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Quadratic Convergence of Vortex Methods 

By Vincenza Del Prete* 
Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday 

Abstract. We prove quadratic convergence for two-dimensional vortex methods with 
positive cutoffs. The result is established for flows with initial vorticity three times 
continuously differentiable and compact support. The proof is based on a refined version 
of a convergence result. 

Introduction. The purpose of this paper is to prove that vortex methods with 
positive cutoffs can converge quadratically if the cutoff length is proportional to 
the mesh length and the flow is sufficiently smooth. This has been observed com- 
putationally by Hald and Del Prete [13], Beale and Majda [6] and Perlman [19]. 

The vortex method is a numerical technique for approximating the flow of an 
incompressible, inviscid fluid. The flow is described by Euler's equations. The 
method for the two-dimensional case was introduced by Chorin (see [8]). Various 
three-dimensional methods have been suggested and studied by Chorin [9], Beale 
and Majda [4], Greengard [12], Anderson and Greengard [2], Leonard [16], Raviart 
[20] and Beale [3]. Recently, Chiu and Nicolaides [7] investigated a vortex method 
with nonuniform mesh and a higher-order quadrature formula. 

The convergence of the vortex method was first proved by Hald and Del Prete 
[13], but only for a short time interval. They assume that the initial vorticity 
is Holder continuous and their class of cutoff includes some that are positive and 
singular. Positive cutoffs were not included in the theory of Hald [14], but were cov- 
ered in the study of Beale and Majda [5]. They proved higher-order convergence for 
smooth flows and cutoffs that satisfy the so-called moment conditions and almost 
quadratic convergence for positive cutoffs. Our class of cutoffs cannot be compared 
with Beale and Majda's [5]. We assume more smoothness at the origin but allow 
a slow decay at infinity. In this paper we assume that the vorticity is three times 
continuously differentiable and prove quadratic convergence for our class of cut- 
offs. If the vorticity is two times continuously differentiable, we only obtain almost 
quadratic convergence. If the cutoff is positive, our result is better than the result 
of Beale and Majda [5]. On the other hand, Beale and Majda's theory gives higher 
rate of convergence for higher-order cutoffs. Our proof breaks down if the flow is 
not smooth. For such a flow Hald [15] has proved superlinear convergence for a 
large class of cutoffs. 

It has been customary in previous papers [13], [14], [5], [1], [2], [15] to assume 
that the mesh length tends to zero faster than the cutoff length. It has been even 
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argued by Nakamura et al. [18] that this is necessary in order to get convergence. 
However, by using a new technique due to Beale [3] we obtain convergence in cases 
where the ratio of the mesh length and of the cutoff length is small but fixed. In 
his proof (for the three-dimensional case) Beale assumes implicity that the vorticity 
is at least five times continuously differentiable. Our proof follows Beale's closely, 
but we need only three continuous derivatives. Our main technical tool is a new 
estimate of the remainder of Taylor's formula. We also use a special case of a 
general stability result due to Hald [13]. To estimate the discretization error, we 
use a result of Cottet and Raviart [11] based on the Bramble-Hilbert lemma. 

1. Notation and Statement of Results. The flow of an incompressible, 
inviscid two-dimensional fluid can be described by Euler's equation 

Wt + (u * V)w = 0. 

Here u is the velocity field with div u = 0 and w = curl u is the vorticity and t is the 
time. To describe the evolution of the flow, we use the flow map 4): R2 x [0, T] - R2. 
Here 4)(a, t) is the position at time t of a particle which at time t = 0 is at the 
point a. We denote the function a -* 4)(a, t) by 4)t. It can be shown that the flow 
map satisfies the uncountably many ordinary differential equations 

(1.1) )d((a, t) = f K(4(a, t) - 4)(a', t)) w(a') da', 

)(a, O) = a. 

Here, a = (al, a2)T, K(x) = (2irr2)-1xI where r2 = x2 +x2 and x-l = (-x2, x1)T 
where T means transpose. The function w(a) = w(a, 0) is the initial vorticity. In 
addition, the velocity field and the vorticity distribution are given by 

u(x, t) = f K(x - 4)(a', t))w(a') da', 

w(x, t) = f 6(x - 4)(a', t))w(a') da', 

where 6 denotes the delta function. 
To solve Eqs. (1.1), we introduce the grid points a3 = jh where h is the mesh 

length, j = (ji, 12) and il, 12 are integers. The vortex method is an approximation 
to Eqs. (1.1), namely 

-(ai=, t) ZK6 ((ai, t) -(j, t)) cj, 
(1.2) jEJ 

4)(ai, ?) = aj. 

