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Convergence of a Random Particle Method to
Solutions of the Kolmogorov Equation
U = Vg + u(l — u)

By Elbridge Gerry Puckett*

Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday

Abstract. We study a random particle method for solving the reaction-diffusion equa-
tion u; = vuzz+ f(u) which is a one-dimensional analogue of the random vortex method.
It is a fractional step method in which 4t = vuz; is solved by random walking the par-
ticles while u; = f(u) is solved with a numerical ordinary differential equation solver
such as Euler’s method. We prove that the method converges when f(u) = u(1 — u),
i.e. the Kolmogorov equation, and that when the time step At is O(vVN -1) the rate of
convergence is like In N- ¥/ N =1 Where N denotes the number of particles. Furthermore,
we show that this rate of convergence is uniform as the diffusion coefficient v tends to
0. Thus, travelling waves with arbitrarily steep wavefronts may be modeled without an
increase in the computational cost. We also present the results of numerical experiments
including the use of second-order time discretization and second-order operator splitting
and use these results to estimate the expected value and standard deviation of the error.

1. Introduction. In this paper we study a random particle method due to
Chorin [9] for approximating solutions of the one-dimensional reaction-diffusion
equation,

(1.1a) Uy = Vugg + f(u),
(1.1b) u(z,0) = u°(z),
where the forcing function, f(u), satisfies

(1.2a) f(0)=1r(1) =0,
(1.2b) flu)>0 forO<u<l,
(1.2¢) flluy<1  for0<u<l.

We call this method the random gradient method. Algorithms based on this method
have been used to solve Nagumo’s equation [33] and the Hodgkin-Huxley equations
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[34]. We prove the convergence of the random gradient method to solutions of the
Kolmogorov equation,

(1.3a) Ut = VUugg + u(l — u),
(1.3b) u(z,0) = u0(z),

subject to the constraints

(1.3¢) 0<u0(z) <1,
; 0(r) —

(1.3d) zl{l_l_loou (z) =1,
; 0(r) —

(1.3¢) zl{l}_lwu (z) =0.

Our work follows that of Roberts [31] who proved the convergence of a random
particle method to Burgers’ equation, u; + uu, = vu;;. Related theoretical work
includes [6], [13], [21], [22], [28], [29], [32]. A review of particle methods which use
random walks to model diffusion may be found in [15].

Our interest in the random gradient method is primarily motivated by the fact
that it is a one-dimensional analogue of the random vortex method (7] for ap-
proximating solutions of the Navier-Stokes equations. We hope that a thorough
examination of the errors obtained when using the random gradient method will
yield a greater understanding of the error inherent in using the random vortex
method, particularly the error due to the random walk. In order to motivate the
subsequent discussion, we list here the most important characteristics that these
two methods have in common.

(1) Both are particle methods, with the particles representing point concentrations
of some derivative of the solution. (The gradient of u in the case of the random
gradient method, vorticity in the case of the random vortex method.)

(ii) Both are splitting or fractional step methods. That is, the equation to be
solved is split into two evolution equations, each of which is solved separately. This
process is coupled by using the solution obtained after solving one of the evolution
equations as the initial data for the other.

(iii) In both methods one of the fractional steps is the heat equation, u; = vAu.
In each method the numerical solution to the heat equation is obtained by random
walking the particles.

(iv) Finally, in both methods the second of the fractional steps is a nonlinear
evolution equation. In the case of the random gradient method this is the reaction
equation u; = f(u), whereas for the random vortex method it is the Euler equations.

Similar analogies may be drawn between the present method and the vortex sheet
method [8] for approximating solutions of the Prandtl boundary layer equations.
Numerical estimates of the convergence rate for the random vortex method have
been given by Roberts [30] while convergence proofs for the method in the absence
of boundaries may be found in [16], [26]. Theoretical work on the vortex method
solution of the Euler equations includes [1], (3], [4], [12], [17], [19], [20], [23].

In our treatment of the random gradient method particles are not permitted to
divide in two when their strengths surpass some critical value, as was originally
proposed by Chorin. This greatly simplifies the convergence proof. Difficulties
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which arise while trying to prove convergence for the algorithm with particle cre-
ation are very similar to those which arise when attempting to prove convergence
of the random vortex method in the presence of boundaries. In this case, particle
creation corresponds to the creation of vorticity, an important phenomenon in fluid
flow. Hald [22] has proven the convergence of a method with particle creation for
solving a one-dimensional diffusion equation with thermal convection.

