, hence requires remedies, e.g. shock recovery, to overcome oscillations and 
polluting [19]. We try to obtain methods which are more local, in the sense that 
higher orders are achieved by more moments in a cell rather than using neighbor- 
ing cells. We also used the method of lines plus a TVD ODE solver. This may 
render the method simpler, especially when forcing terms are present so that the 
characteristics are no longer straight lines. 

In [18], LeSaint and Raviart first introduced the discontinuous Galerkin finite el- 
ement method for solving the neutron transport equation, which is a linear version 
of (1.1). Because of the linearity, the solution can be obtained essentially explic- 
itly by following the characteristic directions, hence avoiding the above-mentioned 
difficulty. (For an error analysis when the solution is smooth, see [13], [18].) Un- 
fortunately, this advantage no longer exists for a nonlinear problem (1.1). In [3], 
Chavent and Salzano modified this method and rendered it explicit in time, by 
using elements which are piecewise linear in space but piecewise constant in time. 
However, their scheme is linearly unconditionally unstable under any fixed CFL 
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number [2] (it is linearly stable under the very restrictive CFL condition At/Ax = 
O(vA'x), which is not realistic for a hyperbolic problem (1.1)). By using a lo- 
cal projection limiter, based on the monotonicity-preserving projections introduced 
by van Leer [17], Chavent and Cockburn [2] obtained a scheme (they call it the 
AHPOP1-scheme) which can be proven TVDM (total variation diminishing in the 
means) and TVB, under a fixed CFL number which can be chosen close to 1/2. 
Convergence of a subsequence is thus guaranteed, and numerical results given in [2] 
indicate convergence to the correct entropy solutions. There are still some draw- 
backs of the scheme. One is that it is only first-order accurate in time, although 
second-order in space. The second is that like any other TVD scheme, the accuracy 
degenerates to first order at smooth extrema of the solution [20]. The last is that 
since it is linearly unstable under any fixed CFL number, the projection limiting has 
to balance the spurious oscillations in smooth regions caused by linear instability, 
hence may adversely affect accuracy in these regions. These drawbacks limit the 
practical use of the scheme and impose serious obstacles in generalizing the method 
to higher orders. In [5], our first paper in this series, we retained the finite element 
formulation in [2] for the spatial discretizations, except that we modified the local 
projection limiter in order to recover accuracy at extrema, but used a special TVD 
second-order Runge-Kutta type discretization introduced by Shu and Osher in a 
finite difference framework [27]. The resulting explicit scheme was then proven 
linearly stable for CFL number < 3, formally uniformly second-order accurate in 
space and time, including at extrema, and TVBM (total variation bounded in the 
means). Numerical results in [5] indicate good convergence behavior-second order 
in smooth regions, including at extrema, sharp shock transitions (usually in one or 
two elements) without oscillations, and convergence to entropy solutions even for 
nonconvex fluxes. 

In this paper we give a unified framework to generalize the scheme in [5] to 
higher orders, and consider initial-boundary value problems. The advantage of such 
methods will be fully demonstrated only in higher dimensions. Generalizations to 
systems and/or higher dimensions are the subject of current research. Preliminary 
results are very promising. 

The format of the paper is as follows. In Section 2 we present the general frame- 
work of our scheme using scalar, one-dimensional initial value problems as a model. 
We prove TVBM, TVB, convergence of a subsequence, and discuss entropy condi- 
tions. In Section 3 we discuss initial-boundary value problems, present boundary 
treatments both for inflow and for outflow boundary conditions, and prove TVBM 
and TVB of the resulting schemes. We present some numerical results in Section 
4, and give a summary in Section 5. 

2. General Formulation. In this section we take d = m = 1 in (1.1) and 
consider the problem of finding an approximate solution of (1.1) with a periodic or 
compact supported initial condition of bounded variation, 

(2-1) u(x,) = u(x), x E R. 

We shall first discretize in the spatial variable x. In finite element methods the 
approximate solution uh is chosen to belong to a finite-dimensional space Uh. Its 
degrees of freedom are then obtained by solving a weak formulation of (1.1) that is 
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usually obtained by multiplying (1.1) by a test function vh E Vh, integrating over 
suitable domains, and finally integrating by parts. If the space of trial functions Uh 

and the one of test functions Vh coincide, the method is called a Galerkin method, 
otherwise it is called a Petrov-Galerkin method. 

Let Ij = (xj-1/2,xj+112), I = Uj Ij be a partition of the real line. Denote 
AXj = Xj+1/2 - Xj-1/2 and h = supj AXj. The finite element method we are going 
to use is a Galerkin method for which 

(2.2) Uh = Vh = Vh = {p E BVnL1: plj, EPk(Ij)}, 

where pk (Ij) is the space of polynomials of degree < k on I . Note that in Vhk, the 
functions are allowed to have jumps at the interfaces xj+1/2 (this is why this method 
is called a discontinuous Galerkin method [18], [3], [13], [2]), hence Vhk ? H1. This 
is one of the main differences between the discontinuous Galerkin method and the 
streamline diffusion method or most other finite element methods. It is exactly this 
difference which makes the discontinuous Galerkin method explicit in semidiscrete 
ODE form, hence amenable to explicit time discretizations. 