Here, ,rj = w(aj)h2. The kernel K6 = K * p6 where p6(x) = 6-2p(x/6) is a 
radially symmetric approximation to the delta function. This approximation must 
satisfy further conditions which we shall specify later. We assume that the vorticity 
has compact support. The set J consists of the indices j such that the squares with 
center at aj and side length h intersect the initial support of W. The approximate 
velocity field and the approximate vorticity distribution are given by 

iu(x, t) = A K6(x - 4)(aj, t)) cj, o(x, t) = 1? p6(x - 4)(aj, t)) c3. 
jEJ jEJ 
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Throughout this paper we shall assume that the solution of the differential equation 
is either two or three times continuously differentiable. Namely, letting m = 2 or 
m = 3, we shall assume that the flow satisfies 

Assumption 1. The vorticity distribution, the velocity field and the flow map 
are m times continuously differentiable with respect to the space variable. The 
vorticity has compact support. 

We believe that our result can be extended to the case of vorticity without 
compact support. This could be done, for example, by using Cottet and Raviart's 
technique [11] which assumes that the vorticity decays sufficiently fast at infinity. 
Our choice has been motivated by the fact that in numerical experiments one always 
handles a finite number of vortices. 

Assumption 1 for m = 3 will be satisfied if the initial vorticity has compact 
support and the third derivatives are H6lder continuous. We assume that the 
support of w(x, t) for 0 < t < T is contained in the set Q and let D be the diameter 
of Q. We now introduce the norms and seminorms: 

IIwIIC)\(D) = I|wlo<> + DA sup w(x) w(y 

m 

IIUIIcm = max IvullIK, 
j=O tI 

m 

IbIcm = max I9avIIo.. 
j=1 IvI=i 

Here, 0 < A < 1 and IIwIIPIQ = (fn IwIP dx)'/P. If Q = R2 then we drop the last 
subscript. We denote the set of functions of Cm which have compact support by 
Crm. By using the above notation we can reformulate 

Assumption 1. There exists a constant C such that 
(i) the initial vorticity w E Cm(R2) and 2(1 + D)IjwIIcm < C. 
(ii) u E Cm(R2) and 2(1 + D)I1u(t) Icm < C for 0 < t < T and divu = 0. 
(iii) V e Cm-l(R2), det '(a,t) = 1 and 2(1 + D)Ijtqcm < C for 0 < t < T 

and 4 is a differentiable function of t. 

To estimate the error e in the vortex method, we introduce the discrete p norm 

l/p 

IIeIIp,h ( lIejIPh2 
jEJ 

In addition, IlelIooh = maxJEj 1ej/. We assume that the cutoff function p is a 
smooth radial function that vanishes at infinity, and that its integral is equal to 
1. The conditions on the cutoff may be given in terms of the shape factor f(r) = 

fxjIr p(x) dx. Note that KI (x) = K(x)f(IxI/6). Throughout this paper we make 

Assumption 2. Let m = 2 or 3. 
(i) f(r)/r2 is m + 1 times continuously differentiable as a function of r2. 
(ii) f(r) tends to 1 as r -+ oo. 
(iii) If W)(r)I < ar-4 for r> 1 and = 1,2,...,m+ 1. 
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Condition (iii) has been chosen for convenience. Our proof is valid if If(1) I< 
constr(3+e) and If()I < constr-4 for r > 1. 

Below are three cutoffs which satisfy Assumption 2. The Gaussian cutoff was 
considered by Beale and Majda [5], the second is the two-dimensional version of a 
cutoff considered by Beale [3]. The last is new. 

-1= r-le-r2 2 e-r 

'A = 7r- 1(1 + r4)-3/2, f =r 2(1 +r 4)-1/2, 

p = 27r 1r2(1 + r4)-2, f = r4(1 + r4)-1. 