For a random variable Z let E[Z] denote the expected value of Z and var(Z) its
variance. The main result of this paper is the following.

THEOREM 1.1. Assume 0 < v < 1. Fiz T > 0 and choose a time step 0 <
At <1 such that T = kAt for some integer k. Let u(z,T) be the solution at time
T of (1.3a-e) with initial data u®, and let i*(z) be the corresponding computed
solution with initial data u°. Let N > 10 denote the number of particles used to
generate 4*, and assume that At = O( vN _1). Then there exist poéitive constants
Co, C1 and C3, independent of v, At, and N, such that

E(||lu(T) - @*|l1)

1.4
( ) < (1+§6) [eT"uo—ﬁollLl +Cl\/l—/At+Cz-l-?/%] s
var(Ju(T) - &)
(1.5) InN

2
< (1 + Czo) [eT”uo — %L1 + C1VVAL +02-;ﬁ] .

In order to prove this theorem, several assumptions regarding u® and @° have
been made. In addition to satisfying the constraints (1.3c—€), it has been assumed
that 4 is continuously differentiable on R and 42 € L!(R) N L*(R). The approx-
imate initial data %° is a step function approximation to u® and is required to
be monotonically decreasing. All hypotheses are listed in Subsection 8.1. We first
prove the theorem for » = 1 and then use a simple scaling argument to demonstrate
the validity of the result for » < 1. One of the most important consequences of
Theorem 1.1 is that the error is independent of the diffusion coefficient, or ‘viscos-
ity’, v. Thus, solutions with arbitrarily steep wavefronts may be modeled without
any increase in the computational cost.

The details of the random gradient method are developed in Section 2, beginning
with some notation and followed by the algorithm itself. In Subsection 2.3 the class,
S, of permissible starting approximations #° is defined and several preliminary
lemmas are proved. Most of the error analysis is written in the language of solution
operators. This notation is introduced in Subsection 3.1. A brief account of the
proof may be found in Subsection 3.2, together with a description of how the details
are divided among Sections 4-7. In Section 8 we put the various parts together and
prove the theorem. Finally, in Section 9, we use the numerical method to compute
a known exact solution of the Kolmogorov equation. This permits us to compare
the convergence rate predicted by the proof with that obtained during an actual
calculation.

2. A Description of the Random Gradient Method. We begin this section
with the introduction of some notation and a description of the algorithm. This is
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followed by a discussion of the difficulties that are encountered for nonmonotonic
initial data and the proof of several basic facts that hold for monotonic initial data.

2.1. Step Function Notation. We will denote the numerical approximation of a
function which is intended to be obtained on a computer by the symbol ‘. Thus,
@(z,t) denotes an approximation to the solution u(z,t) of Eq. (1.1a,b). We will use
the term step function to refer to any piecewise constant function of z € R that has
a finite number of discontinuities.

In the random gradient method, u is a step function approximation to u. Conse-
quently, knowledge of the position of each discontinuity and of the amount of each
jump is all that is required in order to know u. It is convenient to think of @ at a
given time ¢ as being represented by N particles. Each particle has associated with
it a position on the z-axis and a strength or weight, the particle’s position being
a point at which u is discontinuous and its strength being the amount by which
@ changes at that point. The position of the ith particle at time ¢ = jAt will be
denoted by X f and its weight by wf We denote the computed solution after j time
steps as %’ (z) and write

N
(21) #(2) =) H(X] - 2)u],
=1
where H(z) is the Heaviside function
0, <0,

2.2 H(z) =

(22) @={) 3.

We assume that the particles have been labeled so that for each j,
(2.3) xX{<Xxj<- <X

This may require a relabeling of the particles at each time step, since random
walking the particles can result in a different ordering of the particle positions.
This is simply a notational convenience and has no effect on the actual details of
the convergence proof.

Let 1'1{ =4t (Xf ) denote the value of @ at the ith particle position. For future
reference we note that

N
(2.4) @ =) H(X] - XDl =) wl.
r=1 r>i
Consequently, the strength of the ith particle is given by wf = &{ - ﬁ{ +1- The
variable N will always be used to denote the number of particles present in the
flow; N is fixed for a given run of the numerical method.