One way to implement (2.2) is to use a local orthogonal basis over Ij, {v Wi(x), 
I = 0, 1, 2, ... , k}, such that v(i) (x) is supported in Ij and f1 v(i) (x)v(j) (x) dx = 

c1e6l with cl $ 0. Notice that, up to constant coefficients, v() (x) are simply the 
Legendre polynomials over Ij. We choose, for example, 

(2.3) vU) (x) 1 (X) = X _ Xj, VvWi(X) = (x - Xj)2 1-AX? 

For these v(i)(x), and x E Ij, we have 

(2.4) d v(x)()= O(/zSlr) for r = 0,1,... ,1, 

f(V i)(X))2 dx = O(LX21+1), 1 = 0,1, 2,. .. , k. 
Ij 

If we define the degrees of freedom as 

(2.5) U U ) = U (X, t) V (j) (x) dx, I = 0,1, ... , k 

(note that 0)= Uj is the cell average of u in Ij), then 0) =O(Ax3), and 

k 

(2.6a) uh(x,t) = ZatuO1)(t)v(3)(x) for x e Ij, 
1=0 

AX.~l 12 180 
(2.6b) al = r i.e., ao =1, a, = , a2 = 2' f1 (vi) (X)) 2 dx' ~ ~ X 

where uh(x, t) is the approximation of the solution u(x, t) in Uh. 

In order to determine the degrees of freedom of uh, we multiply (1.1) by vh e 
integrate over Ii and replace the exact solution u by its approximation uh: 

(2.7) f t (dtUh(x t)) vh(x) dx + f x (d-f(uh( , t))) vh(x) dx = 0 Vvh e Vk. 
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Denoting uj+1/2 = uh (xj+112, t), and formally integrating (2.7) by parts, we arrive 

at an ODE which the degrees of freedom u) = u () (t) must satisfy: 

d i) + 1 
+ (V(j)(Xj-1/2)f(Uj-1/2))] dt i X+ 

(2.8) 1 
- Id 1+1 f(u(t))y v()(x)dx =0, 1=0 - 1,...-k 

3 3 

where here and in the following, AL are the usual difference operators, 

A+Wj = Wj+ -w, &AWj = Wj- W-1. 

Note the ambiguity in (2.8): f(uj+1/2) = f (uh(xj+112, t)) is not defined at the cell 
interfaces xj+112, hence we still have quite some freedom in (2.8). This freedom 
comes from the fact that we have more parameters in the piecewise polynomial 
solution than equations to define them. It is this freedom which gives us a chance 
to adopt the successful finite difference nonoscillatory methodology. If we write out 
the first equation in (2.8), 

(2.9) duo) + 1d [f(uj+1/2)-f(u1112)] = 0, 
d t j~ 

we can see that it is very similar to a conservative finite difference scheme for 
the means 0). This suggests that we use hj+/2= h(u.+112,u3+112) in place of 

f(u3+112), where = uh(x~+i2, t), and h(.,.) is some "average" flux. The 
only requirement for accuracy is consistency, h(u, u) = f(u), plus Lipschitz con- 
tinuity of h(., .). For total variation stability we need more restrictions on h(., ), 
and also some modifications on uj+1/2. We will use a Lipschitz continuous "mono- 
tone" flux as defined in [6], i.e., h(., ) is nondecreasing in its first argument and 
nonincreasing in its second argument. See Remark 2.4 below. Scheme (2.8) now 
reads 

d~i 
dU(I + ,\ tl[A+(V(j)(Xj-1/2)hj_1/2)] 

(2.10) dt i + 
1 

f (U h(X t)) d? v() (x) dx = 0, 1=O,1 
,. 

k 
AX~1: J1 dxII 

(2.1Oa) du(0) + 1 (hj+1/2 - hj.1/2) = 0, 
dt - 

(2.10b) dtUj) + 2Lfez (h.12 + h12) - (X t)) dx 0X 

d (2) 1h-12 (2.10c) tt3.+ gZv (hj+ /2 , 

- 3 f (Uh (X, t))v 3)(x)dx -0, 

etc. 
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We recall that hj+1/2 = h(u-+112,u++112), where u+ = uh(x+2,t) are 
defined by (2.6), i.e., 

(2.1la) First order (k = 0): u- = u = 

(2. lb) Second order (k = 1): u =-++ () = U(0) ) - (1). (2.llb) I~~~~~~~~~~ 6u' , t12=U -6u3 
(0) (1 2) (2.1lc) Third order (k = 2): u7-12 = u + 6u3') + 30u, 

U+ = U(0) -6u(1) + 30u(2). 

etc. 
The integrations in (2.10) can be approximated by a suitable quadrature rule, 

see Remark 2.6 below. For linear problems f(u) = au this is unnecessary, because 
the integrations can be performed exactly. 

We still need to modify u1+112 in (2.11) by some local projection limiter to 
achieve total variation stability. To this end, we write 

(2.12) 
(~~~~~0) - + (0) 

uj+1/2 = uj +uj, u1/2 =u -u. 

Comparing with (2.6), we see 

k k 

(2.13) iij = EaluvYjl)(xj+1/2), uj = a-EaLuYj)v~)(xj-1/2), 
1=1 1=1 

i.e., 

(2.13a) First order (k = 0): uij = uj = 0; 

(2.13b) Second order (k = 1): iuj =uj = 6uj1); j = uj~ 

(2.13c) Third order (k =2): u; = 6u(1) + 30u(2), = 6u(1) -30u(2); 
etc. 