We can now present 

THEOREM 1. Let 1 < p < oo. If Assumptions 1 and 2 are satisfied for m = 2 
or m = 3, then there exist three constants h1 < h2 and Ci such that if E = h/S < h2 
then 

1kb(t) - 4(t)llp,h < Cl(h/e)2 (1 + (3 - m) I log(h/e)[) 
for all h < h1 and 0 < t < T. The constants Ci and h2 depend only on C, p, Ty 
D and the shape factor if, while h1 depends on C, p, T, D, f and e. 

Remark. The theorem contains two results. If the initial vorticity is three times 
continuously differentiable, then the method converges quadratically. On the other 
hand, if the initial vorticity is twice continuously differentiable, we obtain only 
almost quadratic convergence. The proof of Theorem 1 is presented in Section 3. 
It uses that consistency plus stability implies convergence. 

To formulate these results, we need a notation for the approximate velocity field. 
Let 

v(x) = u(x, t) = f K(x - t(a))w (a) da, 

V[%I; x] = K6 (x - (j)) j. 
jEJ 

To simplify our notation, we denote V[Dt; x] by V(x) and V[IQ; T@(a)] by V[%I](a). 
We will also denote vo 0t by v[4t]. Note that v is the exact velocity field u and that 
V[4t, x] is the computed velocity field i. To estimate the difference u - i we shall 
bound the consistency error v[4t] - V[4?t] and the stability error V[4t] -V[?N. 
Our main result concerns the consistency. 

LEMMA 1. Let Assumptions 1 and 2 be satisfied with m = 2,3 and let h and 6 
be two independent parameters; then there exists a constant Co such that 

JIV[4t1 - V[4t]IIoo,h < Co(62 + hm6(2-m)(1 + (3- m)Ilog61)) 

for all 0 < t < T. The constant Co depends on C, Ty D, and the shape factor f. 

Remark. The lemma shows that the consistency error is of order 62 + h36-1 if 
m = 3, of order 62+h2(1+I log 61) if m = 2. The proof of this result is an adaptation 
of Beale's [3] improved consistency lemma for a three-dimensional vortex method. 
As in Beale's proof, we use that the kernel K6 in the vortex method is an odd 
function. However, the proof is further complicated because we do not assume that 
the vorticity is a smooth function. Our basic technical tool is a new version of 
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Taylor's formula. We also need a stability result. The following proposition is a 
special case of a result by Hald [15]. 

LEMMA 2. Assume that IIWIICA(D) and 1ka411CcA(D) are less than C, where 
0 < A < 1 and jal = 1. Let Assumption 2 be satisfied and set c = (4x/2C)-1. 
There exist two constants C2 and h2 such that if h and h/S are less than h2 and 

IkIt - (DtI oo,h < ? ch, 

then 

IIV[Ct]- V[4Dt1jjph < C214| - PtIlpsh, 

where 1 < p < oo. The constants C2 and h2 depend on C, D, A, p and the shape 
factor f. 

Remark. Since IIWIICA(D) is less than 2(1+D)IIwIICi and a similar statement can 

be made for the first derivatives of the flow map, it follows that the assumptions 

in Lemma 2 for the vorticity and the flow map hold if Assumption 1 is satisfied. 

We remark that Hald's stability result includes a condition on the cutoff. But this 

condition is fulfilled when our Assumption 2 is satisfied. 

2. Proof of the Consistency Result. To prove the consistency lemma, we 

observe that the consistency error separates into two parts, namely the error {A} 

from the discretization and the error {B} due to smoothing: 

V(x) - v(x) = K6 (x - (Dt(aj))wjh2-f K6(x- t(a))w(a) da 

+ f[K6(x-t (a))-K(x- Dt(a))]w(a) dca 

= {A} + {B}. 
We observe that the smoothing error {B} can be written as u * -u. To 

estimate the smoothing error we will use 

LEMMA 3. Let p be a function in L1 (R2) such that IxI2p E L1 (R2), f p(x) dx 
-1 and f xaP(x) = 0 for JaI = 1. If g E C2(R2) then 

sup I(g * pb)(x) - g(x)I < sup 19ag(X)l 1 IX12PI%' 62. 
XER2 XER2,IaI=2 

Remark. We shall apply Lemma 3 to the velocity u. Note that Assumption 2 for 

the shape factor f implies that the cutoff function p satisfies all the conditions in 

Lemma 3. In particular, (iii) implies that Ix12 p E L1. The condition f xci pdx = 0 

follows from the fact that p is radial. To prove the lemma, we simply expand g in 

a Taylor series. 