2.2. The Algorithm. We begin the random gradient method by determining a
step function approximation #° to the exact initial data u°. Given the computed
solution @’ at time jAt, the solution at time (5 + 1)At is obtained in two distinct
steps: i

Step 1. The first step is the numerical solution of u; = f(u). For fixed z, this is
an ordinary differential equation (ODE) in ¢ with initial data @’ (z). The solution
of this equation can easily be obtained using any explicit ODE solver. In the
convergence proof that follows we will assume that Euler’s method is used. It
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should be noted, however, that the analysis (Section 6) carries through for higher-
order Runge-Kutta methods as well. Furthermore, there are some cases in which
u; = f(u) may be solved exactly. For example, in Eq (1.3a,b), f(u) = u(1 — u), in
which case the reaction equation u; = u(1 — u) may be solved exactly.

When the solution of the ODE is obtained using Euler’s method, the value of
the intermediate solution at the point z is given by

(2.5) ¥ (z) = @ (z) + Atf (@ (z)).

Here, At is the time step and the variable ¢ has been used to denote the solution
after one half of a two part fractional step. Since @’ is a step function, so is /71!,
the height of the step above the point z having been increased or decreased by the
amount Atf(4’(z)). This is equivalent to altering the weights w] so that the new

weights w?*! satisfy

N
(2.6) ¥ (z) = > H(X] — z)w] ™.
A simple formula can be derived for the w!*'. Let 3! = #/+1(X?) and define
%)y, =0. Then
1 _ ~g+l il _ g
@7) wltt =gt —vfrl =a —u’+1+At[f(u’)—f(u,+l)]
= w] + At[f(&]) - f (@)

Boundary Conditions. The function 97+? automatically satisfies the boundary
condition (1.3e) since H (X! —z) = 0 for all z > X7. Furthermore, by summing
over the wJ and using (1.2a) it is easy to show that Zw] = 1 implies ) w! ALE
Since Step IT does not alter the particle strengths (as will be seen below), it follows
that if 3~ w? = 1, then the sum of the particle strengths is a conserved quantity in
the random gradient method. In other words, %’ satisfies the boundary condition
(1.3d) at each time step if 4° does initially.

Step II. It remains to solve the heat equation u; = vug, with initial data 9711,
First select N random numbers 71,72,...,nn from a Gaussian distribution with
mean 0 and variance 2uAt.. The pqsition of the 7th particle X7 is then altered by
the amount #; to obtain X/*' = X7 + #,. Thus,

N

(2.8) W (z ZH (X? 4 — 2wl = ZH(X{“ —z)w!th

=1 1=1

2.3. Restriction to Monotonic Initial Data. In order to prove the convergence of
this method to solutions of (1.3a-e), we have found it necessary to assume that the
initial approximation #° is monotonic. This is due to the following reason. If one
allows particle weights with different signs, then some realizations of the n;,...,nn
will result in @/*!(z) < O for some z. This is true even if 0 < @/ < 1 (and hence
0 < 99+! < 1) everywhere. (See Fig. 3 of [21].) Not only are such negative solutions
incorrect (solutions of (1.3a-e) always lie in [0,1]; see Section 5), but solutions of
u; = u(l — u) with negative initial data blow up in finite time. This can lead to
particle strengths which increase without bound, further degrading the numerical
solution. In [21] Hald encountered precisely this same problem and also found it
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necessary to assume that the initial data is monotonic. Given these considerations,
we start by defining the class S of acceptable starting approximations.
Definition 2.1. Let S be the class of all monotonically decreasing step functions
@ which satisfy 4(—o00) = 1 and @(o0) = 0. Thus, & € S if and only if & can be
written in the form
N

(2.9) i(z) =Y H(X; - z)w,
=1
where the weights wy,...,wy satisfy

(2.10a) 0<w <1,
N

(2.10b) > wi=1
1=1

We now show that the random gradient method maps the class S into itself,
thereby avoiding the difficulties described above.

Assumption. Here and for the remainder of this paper we assume f(u) = u(1—u).
While many of the theorems that follow hold for general f, this assumption greatly
simplifies the exposition.

LEMMA 2.2. Fiz At <1 and assume that W/ € S. Let /! and @t be given
by (2.6) and (2.8), respectively. Then ?'*1 €S and W*! € S.