Then (2.10a), the scheme for the means u?) , becomes 

(2.14) d (0u) = - 1 Ah(u. + uj, ?) -uj+l) 
dt i 3 /.7j+)U+lU 

We also consider the Euler forward version of (2.14), 

(2. 15) (u(O)})n+l = (U40))n - 
\ th((u(?) + fju)fn, (u31 - n). 

Note that (2.14) resembles a MUSCL type finite difference scheme considered by 
Osher in [20]. 

First we have the following lemma. 

LEMMA 2.1. (TVDM) Assume 

(2.16) -0 < + j_ < 1, -0 < u)< 

Then, 
(i) Scheme (2.14)) is TVD for any 0 > 0; 
(ii) Scheme (2.15) is TVD under the CFL restriction 

(2.17) A(h1-h2) < 1 
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where h1 and -h2 are the Lipschitz coefficients of h(., ) with respect to the first and 
second arguments, respectively. Note that in general h1 -h2 ; max If'(u)I. Also 
A = At/h. 

Proof. (i) We follow [20, Lemma 2.4] and write 

(2:18) -ALh(u) + iuj, u3)1- = - 

where 

(2.18a) Cj+12 -h2 ( - +U j j h/ (i + (0)) 

with 

h(u(?) + ij u0 ) - u_ ) - h(u (?) + U3-1, U0) - Uj) 
(2.18b) h1 = 3O i3 - (u32 +i 3 

(U j?+)+ Ujj l -(U j )-U1 j) 
((0) 0) ~(0) 

(2.18c) -h2 = _h(u0) + utjj uj1~1 - iuj+1) - h(u) + i-, u3 - u3) 
-U uii+1) - (TO) - j 

being the (local) Lipschitz coefficients of h(., ) with respect to the two arguments. 
Now monotonicity of h(., ) and (2.16) guarantee 

(2.19) Cj+1/2,Dj_1/2 > 0. 

The rest of the proof can be found in [20]. 
(ii) For (2.15) we need (2.19) plus 

(2.20) A(Cj+1/2 + Dj+1/2) < 1 

for TVD (see [7]). Clearly, (2.16), (2.17) and (2.18) imply (2.20). Cl 
Since (2.14) and (2.15) are schemes for the means uj), we say the scheme is 

TVDM (total variation diminishing in the means). 

We now try to modify ui; and u; to achieve (2.16). Observe that the middle 
quantities in (2.16), in smooth regions, are 0(h), so the limiting required is very 
mild. One simple way to accomplish this is to define, for 0 = 1 in (2.16), 

(221 umod) =M(uj., A+u(?), A_u(0))' ;t(mod) mP*i t+j) _Uj .), (2.21) -(od = . 
3 u M 

(J + ui 

where m is the usual minmod function [7], 

m(ai, a2, .. *I* an) 

(2.22) f s min1<i<n Iail if sign(al) = = sign(an) = 8, 

10 otherwise. 

We then define u ?(mod) as in (2.12), 

(2.23) U.2-(mod) (0) - (mod) +(mod) _ (0) _ t!(mod) 

uj+1/2 =u3 + uj U3 12 U3 -3 
and define scheme (2.10) by using hj+1/2 = h(u- (mod) u+ (mod) 

jU2Ij+1/2 ) 
Note that Taylor expansions reveal 

A?0j?) = (U")j AXL3 + Axjl + 0(h2) 3 ~~~~2 



418 BERNARDO COCKBURN AND CHI-WANG SHU 

while fij, uj= (ux)jAxj + 0(h2). So in smooth regions away from critical points, 
-(mod) = - j, (mod)= 
u3m~d) =uj, u3i = uj, by the definitions (2.21) and (2.22), hence the order of 

accuracy of the scheme is not affected by the limiting in these regions. Unfortu- 
nately, like in any other TVD scheme, accuracy degenerates to first order at critical 
points [21]. To overcome this difficulty, we apply the idea of Shu [24] and change 
the minmod function (2.22) to 

a, 1 if laI < Mh2, 
(2.24) fi (a1,,a2,I ...,Ian) = 

m(al, a2, .. ., an) otherwise, 

where M > 0 is a constant. For the choice of M we have the following lemma. 

LEMMA 2.2. If 

(2.25a) M = 2M2 
3 

or 

2 h 
(2.25b) M = M3 = -(3 + 1OM2) M2. 

9 h2 + I,0)I+ ILAu~0)I 

then the limiting (2.21)-(2.24) does not affect accuracy in any region where u E C2 

and luxxI < M2. 

Proof. First we observe that accuracy is guaranteed if the limiter (2.21) returns 
the first argument. For simplicity we take Axj _ h. By Taylor expansion, 

+u ?) = ux(xj)h + uxx ((,)h2 I Au4) = ux(xj)h -Uxx(6) 

jji = !u(xj)h + u xx (63)h2, I uj = 2uS(xj)h - Auxx(44)h2. 