To estimate the discretization error, we use the following quadrature formula. 

LEMMA 4. Let I be an integer greater than or equal to 2. Assume that 6ig E 
L1(R2) for 1131 < 1. Then 

f g(x) dx - g(jh)h2 < const hl E jja,0gjj 
j 1131=1 
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Remark. The result is due to Cottet and Raviart [11] (see also Cottet [10, Lemma 
2.5 and the proof of Lemma 3.4]). The proof is based on the Bramble-Hilbert lemma 
and the fact that the space of functions which have derivatives in L1 up to the order 
1, 1 < 2, is continuously imbedded in C0(R2). A simple proof for I > 3 based on 
the Poisson summation formula has been given by Anderson and Greengard [2]. 

We shall apply Lemma 4 to the function g = K6 o 'IbtW, and hence we need 

bounds for K6 and its derivatives. We observe first that Kb(x)xT is a two by two 
matrix. 

LEMMA 5. Let Assumption 1 be satisfied. For any R, 

c if 1,31 = O1, 
| k98P(K6(x)XT)Idx?< c(l+Ilog l) if 1f1 =2, 
Il<R C C2 -I1P if 111 = 3. 

The constant depends on /3 and R but not on 6. 

Proof. Write 

!|xI< k9P(K6(x)xT)ldx = 1 1 
x2l<R xj <6 6<Ixl<R 

Assumption 2 implies that 

laI (K6(X)XT)l < Const6 
H 

t, 
lxi < 

6, 

1const lI X"' I lxi > 51 

for 111 < 4. So the first integral is less than a constant times 62-1I01 The second 
integral can be estimated with a constant if 1#1 = 0 or 101 = 1, with a constant 
times (1 + Ilog 61) if I 1l = 2, and finally with a constant times 62-IPI if 1/1 = 3. 
This completes the proof. 

We shall also need a special version of the Taylor formula for functions in Cm 
where the remainder is expressed as a tensor whose components are m times con- 
tinuously differentiable away from the origin and satisfy suitable growth conditions. 

LEMMA 6. Let f E Cm(R') and 1 < k < m, m greater than or equal to 1. Let 
Pk-1 be the Taylor polynomial of degree k - 1 of f centered at zero. Then there 
exist functions t93 E Cm (R' - 0), 1/31 = k, such that 

f (X) -Pk - 1(X) = E 0 (X) X', 

1011=k 

la8lt9,(x)l < constllf ICM lxl-I-II 

for x $ 0 and 0 < I-fl < m, where the constant depends only on k and n. 

Remark. Note that Lemma 6 does not follow from Taylor's formula with in- 
tegral remainder because in that case the functions 29p for 1/3 = k are merely 
in Cm-k(Rn). The basic idea is this: if t9i = xr-2(f(x) - f(0)) and 02 = 

x2r-2(f(x) - f(0)), then f(x) - f(0) = x0t91 + x2292. 

Proof. To get the expression for f - Pk-,, we simply choose 

Op = ((X) -Pk-l(X)) (z x#2PI 
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To estimate the derivatives of t9p, we use the Leibniz formula 

d79p(x) = E (vi~) V (f(z) - Pk-l(X))av (E 2 2) 

Since OvPk.l is the Taylor polynomial of degree k - 1 - jv of Y'f, it follows from 
Taylor's formula that 

I@v(f(x) - Pkl(X))l < 1f! 11Cm x1 II 

Since x'o/I ZI1Ikx20 is homogeneous of degree -k and E1I1=k x2I0 > nl-klxl2k, 
we see that 

x10 
| 95-1 E X2,0 < c(k, n) jXj-k-(j-yj-jvj). 