Proof. First we show #/*! € S. Recall that 3w’ = 1 implies 3w/t = 1.
Furthermore,
(211)  w!t =w! + AL(f(@) - f(@l,,)) = wll+ At — (@ +al,,))] >0
since w![1 + At(1 — (ﬁ{ + ﬁ{ +1))] is the product of two positive quantities. This
can be seen as follows. By assumption, w] > 0. Since 0 < @ < 1 for all 7 and since
@) =1 only if ¢ = 1, we have
(2.12) ~1<1— (@ +al,,) <1

Finally, w{ *1 > 0 and wa *1 = 1 together imply w{"’l < 1 for all 7. Thus,
#9*t! € S as claimed. Since ?/t! € S and since an alteration of the particle

positions has no effect on the weights, it follows that @/ *! € S as well. O

COROLLARY 2.3. Fiz At <1 and assume that i° € S. Then for all j > 1, we
have 37 €S and @ € S.

Assumption. Throughout the remainder of this paper we assume that At < 1.

One final fact will be established in this section, a bound on the particle strengths
w,. By (2.10a) and Corollary 2.3, wf < 1 for all 7,7. However, one needs to
know that N w{ = O(1) as N — oo. If the strengths are initially chosen so that
w? = O(N~1), then this is a consequence of the following lemma.

LEMMA 2.4. Fora® €S let @ = Y H(X? — z)w! be the computed solution at
time T = jAt. Then for all 7, the particle strengths w,’ satisfy

(2.13) w! < eTw?.
Proof. From (2.11) and (2.12) we see that wf"‘l = w{[l +At(1 - (ﬁ{ +ﬁf+1))] <
w!(1 + At). The inequality in (2.13) follows immediately. O

J
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3. Solution Operator Notation and an Outline of the Proof. The pri-
mary purpose of this section is to develop a notation with which to discuss the
error. We then present an outline of the convergence proof. We begin by assuming
that v = 1. This makes the exposition simpler. This restriction will be removed at
the end of Section 8.

3.1. Solution Operator Notation. Define Fy, the ezact solution operator for the
Kolmogorov equation, by Fyu®(z) = u(z,t), where u(z,t) is the solution to (1.3a,b)
at time ¢t. Note that if ¢ = jAt, then u(z,t) = thuo, where the superscript j
indicates the jth power of the operator Fa:. The reaction operator R; and the
diffusion operator D, are defined similarly. Thus, R,u° is the solution at time ¢ to
the reaction equation with initial data u°,

(3.1a) us = u(l — u),

(3.1b) u(z,0) = u0(z),

and D;u” is the solution at time ¢ to the heat equation with initial data u°,
(323,) Ut = Uzgz,

(3.2b) u(z,0) = u°(z).

Let u(z) be an arbitrary piecewise continuous function. Define the approzimate
reaction operator Ra; by

(3.3) Rasu(z) = u(z) + Atu(z)(1 — u(z)).

In other words, for each fixed £ € R, Rasu(z) is simply the Euler’s method ap-
proximation after one time step to the solution of (3.1a,b) with initial data u(z).
Similarly, for an arbitrary step function @ of the form (2.9) we define the approzi-
mate diffusion operator Da: by

N
(3.4) Darii(z) =Y H(X; +ni — z)w;
1=1
where 71,73,...,nn are N independent random numbers chosen from a Gaussian

distribution with mean 0 and variance 2At. Thus, o = Ra, @/ ™!, @ = Dasd?,
and @/ = (DayRag )40,

3.2. An Outline of the Proof. Let 4® € S be a step function approximation
to the initial data u®. The L! difference at time T = kAt between the exact
solution of (1.3a,b) and our approximate solution may be divided into three distinct
components,

IF£u® — (DacRae) @Iy < |FA:u® — (DarRae)*u|s
(3.5) + [(DacRat)*u® — (DarRat) |y
+ [(DacRar)* @ — (DacRae) i1
The first term on the right is called the splitting error. It is the error due to the

fractional step or exact operator splitting. In Section 5 we prove that this error is
O(At),

(3.6) |FA,u® — (DatRae)*u®||: < C1AL.
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The second term on the right is the error due to our approximation of the initial
data u® by the step function 4°. In Section 4 we show that the operators R; and
D, are stable in the L! norm and hence, that

(DatRat)*u® — (DatRae) @y < e [|u® — @°|;.