Hence, in any region where u E C2, IuxxI < M2, we have either 

(i) I ux (xj) I > 7 M2 h in which case 

IA?u j?) IuI(x )hI- M2h2 > lux(xj)hl + 7 M2h 2 M2h2 

= 2lux(xj)hl + A M2h2 > IuiI, IujI, 

and (2.21) returns the first argument; or 

(ii) lux(xj)l< ?7M2h, in which case 

IijII ujI < 1 .M2h2 +M2h2 =3M2h2, 

and 
h2 h2 -' 1 

h2 + IA+u?) I+IL_u(?) I h2 + 2 (7 + )M2h2 1 + 1- M2' 

hence by (2.24)-(2.25), (2.21) again returns the first argument. Cl 
The expression (2.25b) is better than (2.25a) in that it is very small except 

near critical points, hence the correction from (2.22) is minimal but enough to 
recover accuracy. In practice, we should choose M2 = maxj luox I, where J is some 
neighborhood of smooth critical points of u0(x) in (2.1). 

For the correction (2.24) we have the following lemma. 
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LEMMA 2.3. (TVBM) The conclusions of Lemma 2.1 hold, with m in (2.22) 
replaced by mi in (2.24), and TVD replaced by TVB. 

Proof. Follow the lines of proof in [24, Theorem 2.2]. Cl 

Since (2.21) is only a modification on some combinations of 0), I > 1, see (2.13), 

we still need to define uS1) (mod), I ? 1, for example, by 

(2.26a) Second order (k = 1): (1)(md) 1 -(mod) 
= 6(mod)I 3 )mo)= 1uj =md)+;u(od 

(2.26b) Third order (k = 2): f12)(mod) = 3(j(mod) +i(mod) 

U2) (mod) = 1 (-(mod) _;tu(mod)) 

Beginning at fourth order (k > 3), the u(l)(mod) are no longer uniquely determined 

by j(mod) and u(mod) We may then use, e.g., first ul) for all I > 3, 

then determine u and u (2)(md) by j(mod) u(mod) and (2.13), and then, 
if either U(1)(mod) :A u~') or U(2)(mod) : u(2), reset u3)(mod) = O for I > 3, and 

3 3 3 

redetermine u(1)(mod) and U(2)(mod) again by (2.26b). There are, of course, other 
3 

ways to accomplish this. We must have 

(2.27) Iu() I < cl min{lA+u0) I, IA\_u(?) I} + c2h2, 

as is true for all the cases discussed above, because then the good properties of 
the means u) (e.g. TVBM) can be passed to the whole solution uh (x, t) (see 
Proposition 2.11 below). 

Remark 2.4. In the above discussion we may use any two-point Lipschitz con- 
tinuous monotone flux h(., .). Some possible choices are 

(i) Engquist-Osher: 
b a 

(2.28a) hEO(a, b) = f min(f'(s), 0) ds + j max(f'(s), 0) ds + f(O); 

(ii) Godunov: 

hG(a b' = { mina<U<b f(u) if a < b, 
maxa>,>b f (u) if a > b; 

(iii) Lax-Friedrichs: 

(2.28c) hLF(a, b) = 2[f(a) + f(b) - c(b - a)], a = max If'(u)I, 

where the maximum is taken over the whole region in which a, b varies, e.g., in 
[infu?(x), supu?(x)], where u?(x) is the initial function; 

(iv) Local Lax-Friedrichs: 

(2.28d) hLLF(a,b)= 2[f(a)+f(b)-/3(b-a)], J= max If'(u)lI. 
min(a,b) <u<max(a,b) 

For convex f, f" > 0, one has fi = max(If'(a)I, If'(b)I); 
(v) Roe with entropy fix (this is an E-flux [21], which is a generalization of 

monotone fluxes): 

J f(a) if f'(u) > 0 for u e [min(a,b),max(a,b)], 

(2.28e) hRF (a, b) = f(b) if f'(u) < 0 for u C [min(a, b), max(a, b)], 

hLLF (a, b) otherwise. 
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We can use hG if f is not too complicated. However, for convex f we suggest 
using hLLF or hRF, because of their simplicity and good numerical results (based 
on our experience in finite difference computations. See also Section 4). 0 

Remark 2.5. Note that even if there are k + 1 degrees of freedom u in (2.10) to 
compute, for I > 1 we only need to evaluate one integration (by quadrature) to ob- 
tain each 0) for nonlinear f, and none for linear f, because the hj?1/2 are available 

3 

from the computation of 0) in (2.10a). In terms of cost, this compares favorably, 
for multi-dimensional problems, with finite difference methods using cell average 
formulations (e.g., ENO schemes in [10],[8], in which point values are reconstructed 
from cell averages). 0 

Remark 2.6. To compute the integrations in (2.10) for nonlinear f, quadratures 
of correct order must be used so that the error of approximating 

~llI ( X ) dZ v (j) (X) dx 

is 0(hk+1). Considering (2.4), we need a quadrature whose error is 0(hk+l+2), or 
0(h2k+2), to work for every 1. For example, Simpson's rule (the error is 0(h5)) 
is enough for k = 1 (second-order scheme), and three-point Gaussian (the error 
is 0(h6)) is needed for k = 2 (third-order scheme). Since we can use hj?1/2 as 
f(uh (xj?1/2,t)) in the quadratures to save-function evaluations, Gauss-Lobatto 
quadratures, which use end points of the interval as nodes, are preferred. 0 

Remark 2.7. We choose degrees of freedom as in (2.5) only for easy presentation. 
The essential ingredients are the weak formulation (2.7), the choice of spaces (2.2), 
and the local projection limiting (2.21). Other degrees of freedom can of course 
be chosen for various purposes, e.g., for some physical considerations, or to save 
cost. One possibility is to choose point values of uh (x, t) at some Gaussian points 
as degrees of freedom, to save the cost of evaluating (2.6a) when quadrature is used 
to approximate the integration. 0 

We now turn our attention to entropy conditions. First we have the following 
lemma. 