The proof is completed by inserting the bounds in the Leibniz formula. 
Proof of Lemma 1. Let m = 3. Throughout this proof we assume that the time 

t is fixed. First we consider the smoothing error {B} in Eq. (2.1). We recall that 
Assumption 2 implies that the cutoff 'p satisfies the condition of Lemma 3. Thus 
it follows from Lemma 3 with g = u that 

(2.2) IU * P6-ul < const 62, 

where the constant depends on the cutoff p and the velocity field u. 
We consider now the discretization error {A} at a fixed point x = 4't(ai). Since 

aj - ai = -aj-i, it follows that the discretization error can be written as 

{A} = E K6(4t(ae) - (Dt(ai + aj))w(ai + aj) 2 

jEJ-i 

- K6 (4t (ai) - -t (ai + a))w (ai + a) da. 

We introduce the map '1(a) = 4t(cai) - 4t (ai + a). Note that T (0) = 0 and that 2 
has the same regularity properties as 4t . We will expand the functions K6 o 0 and w 
around ai, but we suppress the dependence on ai by shifting the coordinate system 
such that the grid point ai falls at the origin. The set Q is shifted correspondingly. 
Since K6 (x) = (2irr2)-1 f(r/6)x-', we see that the discretization error is 

{A} = i F(aj)h2 - (a) da E(F), 

where 

F (a) = f ('1(a)) '1(a)' Fx)=27r 
S I ), I?(c) 12((x 

To study the discretization error, we linearize @IQ(a). By using the Taylor formula in 
Lemma 6 we decompose @IQ(a) into the sum of a linear part plus a remainder. Hence 
we shall write F as the sum of two terms: F0 which contains the linear term and 
F1 = F - F0. The error is partitioned in E(Fo) and E(F1) and will be estimated 
later. Since 'IQ(0) = 0, Lemma 6 implies 
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where A is the Jacobian matrix of IQ at zero, and t9(a) (, fi) is a multilinear form 
in fi with two components. The regularity of the flow (Assumption 1) implies that 
there exists a constant Pi independent of x = 4(t(as) such that 

(2.3) I'I'(a) - AaIl < I|'(a)1/2. 

Let Au be a smooth function such that 0 < Au < 1 and assume that ju(r) = 0 for 
r < I and ft(r) = 1 for r > 2. Set ,u(r) = ju(r/p1) and let 

To(a) = Aa + p(IaI)O(a) * (a, a) = Aa + (IjaI)(I(a) - Aa). 

Note that Io(O) = 0 and that To is as regular as T (i.e., IToIc3 < oo, det IQ > 
const > 0). If P1 is sufficiently small, then 'o is invertible by the implicit function 
theorem. We also have 

@(a) = Aa + p(IaI)O9(a) * (a, a) + (1 - p(laf)fl9(a) (a, a) 

= Io(a) + (1- p(IaI))(I(a) - Aa). 

Notice that IQ'- 1o is equal to 'IQ(a)-Aa if I a I < Pi, and equal to zero for IaI > 2pj. 
So from (2.3) we get the following inequality, which will be used later, 

(2.4) I@(a) - o'o(a)I < ? I'(a)I/2 

for each a E R2. We can now define 

Fo(l) = f (jtko(ae)j) To()' a)(a) oka)J~~6) IITo (a) 12 27r 

and 

F (a)= f (IT(a)I) I(a)' -f (I o(a)I Tio(a)' } w(a) 

To estimate E(Fo), we use that K6 o IQ is an odd function of a for Ilal < P1 because 
here Io(a) = Aa. Next we express w(a) as an even function of a with support 
in lal < Pi plus another function that vanishes at zero. More precisely, we write 
w = & + aT o. Here a consists of the leading terms in the Taylor series of the even 
part of w, multiplied by a smooth radial function v which has support in Ial < 2pi 
and is equal to 1 for lal <P1. We may choose v(a) = 1- Li(Ial/pi), where L(r) is a 
smooth function which vanishes for r > 2 and is equal to 1 for r < 1. We will prove 
that r E C3(R2 - 0). In addition, 9Ou E L??(R2) for flu < 2 and 9OU E L1(R2) 
for 1,1 = 3. Let P2 be the second-order Taylor polynomial of w at zero. Since 
a = A-10o(a) and 'I'TTAo = ITIoI2, we define 'a and a so that 

w (a) = v (a)(w(O) + 1 
(w"(O) a, a)) + v (a)w'(O) a + w(a) - v(a)P2 (a) 

(2.5) = &(a) + v(a)w'(O)A-1''o(a) + (w(a) - v(a)P2(a)) 'I' (a) To' (a) 

= &(a) + uT(a$O I(a). 