The third term on the right in (3.5) is the error due to the numerical approxi-
mation of the solutions to Egs. (3.1a,b) and (3.2a,b). That is, the error that results
from approximating the exact operators Ra; and Da; by the approximate opera-
tors RAt and DAt Assume N and At have been chosen so that for some constant
Co, At =Cy W . Since the effect of the operator Da, is random, the bound on
this error takes the form

InN
3.7 Da:R — (DarRaz)*@l; > ~C: ) ——N"
(3.7) (n( R~ (Dackad" Pl 2 10a 5 ) < &

where v > 1 is an arbitrary real number. To prove this, we use the L! stability of
the operators D; and R; to divide this error into 2k pieces,

(DatRat)*@® — (DarRar) a0

(3.8) k=1
<eT > ||Raeii? — Ravii’ |1 + €™ ZHDAtv’ Dad||s.
7=0 7=1

Let ¢ = jAt. In Section 6 we prove that for each j,
(3.9) P(||Racit’ — Rarii ||y > vBi(t)VIn N(At)?) < N~57/4,

This estimate is based on tpe fact that Euler’s method has local truncation error
O((At)?), that R,u(z) = Ra.u’(z) for all [z] > max|X]|, and on a probabilistic
bound for the X;. In Section 7 we prove

n N _
(3.10) P <||DAth Dact?||1 > 71Ba(t) \/ﬁ) < 3N"5/4,
The proof is based on the pointwise estimate P(|Da;9’(z) — Dad?(z)| > Ca) <
e=2No® where a > 0 is arbitrary. Using (3.9) and (3.10) in (3.8) we obtain (3.7).

4. The Exact Solution Operators R; and D;. In this section we develop
some of the basic properties of the operators R; and Dy, the principal result being
that both operators are stable in the L! norm. We then use this fact to examine
the propagation of the error which is induced by approximating the initial data
with a step function.

4.1. The Ezact Reaction Operator R;. It is a simple matter to check that the
function defined by

u0(z)et
1+ (et — 1)u%(x)

is a solution of the reaction equation (3.1a,b). The L stability of R; is an immediate
consequence** of having an exact expression for R,u°.

(4.1) Ru’(z) =

**It has been pointed out by a referee that the L! stability of R, also follows from the fact
that (1 — u) is Lipschitz continuous.
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LEMMA 4.1 (L! Stability of R;). Let u and v be measurable functions on R
such that 0 < u,v <1 and ||[u—v|l1 < co. Then for any time t > 0, ||Ryu— Ryv||; <
etllu — vl

During the course of proving that the error due to exact operator splitting is
small (Section 5) it will be necessary to bound R:(u);. By differentiating (4.1)
with respect to £ we obtain the following result.

LEMMA 4.2. Let u € C'(R) and assume that 0 < u < 1. Then for p = 1,00
and any ttime t > 0,

luzllp < oo implies ||(Riw)zllp < etlluzllp-

4.2. The Ezact Diffusion Operator D;. Define the heat kernel G(z,t) by

—z2/4¢

Vit

Occasionally, when there is no possibility of confusion, we will write G(z) instead of
G(z,t). The solution of the heat equation (3.2a,b) is given by u(z,t) = (G;*u°)(z)
where * denotes convolution. Hence Da;u® = Ga; * u®. A basic result from the

theory of partial differential equations is that the diffusion operator D; maps LP(R)
onto LP(R) for 1 < p < oo (see [14]). In particular, we have the following fact.

€

(4.2) G(z,t) =

LEMMA 4.3. Let u be any measurable function of z € R and let 1 < p < oco.
Then for any time t > 0,

l[ully < oo smplies || Deullp < [[ullp.

Remark. For any bounded, differentiable function « on R which satisfies u, €
L! we have (G4 * u); = Gy * u;. Consequently, it follows from Lemma 4.3 that
(Deu)sllp < lluzllp as well.

The L! stability of D; is an immediate consequence of Lemma 4.3 and the
linearity of Dj.