LEMMA 2.8. If fj+1/2 = hj+1/2+cCj+12, where hj+1/2 is a monotone flux and 

lCj+1121 < chO for some fixed c, a > 0, then a TVB scheme 
n+1 n1 

ul = ujn - Av( +1/2 - fj-1'2) 

is an entropy scheme, i.e., it always converges to entropy solutions. Moreover, for 
every bounded domain Q, 

I1u - UhIILo(0,T;(L1((Q)) < C(Q)hmin{la}/2. 

Proof. Similar to the proof of [4, I, Theorem 3.2], hence omitted. 0 

By Lemma 2.8, if we can tolerate an explicit Chl appearance in the projection 
limiter (2.21), 

jj(ernod) = M~i.,A+u(O) A (0).(\Ca 

(2.29) ~(e,mod) +() (0) )) 

tuem =d M(,U - A+u(?) A_U sign(uj) (C h)), h m(25 a b 

then schemes (2.14) and (2.15) are both entropy schemes. 
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Explicitly inserting Ch' into the limiter to enforce entropy conditions is not an 
intrinsic procedure: the parameters C and a cannot be automatically adjusted by 
the scheme using the numerical solution, but must be tuned for each individual 
problem, and forcing convergence to entropy solutions is heavily dependent on the 
choice of C and a. If h is not in the asymptotic regime, inappropriate choices of 
C and a will either smear the profile too much, or fail to correct a weak entropy 
violating shock. We note, however, that for a < 1, the accuracy in smooth regions 
is not affected by the Ch' term in any region where u E Cl and IuI < 2C. 

If f in (1.1) is convex, then we can avoid the explicit Cha term by using the 
following lemma in [20, Theorem 3.1]. 

LEMMA 2.9 (OSHER). If condition (2.16) is strengthened to 

(2.30a) Ad ?)' u1 < 2 

and, when u(?) > u(?), denoting 

U(O) 
f+1 wf'(w) dw 

lj+ 1/2 = fo (u() - _ (u()) 

there holds 

)~ ~~~~~u > uj >+ U+f Uij> ( j+1/2 if U"0 > Uj+1/2 > U(+1l 

uj = uj+l = 0 otherwise, 

then scheme (2.14) satisfies one entropy condition with the particular entropy V(u) 
= u2/2 if f is convex. Hence, for convex f, (2.14) is an entropy scheme. 0 

Unlike (2.29), the limiting in (2.30) does affect accuracy in smooth regions. 
Moreover, Lemma 2.9 for the Euler forward version (2.15) is not easy to prove. See 
[22] for a proof of the second-order case. 

In our preliminary computations, which include some nonconvex f, we simply 
use the limiter (2.21)-(2.24) without any entropy corrections and always observed 
convergence to the correct entropy solution. See [5] and Section 4 for details. 

Next we turn to time discretizations of (2.10). This is the easy part because 
scheme (2.10), unlike most other finite element schemes, is explicit, hence readily 
amenable to the TVD time discretization techniques for the ODE method of lines 
introduced in [26], [27]. 

We first rewrite (2.10) in a concise ODE form, 

(2.31) d uh = Lh(u h, t) dt 
and apply, e.g., the high-order TVD Runge-Kutta methods in [27]: 

i-l 

(2.32a) (Uh) (i) = E[a.1(Uh)() + 3ilAtLh((Uh)(L), tn + diAt)] 
1=0 

(2.32b) (Uh)(0) = (Uh)n, (Uh)(r) - (Uh)n+l 
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Here, r is related to the order of the scheme. For r < 4, (2.32) can be made rth- 
order accurate. We have included the time variable in Lh in case we have a time- 
dependent forcing term or time-dependent boundary conditions, as is the case in 
Section 3. 

Scheme (2.32) is TVD (or TVB) under the CFL restriction 

(2.33) A < Ar = A0minm ail 
s,1 I/hilI 

if the Euler forward version of (2.31) is TVD (or TVB) for A < A0, provided ail > 0, 
and when 3il < 0, Lh is replaced by Lh where -Lh is a TVD (or TVB) operator 
approximating (-f(u)). in ut - (f(u)). = 0. For details, see [26], [27]. 

Up to fourth order, the coefficients ail, fil, dl are rather simple. For example, 

Second order (r = 2): 

(2.34a) alo = fii = 1, a20 = 2 321 = 3 X 20 = 0; 

do 0, d1= 1; CFL: A2 =1; 

Third order (r = 3): 

aio = 31o = 1, a20=, 1320=0, 
= = a1 = 32 4 42 

12 

(2.34b) 1 2 
&30 =T -133o a 3 1=331= O, a32=1332 =-; 

3 3 

do = 0, d1 = 1, d2 =- CFL: A3 =1; 
2'1 

etc. 
Finally, we turn our attention to the linear stability of the scheme (2.32), (2.10) 

without using the projection limiter (2.21). In [2] it was proven that the Euler 
forward version of (2.10) is linearly unconditionally unstable for any fixed CFL 
number. (The proof is for the second-order case, but it goes through for higher 
orders.) However, linear stability becomes much better with (2.32), (2.10): 

LEMMA 2. 10. Scheme (2.32), (2.10) is linearly stable under the CFL condition 

(2.35) Amaxlf'(u) I 2k1 

for k = 1, 2 (second-order and third-order schemes). 