The first term vw'(O)A-1 in the definition of a is a smooth function of a with com- 
pact support. Thus, to estimate the derivatives of a, we must study the derivatives 
of & = (w - VP2) ITO-2 Io. The Leibniz formula yields 

a = E () W7(w - VP2)ap-7(II'oI-2T). 
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Our first claim is that 

(2.6) 1(9w -P2)1I? { constlal3-1YI if IaI < Pi, 
const if Jal > pi, 

where the constant depends on Pi and C, D from Assumption 1. To prove (2.6), we 
observe that v = 1 if Icl < Pi and that (9'(w - P2) is the remainder in the Taylor 
formula of order 2 - 1f1 for Few. If Pi < Ial < 2pi then both @PP2 and Y3-Thv are 
bounded by constants that depend on Pi. The estimate for Ial > 2pi follows from 
Assumption 1. Our next claim is that 

(2.7) I913-( IoK-2'Io)I < 
5 constlall-YIH-I3l if IaI < Pi, 
1 const if IaI > Pi. 

To prove (2.7), we set G(x) = IxJ-2x and observe that BEG is a homogeneous 
function of degree -1 - 1. If l'al < Pi then Io(a) = Aa, and it follows from 
Assumption 1 that det A = 1 and that the elements in A are bounded by C. We 
obtain the first estimate in (2.7) by differentiating the composite function Go'o and 
using the homogeneity of G. If lal > P1 then (2.4) implies that I'oI > 1*1/2. Since 
a 0- = IQ (T (a)) - IQ-1(0), it follows from the mean value theorem that Ial < 

const I " (a) where the constant is less than C from Assumption 1. Consequently, 

I'I'o(a)I > const pi. So the proof of (2.7) is completed by differentiating G o TO 
again and using that I'oIc3 is finite. 

By using (2.6) and (2.7) in Leibniz' formula we see that 9d& are uniformly 
bounded for 1,31 = 0, 1, 2 and that (9' is integrable for 1/1 = 3. Here we have used 
that w and v have compact support, namely Q - ai and the sphere with center 0 
and radius 2pj. 

We are now ready to estimate the discretization error for Fo. By inserting (2.5) 
in the expression for Fo we see that Fo = Foo + Fol, where Foo is an odd function 
and 

Foi(a) = l f ( I((o a) (a) "o(a)I a(a) = k(a)o(a). 

Thus, k(a) = K6(y)yT where y = Io(a). 
Since Foo is odd, E(Foo) = 0. We will show that E(Fol) < const h36-1 by using 

Lemma 4 together with the estimate 

(2.8) max II191Fo1iji < const6-1. 
1,31=3 

It follows from Leibniz' formula that 

f k913Fol (a) I da < f Ik(a)a19u(a)I da + E ( 9) f kl k(a) I 1937Ia(a) I da 

We observe now that the support of a is contained in a sphere B with center at the 
origin (of the shifted coordinate system) and with radius D + 1 + 2p4. Since the 
derivatives 93-5a for a > 0 are bounded and IK6(y)yTI is less than (27r)1I f II, 
we see that 

(2.9) f k13 Fol (a) I da < const [/lB al da + E a3I / k(a)l da] 
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where the constant depends on the shape factor f and the derivatives of a. We 
have already shown that the integral f lOal dcr in (2.9) is bounded. Since k(ca) = 

K6(y)yT with y = IO(a), it follows from the chain rule that W5k(a) can be ex- 
pressed as a sum of derivatives of K6 (y)yT, evaluated at y = TO(a), times deriva- 
tives of T0 of order less than or equal to 1yl. Choose R such that IyI < R for all 
y E TO (B). By using the change of variables a = T-'i (y) we conclude from Lemma 
5 that 

f la9k(a)I dca < const Z f I9Y (K6 (Y)YT) I dy 
?<Inl<,_Yl wo(B) 

< const6-1, 

where the constant depends on P1 and R and the bounds for the derivatives of TO. 
By inserting this result in (2.9) we obtain (2.8). Lemma 4 and (2.8) imply that 

E(Fol) < const h36-1, and since E(Foo) = 0 it follows that E(Fo) < const h36-1. 
To estimate E(F1) by Lemma 4, we must prove that 

(2.10) max II9(F1 13F < const 61. 
1,31=3 

Let g(n) = II-'2f@f ) 1'. We can then express Fi as 

F1 = (g('I/6) - g(To/6))w/(27r6). 