COROLLARY 4.4 (L! Stability of D;). Lett > 0. Then for any bounded mea-
surable functions u,v defined on R such that |[u—v||; < co we have | Dyu— Dyvl|; <
[l = vl

4.3. The Error Due to Approzimating the Initial Data. The L1 stability of the
operators Ra; and Da; allows us to bound the error that occurs as a result of
approximating the initial data u® with a step function 4°. This is accomplished by
examining the second term on the right in (3.5). This expression can be bounded
in terms of the initial error by repeatedly applying Corollary 4.4 to functions of the
form u = Rat(DatRa¢)’u®, v = Ras(DatRat)’u° and Lemma 4.1 to functions of
the form u = (DasRat)’u®, v = (DatRa:)’u®. We note that the hypotheses of
Lemma 4.1 require 0 < u, v < 1. This follows from the simple fact that

(4.3) 0<u<1 implies 0< Ryu(z)<1andO0< Dyu(z) <1

We state this result in a somewhat more general form here for future reference.
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THEOREM 4.5. Let u and v be bounded measurable functions defined on R
satisfying 0 < u, v < 1. Then

|(DatRat)*u — (DatRad)*v||1 < eF4%ju —v|;.

5. The Error Due to Exact Operator Splitting. In this section we prove
(3.6). The key idea is to show that w(z,t) = F;u®(z) — D;R;u®(z) is a solution of

(5.1a) Wy = Wgr + a(z, t)w + b(z, t),
(5.1b) w(z,0) = w’(z)

with w%(z) = 0 and ||b(+,t)||s = O(t). Hence, there exists a constant A > 0 such
that

T
(5.2) (- Tl < AT [0y + AT / 16, )1l de
0

for all times T' > 0. By setting T' = At, it follows that the splitting error after one
time step is O(At?),

(5.3) |Fasu® — DasRacu®||1 < C(AL)2.

This inequality, together with the L! stability of the operator Fa;, yields (3.6).

The ideas we use to prove (3.6) have been used by Roberts [31] to establish an
analogous result for operator splitting applied to Burgers’ equation. Similar results
in the L? norm have been obtained by Beale and Majda [2] for viscous splitting of
the Navier-Stokes equations.

5.1. Some Properties of Solutions to the Kolmogorov Equation. Solutions of the
nonlinear reaction-diffusion equation (1.1a,b) satisfy a maximum principle in much
the same way as do solutions of linear parabolic differential equations. Here we
state the maximum principle for solutions of the Kolmogorov equation (1.3a,b).
For a proof see [5].

LEMMA 5.1 (Maximum Principle). Let u,v be bounded solutions of (1.3a,b) on
Q=R x [0, T] with initial data u°, v°, respectively. Suppose that v°(z) < u(z) for
allz € R. Then v(z,t) < u(z,t) for all (z,t) € Q.

For bounded and sufficiently smooth initial data, solutions of (1.3a,b) exist, are
unique, and possess bounded derivatives. In particular, solutions u of (1.3a,b) with
u® € C1(R), 0 <u® <1, and ||[ul|leo < 00 satisfy

(5.4) lluz(t; Moo < €*lluglloo,

a fact which we shall-have occasion to use. For details we refer the reader to [5] or
[35]. Next we state the conditions under which solutions of (5.1a,b) satisfy (5.2).

LEMMA 5.2. Fiz T > 0 and let a(z,t) and b(z,t) be bounded, continuous
functions on the strip @ = R x [0,T] such that a € C'(R), a, is bounded in
Q, and b € L'(Q). Suppose w(z,t) is a solution of (5.1a,b) in R x (0,T] with
w® € LY(R), and that w and w, are bounded in ). Then w satisfies (5.2) for
A = supq{0,a(z,t)}.

Remark. The L stability of solutions to (1.3a,b) follows from (5.2) and (5.4) pro-
vided we restrict ourselves to solutions with initial data that are bounded between
0 and 1 and have bounded first derivative.
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5.2. The Splitting Error. We are now ready to prove (5.3). This is accomplished
in two steps. The first step consists of using (5.2) to show that the L! norm of the
function w(z, t) = Fyu® — Dy RyuO is O(t?). If one regards Da;Ra:u® as a numerical
approximation to Fa,u® after one time step of length At, then this is simply the
statement that the local truncation error is of order (At)2. In other words, our
numerical scheme (approximating Fa;u® by Da;Ra:u®) is consistent.