Proof. See [5], [2] for the second-order case. The proof for the third-order case 
is similar but is more technical, and is thus omitted. 0 

We do not know whether (2.35) is the correct CFL condition for linear stability 
when k > 3. However, we believe there exist fixed CFL numbers for k > 3 for 
which (2.32), (2.10) is linearly stable. 

We summarize the results of this section in the following proposition, in which 
"order of accuracy" is in the sense of local truncation errors. 

PROPOSITION 2. 1 1. (i) Scheme (2.32), (2.10) is linearly stable under the CFL 
condition (2.35) for k = 1, 2. 

(ii) Scheme (2.32), (2.10), with local projection limiting (2.21)-(2.22), is 
(k + 1)th-order accurate, except near critical points, is TVDM and TVB under 
the CFL condition (2.17) with 0 = 1, and thus has a convergent subsequence. 



DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS 423 

(iii) Scheme (2.32), (2.10), with local projection limiting (2.21)-(2.24)-(2.25), is 
uniformly (k + 1)th-order in any region where u E W2, IuI < M2, is TVBM and 
TVB under (2.17) with 0 = 1, and thus has a convergent subsequence. 

(iv) Scheme (2.31), (2.10), with local projection limiting (2.21)-(2.24)-(2.30), is 
TVBM and TVB, satisfies one entropy condition for the particular entropy V(u) = 

u2/2 for convex f, hence is convergent to the entropy solution when f is convex. 
(v) Scheme (2.32), (2.10), with local projection limiting (2.29)-(2.24)-(2.25), is 

uniformly (k + 1)th-order in any region where u E '2, IuzI < 2C, IunneI < M2, is 
TVBM and TVB under (2.17) with 0 = 1, satisfies all entropy conditions, hence is 
convergent to the entropy solution. 

Proof. Using the lemmas in this section. To prove TVB from TVBM or TVDM, 
or to pass entropy conditions from the means u(?) to uh, note (2.27) and (2.6). The 
accuracy in terms of local truncation errors is an exercise in Taylor expansion. 0 

In practice, we suggest using the schemes in (iii) above. 

3. Initial-Boundary Value Problems. In this section we again take d = 

m = 1 in (1.1) and consider initial-boundary value problems. We solve (1.1) in 
a < x < b subject to the initial condition (2.1) and suitable boundary conditions at 
x = a and x = b. 

For simplicity, we take b = oo and consider one boundary at x = a only. The case 
of two boundaries can be treated similarly. It is well known that on the differential 
equation level, we should prescribe 

(3.1) u(a, t) = g(t) 

if f'(u(a,t)) > 0, and prescribe nothing if f'(u(a,t)) < 0. We assume g(t) in (3.1) 
has bounded variation. 

We put the boundary at X 1/2 = a. Because of the "local" property of our 
schemes (2.32)., (2.10) (i.e., higher orders are achieved through more moments 
within the cell rather than through using many cells), the boundary treatment 
here is rather simple: we only need to consider prescribing u -l2, if necessary, and 
modifying the local projection limiter (2.21) on the boundary cell j = 0. Comparing 
with [25], where a similar boundary treatment was done for high-order wide stencil 
finite difference TVB schemes, using extrapolation and upwinding, we can see the 
advantage of finite element methods in dealing with boundaries. 

Notice that if a pure upwind monotone flux h(., .), for example (2.28a, b, e), is 
used in (2.10), then when f'(u(a, t)) < 0 there is no need to assign u-1/2, since 

h-1/2 = h(u112,u+112) = f(u+l12). For general monotone flux, e.g. (2.28c, d), 

this is not the case, but u-1/2 will have little effect on h../2 because -h2 > h1, 
where hl, -h2, as in (2.18), are the local Lipschitz coefficients of h(., ) with respect 
to the two arguments. On the other hand, if f'(u(a, t)) > 0, it is natural to prescribe 

u-1/2(t) = g(t). We thus have the following two boundary treatments: 

(3.2a) u-112 = + , (mod) = M(Ao, A+uO)), U0mod) = m(uo, A+u(0)) 

and 

(3.2b) u1/2 = u-1/2(t) = g(t), 0m~d) = m(io, A +u 0,2(uo?)- 

u 0 = m(uo, A+u()) 
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We note that in both cases the limiting does not affect accuracy, as is easily 

revealed by Taylor expansion, i.e., -(mod) = (od) = if the solution is 

smooth near the boundary. The coefficient 2 before the uo) - g(t) term in the 
limiting is chosen for accuracy considerations. 

Similar to Proposition 2.11, we have 

PROPOSITION 3. 1. Scheme (2.32), (2.10), with local projection limiting (2.21)- 
(2.24)-(2.25), and boundary treatment (3.2a) or (3.2b), is TVBM and TVB, under 
the CFL condition (2.17) with 0 = 1 for (3.2a) and 0 = 2 for (3.2b). 