To estimate the derivatives of F1, we need bounds for the derivatives of g. It follows 
from the mean value theorem that g(n) - g9(f) = 9( )(rq - ), where 

1 
9(X, O)= 9'(sq + (1 - s)) ds 

and g' = (199, 29). Note that g is a two by two matrix. Assumption 2 implies 
that g is in CG, and by differentiating with respect to q and f we see that 

1 

(2.11) Up; = (01 9"+g9'(8r/ + (1 - 8)f)8I'l (1 I I)I'Y d8, 

for flu + 1hi < 3. Thus, Ij 90(9 ~)I < const if 71q and 1f1 are less than a constant 
L. We now replace'7 and f in g by 6-1'(a) and 6-1'ho(a). Let I1fI < 3. By using 
the chain rule we see that (9I(6-1'h,&-11Qo) consists of a sum of derivatives of 
9 (, ) with respect to q and f of order 1Ifl greater or equal to 1 and less than or 
equal to Iyj evaluated at 7 = 6b-1 and f = 6-1ho, multiplied by 6-1'1 times a 
function which is a product of derivatives of IQ and TO of order greater or equal to 
1 and less than or equal to 1-al. We can now show that 

(2.12) 1'h(c) TIo(a)\ { const 6-11 if Ial ? 6, 
(2.12) 1879 (@ ?(6 

I 6 ) const62l{-*1H-2 if R, > lal > 6, 

where R1 = 1 + D. Let I aI < 6. Assumption 1 and the regularity of VO imply that 

I1@(a) - T (0)I < LIaI < Lb and I To(a)I < Lb. This implies that the derivatives of 
9 (, ) at q = 6-1IQ and f = 6-1 To are bounded, and the first statement in (2.12) 
therefore follows from the chain rule. To prove the second inequality in (2.12), 
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we let ll > 6. It follows from the regularity of IQ-1 and TI-' that there exists 
a positive constant L1 such that I'I(a)l > LlaIl > L16 and I'o(a)l > LlIal > 
L16. Since 1 I1I7KI2 is homogeneous of degree -1 we find from Assumption 2 that 

d90g(q)J < constlql-7lH/3 if JqJ > L1 and 0 < 1f1 < 4. Thus, if J71 > L1 and 
- d < 111/2, we can estimate the integral in (2.11) and obtain 

(2.13) ' (q, f)I < constIn1-2 I'l''~ 

for 0 < 1f1 + 1-y < 3. Now let q = 6-1'(a) and f = 6-1'o(a) and observe that 
inequality I1 - d < IJuI/2 is satisfied because of (2.4). If IaI > 6 then 111 > L1, and 
we conclude from the chain rule and (2.13) that 

859( i?1 < const E ( ) o-~ 

< const 62 E Ial-2-11 < const 62 IaI-2-1'l1. 

In the last inequality we have used the fact that Ial < R1. This concludes the proof 
of the second inequality in (2.12). 

We will next study the derivatives of F1. Define G such that 

Fi(a) = 2 ^16) ( - i T ))w) (@a(^)-) 

=6-2 (@(a) @(a) X(a)1a12 = 1a12G(a), 

where x(a) = (27rlca12)-l (I(a) - To(a))w(a). Let 1f1 = 3. Since 9IaI12 - 0, it 
follows from Leibniz' formula that 

(2.14) &0 Fi (a) = E ( ) a9 -7 I a129G(a). 

To estimate the derivative of G, we will use that 

W'G(a) = 6-2 j (79) 97 Ag ( L(Q), atc) )AX(a). 
A? y 

We already have bounds for the derivatives of 9, namely (2.12), and we will now 
prove that 

(2.15) 1k9X(a)I < constlaIl-1AI 

for lal < R1 and JAl < 3. We observe first that x(a) = (27r)-(1 - p(lal))w(a) 

kaI-2(@I(a) - Aa). The first factor is in C3. From Lemma 6 we have 

clal-2 (@1(a) - Ace) t9,3(a) aO2 
1,31=2 

where IY0t90,(a)I < constlcal-11A. Since aKl-2 a is homogeneous of degree 0, we 
conclude that I9'3-(lal-2('I(a) - Aa))l < constlcal-1'-1, and Eq. (2.15) follows. 
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By combining (2.12) and (2.15) we see that the derivatives of G can be estimated 
by 

I9~G( _ const 62IJaI+1Y if Jal ? 6, 
19G (a)l < constal -2-1 if R, > IaI > 6. 