THEOREM 5.3. Let u(z,t) be a solution of the Kolmogorov equation (1.3a,b)
with initial data u® € C*(R). Assume that 0 < u® <1 and that ud € L1(R)NL>®(R).
Then (5.3) holds with

V2At
(5.5) C = 34t {em"ug"m + 4“\/7 [l

Proof. We will show that w(z,t) = F;u®(z) — D;R;u°(z) satisfies a differential
equation of the form (5.1a,b) on 2 = R x [0, At] with initial data w®(z) = 0 and
where b(z,t) in (5.1a) satisfies ||bl|;1(q) = O(At?). Then (5.3) is a consequence
of (5.2). Let u(z,t) = Fyu®(z) and v(z,t) = Ryu®(z). Then w(z,t) = u(z,t) —
(G * v)(z,t), where G(z,t) is the heat kernel (4.2). By differentiating w with
respect to ¢t and using the fact that v; = v(1 — v) and Gy = G, one can show that
w satisfies (5.1a,b) witha =1— (u+ G *v) and b = G xv? — (G * v)%.

It follows from Lemma 5.1 that ||u(:,t)|lcc < 1 for all time ¢ > 0. Furthermore,

by (5.4), ||uz(,t)|loo < €t]|u]|co- Identical estimates hold for v and G x v. For,

by (4.3), |lv(:;t)|lc < 1 and hence, ||(G * v)|looc < 1 for all t > 0. (When it is
convenient to do so we will often suppress mention of the variable ¢t.) By Lemma
4.2, |lvzlloo < €'|4?||oo and, upon writing (G * v); = (G * v;), one finds that
(G*v)z|loo < €][2]|lco- Thus, a, az, b, w and w, are bounded continuous functions
on (1.

It remains to show that [|b||z1(q) = O(At?). To this end, Lemma 5.2 will once
again be used, this time applied to the function b = G *v% — (G *v)?2. Differentiating
b with respect to ¢ and remembering that vy = v(1 — v) and Gy = G4, one finds
that b satisfies

(5.6a) bt = byz + 2b+ c(z,1),
(5.6b) b(z,0) =0

with ¢ = 2[(G*v;)?+ (G*v)(G*v?) — G *v3]. Noting that v and v, are bounded and
continuous in (), it follows that b, b;, and ¢ are as well. Now consider ¢ € [0, At].
We claim that

t oo
(5.7) / / le(z, s)|dz ds < 2Cte™ 2,
0 J—oo

where C is given by (5.5). This follows from ||c(-,t)||; < 2Ce~? whenever t < At,
a fact which we now prove. By Lemmas 4.2 and 4.3,

(G * v2)?ll1s < MIG * vallool|G * vall1 < [lvzlloollvzlls < € [luglloollud]l:-
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To estimate the remaining portion of ¢, we write

(G 0)(G+v?) (G =)l
= /_ /_ /_ G(z - y)G(z — 2)[v(2)v* (y) — v*(2)| dy dz dz

< /_0; /_o:o /_o:o G(z — y)G(z — 2)v(2)(v(y) + v(2))|v(y) — v(2)| dy dz dz

o[ - ve-s

< 2fux( 0l [ ” / " GGy - 2l dydz
V2t

< 4___et"ug”1’

N

where we have used the fact that 0 < v < 1. Thus,

4/2t
lle(-, )Ml < 2 {e”IIu‘iIIllluglloo +

1
/ ve(z+0(y —2))dl| |y — z|dydzdz
0

VT
whereby (5.7) holds for ¢ € [0, At] as claimed. Since b(z,t) is a solution of (5.6a,b),
it now follows from Lemma 5.2 that ||b(-,¢)||s < 2Ct. Applying Lemma 5.2 once
more, this time to w(z,t) on = R x [0, At], we obtain (5.3). O

Continuing to think of Da;Rasu® as a numerical approximation to Fa,ul, we
may now use consistency (Theorem 5.3) together with stability (see the remark
after Lemma 5.2) to prove that for fixed time T = kAt, (DatRat)*u0 — Fﬁtu0
as At — 0. The proof proceeds precisely as it would for a numerical method; at a
given time step j we use stability and consistency to reduce the error at time jAt
into the error at time (5 — 1) At plus a term of order (At)2. Thus, the error at time
T = kAt is the sum of k terms, each of order (At)? plus the error due to the initial
approximation (which in our case is 0). The only detail remaining is that, in order
to apply the stability and consistency results, we must check that the functions
obtained at the intermediate time steps satisfy the appropriate hypotheses.

et||u2||1} <20e™,

THEOREM 5.4. Let u be a solution of the Kolmogorov equation (1.3a,b) with
initial data u® € C1(R) such that 0 < u® <1 and uQ € L*(R)N L*®°(R). Then (3.6)
holds where, for T = kAt,