Proof. We only need to consider (2.15). The only difference between here and 
Lemma 2.1 is the boundary term -A-hl/2. Instead of (2.18), we write it, for 
(3.2a), as 

[(40) - (0) - 'P)h(u0) - 
';z 

-0 'o)I (3.3a) -A_ hi/2 = - [h(uo + uo, ul ul) - h(uo - uo uo)] 

= C1/2A\+U0X 

with 

-(1 + 1 ii 
(3.3b) C1/2 = -h2 - _h2) h2 

where h1 and -h2 are the local Lipschitz coefficients of h(., ) defined in (2.18b,c). 
We pause here to remark that if an upwind flux (2.28a,b,e) is used, then h1 = 0, 

hence (3.2a) clearly implies C1/2 > 0 in (3.3b) and (2.20) under (2.17) with 0 = 1; 
31 if a general monotone flux like (2.28c,d) is used, we need to assume h1 /(-h2) < 3, 

which is reasonable for any upwind biased monotone flux, and then limit ;U in a 
slightly more restrictive way: 

;ze(mod)= ';z +(0) 2 _U (0) 

Note that (3.4) does not affect accuracy. We then have C1/2 > 0, and standard 
arguments [7], [25] lead to TVDM or TVBM, depending on whether (2.22) or (2.25) 
is used, under the TV definition 

(3.5) TV(u(?)) = luj) - () I. 
j>O 

For (3.2b), we again have 

(3.6a) -i\_h1/2 = [h(uo?) + iiot u?- u) - h(g(t), u0) - uo)] 

= C012iA+u0) - D_ 0 

where 

(3.6b) 0~~~~1/2 = -h2 - ___uj_ 

(3.6b) C h(-AU 

D-1/2 =h ( + 0e and _ g(t) k A ~~~~ ,~~~' _ 
t) 
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Now (3.2b) clearly implies C1/2, D_1/2 > 0 and AD-1/2 < 1 under (2.17) with 
0 = 2. We then follow the arguments in [25, Theorem 2.1] to obtain 

(3.7) TV((u(0))n+l) < TV((u(0)))n) + lg(tn+l) - g(tn)l + Mh, 

with TV defined by 

(3.8) TV(u(?))= E luuo)?-u(.?I, u(?)_g(t). 

Remark 3.2. In the above proof we see that the boundary treatment itself does 
not increase the total variation; i.e., if g _ constant and limiter (2.22) is used, 
then the resulting schemes with boundary treatments (3.2a) and (3.2b) are both 
TVDM. E 

4. Numerical Results. In this section we use some model problems to numer- 
ically test our schemes. We use the third-order scheme (2.32), (2.10) (i.e., r = 3 in 
(2.34b), k = 2 in (2.10)). The local projection limiter is (2.21)-(2.24)-(2.25b). We 
do not use any of the entropy forcing limiters (2.29) or (2.30). The E-flux we use 
is the Roe flux with entropy correction (2.28e). Comparing with [5], we can see the 
improvements (mainly in smooth region accuracy) by increasing the order of the 
scheme from 2 to 3; and comparing with [24], [25], [27] we can see that the results 
here are comparable to nonoscillatory finite difference schemes. 

Example 1. We solve the Burgers' equation with a periodic boundary condition: 

(4.1a) Ut + 2 0 

(4.lb) u(x, 0) = uo(x) = 2+ sin7rx. 

The exact solution is smooth up to t = 2/7r, then it develops a moving shock 
which interacts with rarefaction waves. Observe that there is a sonic point. For 
details, see [10]. 

At t = 0.3 the solution is still smooth. We list the errors in Table 1. Note that 
we have the full order of accuracy, 3, in both L1 and Loo norms. 

At t = 2/u- the shock just begins to form; at t = 1.1 the reaction between 
the shock and the rarefaction waves is over, and the solution becomes monotone 
between the shocks. In Figures 1-4 we can see the excellent behavior of our scheme 
in both cases. The errors 0.1 away from the shock (i.e., Ix-shock location > 0.1) 
are listed in Table 2. These errors are of the same magnitude as in the smooth case 
of Table 1. 

This example illustrates the results in Section 2: uniformly high order in smooth 
regions, including at critical and sonic points, and good shock transitions. 0 

Example 2. We solve the same problem as in Example 1, except that we drop 
"periodic" and impose boundary conditions: 

1 12 (4.2a) ut +( =0, -1 < x<1 

(4.2b) u(x,0) = uo(x)=- + sinrx -1 < x <1 
4 2_ 

(4.2c) u(-1, t) = g(t) = v(-1, t), 

where v(x, t) is the exact solution of (4.1). 
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FIGURE 1 
Burgers' equation, initial value problem (4.1), t = 2, Ax = 1 

(In all the figures, the solid lines are exact solutions, the 
'+' signs are numerical solutions one point per cell only.) 
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FIGURE 2 
Burgers' equation, initial value problem (4.1), t = 2, Ax = 1 

7r 40 

Note that (4.2) is well posed, because x = -1 is an inflow and x = 1 an outflow 
boundary. 

We use the boundary treatment (3.2b) for x = -1, and (3.2a) for x = 1. 