By inserting the bounds for 9Y1G in (2.14) we obtain the pointwise estimate 

I9OFi(a)I 
< const 

-I2alj1 
if 

aIl 

< 
6, 

1- constlal-3 if R, > IaI > 6. 
We can now integrate (9F1 over R2, and since F1 vanishes for Ial > R1, we have 
proved (2.10). By combining (2.10) with Lemma 4 we obtain IE(Fi)I < const h36 . 
Since F = Fo + F1, we have estimated the discretization error and hence completed 
the proof of Lemma 1. 

To prove the lemma for m = 2, we use Lemma 4 for I = 2 and follow closely the 
previous proof. So we end up with the estimates 

max k913FoiI1i < const(1 + Ilog 6 ), max I9l3FiI1i < const(1 + Ilog61), 
1,31=2 1,31=2 

which replace inequalities (2.8) and (2.10). The above estimates lead to E(F) < 
const h2(1 + I log 61), and from this the assertion follows. 

3. Proof of the Convergence Theorem. The proof of the convergence theo- 
rem is based on Lemma 1 and Lemma 2, and we need only to prove the theorem for 
p sufficiently large, see Beale and Majda [5, p. 46]. Let p > 2 and let h2 and c be the 
constants that appear in the statement of the stability lemma. Let e(t) = t- t. 

Let h < h2 and h/6 = e where e is a fixed number less than h2. We make the 
following claim. If 

(3.1) jje(t)jjIp h < 2 chl +2/p 

holds for 0 < t < t* and t* < T, then 

(3.2) Ije(t)IIph < Cl(h/e)2E 

where the constant C, does not depend on t* or e. Since Ile(t)Ioo,h < h-2/PIje(t)IIp,h 
it follows from (3.1) that Ije(t)Ijoo,h < 1ch for 0 < t < t*. We can therefore apply 

Lemma 2 and get 

(3.3) IIV[4Dt] - V[it]Ijph < C2114Dt - 4tjjph. 

Since Ilellp,h is less than Ilelloo,h 111p,h it follows from Lemma 1 that there exists 
a constant Co such that 

(3.4) JIv[4t] - V[4t]Illp,h < Co 62 + h2e) 2 l lliph < Cl(he) 21 

where C' depends on p and the support of w. By combining (1.1), (1.2) and (3.3), 
(3.4) we get 

(3.5) IV6(t)IIph = IIv[Dt] -V[EDt]llph < C'(h/l) + C2Ije(t)IpIh. 

Let now F(t) = Ije(t)IIph. Since F(t) < I4(t)0Iph, inequality (3.5) implies that 

F(t) < C1(h/e)2 for 0 < t < t*, where C, = C'(exp{C2T} - 1)C-1. Notice that 
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Ci does not depend on e. We have therefore established (3.2). Let now 

E = {t E [0,T]: Ije(8)IIp,h < -ch1'+ , 0<?<t}, 2 

and observe that E $ 0 since e(t) is a continuous function that vanishes at t = 0. 
Let T* = supE. We will show later that T* = T. This implies that I|e(t)IIp,h < 
1ch'+2/p for 0 < t < T. By the claim this implies that Ile(t)IIp,h < Cl(h/e)2 for 
0 < t < T. So the proof is completed provided T* = T. If T* < T then (3.1) and 
therefore (3.2) holds for 0 < t < T*. Since p > 2 there exists a constant h1 < h2 
such that Ci(h/e)2 < 4ch +2/p for h < h1. Notice that h1 depends on e. Let 
h < h1. Then 

(3.6) lle(t)IIp,h < 4ch' +2/p 

for 0 < t < T*. Since lle(t)IIp,h is a continuous function, T* E E and (3.1) will 
therefore hold in a larger interval. This contradicts the definition of T*. Hence 
T = T* and this completes the proof. 
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