Table 3 contains the errors at t = 0.3. Table 4 contains the errors 0.1 away from 
the shock, at t = 2/ir and t = 1.1. Comparing with Tables 1 and 2, we see almost 
identical results. Figures 5-6 are the shock transitions for t = 2/ir and t = 1.1. 
They are also almost identical to Figures 2 and 4 for initial value problems. 
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Since we only compute up to t = 1.1, the g(t) in (4.2c) is still smooth. In order 
to see the behavior of the boundary treatment (3.2b) when g(t) is discontinuous, 
we shift (4.2) by 0.2: 

(4.3a) Ut + ( =0 -1<X<1, 

1 1. 
(4.3b) u(x,0) = ilo(X) = + - sin r(x + 0.2), -1 < X < 1, 

4 2 

(4.3c) u(-1, t) = g(t) = v(-0.8, t), 

where v(x, t) is again the exact solution of (4.1). 

FIGURE 3 
Burgers' equation, initial value problem (4.1), t = 1.1, Ax = 2 

FIGURE 4 

Burgers' equation, initial value problem (4.1), t = 1.1, Ax =- 
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This time, g(t) is discontinuous before t = 1.1. Nevertheless, we see good behav- 
ior of our schemes in Figures 7-8. (Notice that in Figure 7 the shock is only one 
cell from the boundary.) 

This example illustrates the results in Section 3: the boundary treatments (3.2) 
are accurate and stable even in the presence of a shock emitting from the bound- 
ary. O 

Example 3. Since we do not use any of the entropy enforcing limiters, we use 
two nonconvex fluxes to test the convergence to entropy solutions of our scheme. 

FIGURE 5 

Burgers' equation, initial-boundary value problem (4.2), t =2, CAx= 41 

FIGURE 6 

Burgers' equation, initial-boundary value problem (4.2), t = 1.1, Ax = 41. 
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The first is a Riemann problem with 

(4.4) f(u) = (u2 _ 1)(u2 - 4) 

and initial condition 

(X o) = ULRx, < O. 

FIGURE 7 
Burgers' equation, initial-boundary value problem (4.3), t = 1.1, Ax = 10, 

FIGURE 8 

Burgers' equation, initial-boundary value problem (4.3), t = 1.1, Ax = . 
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The two cases we test are (i) UL = 2, UR = -2, Figures 9-10; (ii) UL = -3, UR = 3, 
Figures 11-12. For details of this problem, see [10]. 

The second flux is the Buckley-Leverett flux 

4u2 
(4.5) f(u) = 4u2 + (1-U)2 

with initial data u = 1 in [- 2, 0] and u = 0 elsewhere. The results are in Figures 
13--14. 

In all cases, we see convergence with good resolution to the entropy solutions. 

FIGURE 9 

Nonconvex flux (4.4), Riemann problem UL = 2, UR =-2, t = 1, AX =1. 

FIGURE 1 0 
Nonconvex flux (4.4), Riemann problem UL = 2, UR = -2, t = 1, AX = 
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This example illustrates that our scheme converges to entropy solutions even for 
nonconvex flux f. 0 

TABLE 1 (Example 1) 

t = 0.3, initial value problem (4.1). 

=~~~L LOO? 

Azx 105 * error order 105 . error order 

1/10 7.10 - 4.80 - 

1/20 0.94 2.92 0.66 2.86 
1/40 0.12 2.97 0.09 2.87 

FIGURE 1 1 

Nonconvex flux (4.4), Riemann problem UL = -3, UR = 3, t = 0.04, LAx = 1 

FIGURE 12 

Nonconvex flux (4.4), Riemann problem UL = -3, UR = 3, t = 0.04, Ax = 1 
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TABLE 2 (Example 1) 

Errors in smooth region Ix - shock ? 0.1; A\x = 4 initial value problem (4.1). 

L?? L' 

t01 xr t01x 1 xo r 0.14 1 

0.13 X 10-4 0.61 X 10-6 0.11 X 10-5 0.14 X 10-6 

FIGURE 1 3 

Nonconvex flux (4.5), u = 1 in [-1,O], u = 0 elsewhere, t = 0.4, A?x = 1 

FIGURE 14 
Nonconvex flux (4.5), u = 1 in [-2, ?], u = 0 elsewhere, t = 0.4, A~x = 1 
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5. Summary. We present a general framework, by using one-dimensional 
scalar initial value problems and initial-boundary value problems as models, of 
constructing and analyzing a class of TVB discontinuous Galerkin finite element 
methods for solving conservation laws. This new class of methods differs from 
most finite element methods in that they are explicit in time, hence can be imple- 
mented with high-order TVD Runge-Kutta type time discretizations. By using a 
local projection limiter, which does not affect accuracy in smooth regions, we can 
prove TVBM and TVB, hence achieve convergence without oscillations for shock 
calculations. Comparing with finite difference methods, these methods retain the 
advantage of finite element methods, i.e., achieving high accuracy by using more 
information within a cell rather than using a wide stencil, hence are easier to apply 
for boundary conditions (discussed in this paper) and complicated geometries (will 
be discussed in future papers). Numerical results are given to illustrate the good 
convergence behavior in several test problems. 
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TABLE 3 (Example 2) 

t = 0.3, initial value problem (4.2). 

Ax 105 * error order 105 * error order 

1/10 6.82 - 3.82 - 

1/20 0.92 2.90 0.56 2.77 
1/40 0.12 2.94 0.09 2.78 

TABLE 4 (Example 2) 

Errors in smooth region Ix - shock > 0.1; Ax =j40 

initial-boundary value problem(4.2). 

LOOL 

t = 2 t t=1.1 t= 2 t 

0.15 X 10-4 0.65 x 10-6 0.11 X i0-5 0.13 x 10-6 
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