(5.8) C1 =Te'T {eTlluglloo + @} luzlls-

Proof. Let u/ = F4,u%. By the maximum principle, 0 < u/ < 1 for each j and,
since u2 € L (R), (5.4) implies (v’), € L*®°(R). Similarly, let v/ = (DatRa¢)’ul.
Repeated application of (4.3) yields 0 < v/ < 1. Furthermore, Lemmas 4.2 and
4.3 imply that [|(v")z[le0 < €747[[udlloo and [[(v?)zl1 < €?2*|ud(l1. Hence, (v); €
LY(R) N L*®(R). We can now use the L! stability of Fa; (one must verify, by
induction, that w/~! —v7~! € L!) and Theorem 5.3 to obtain

|FA;w® — (DatRad)v|l:
< || Farw? ™' — Far? 7|1 4 [|Fac’ ™' — DacRacv’ 1
< oAt =y 4 Gy (A0,
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where the constant C;_; is given by (5.5) with u° replaced by v’ ~!. Hence,

k—1
IF&u® — (DacRas)fullly <) ek=1=DAC (A2 < max C;Te" At.

- J

7=0

Now use the L! and L® bounds on (v7), found above to obtain

I e
NG }Il(v )allx

4v/2At
< e’ {6T||u2||m+ NG }IIU2I|1~ o

6. The Error Due to the Approximate Reaction Operator Ra:. In this
section we prove that the inequality in (3.9) holds for v > 1 where the constant
B; = By (t) depends only on the initial data 4° and the time ¢t = jAt. The proof is
based on the following two points:

(i) Given any L > 0 such that for all ¢, X{ € (—L,L) then, by (2.1), z < —-L
implies 4/ (z) = 1 and z > L implies @’ (z) = 0. Therefore, Ra;u’ (z) = R4 (z)
for |z| > L and the L! estimate of the error is reduced to an estimate over the
interval (—L, L),

C. = 3At ) At
max C; = max 21 { e (v7), oo +

L
"RAt’a] b RAtﬁjlll = / |RA{IZJ (a:) - RAtﬁJ (I)l dz = ”RA{&J - RAtﬁ]”(—L,L)~
—L

(ii) For fixed z, Ra: is simply Euler’s method for approximating the solution of
an ODE, and hence the local truncation error is known to be O(At?). This fact
can be exploited to obtain a bound for |Ra;@#’ (z) — Ras@? (z)| which is uniform
in z.

Together, (i) and (i) imply ||Ra¢@’ — Rac@|l1 = [|[Rat@’ — Rasi||(—1,1) <
const 2L(At)?. In general, however, the size of the interval (—L, L) cannot be given
a deterministic bound. For the particle positions Xf are random variables, yet L
has been chosen so that |Xf | < L for all . Consequently, the most that one can
hope for is to find the probability that L is a given size. This is accomplished by
examining the movement of the particles.

Recall that Xf' is obtained from X{ ~! by adding a normally distributed random
variable 77{ with mean 0 and variance 2At¢ to Xf'_l. The movement of the particles

is thus governed by the distribution of the 77,

7 PR 1 ‘ —s?2/4At _ &
P(m<£)—\/‘TAt/-ooe / d3—¢(m>,
where ¢ is the probability distribution function for a Gaussian distribution with
mean 0 and variance 1 (see Chung [10, p. 100]). By writing X{ =X0+nl+-- ~+77f'
and noting that n} +-- -+ n{ is a normally distributed random variable with mean
0 and variance 2jAt we obtain the following result.

LEMMA 6.1. Let K > 0 by chosen so that X? € (=K, K) for all i. Then for
all a > 0,

P(X!| > K +a) < 2¢ (\/%) :
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It is well known that ¢(z) decreases at an exponential rate as £ — —oo. This
allows us to compute a bound on ¢(z) and hence on the probability that the particles
lie outside a given interval.

LEMMA 6.2. For anyz <0,

b(a) < ——e /2,

|z|v2m
Proof. Since s < z < 0, we have s/z > 1 and

1 z 2 1 T s 2 1 2
z) = — -8 /2d3< / °_—s /2d — —z /2.
¢(=) m/_ooe Sl 2 T

We now establish a probability inequality for |[Ras@ — Ras@? ||; which depends
on the parameter a. An appropriate choice of a then yields (3.9).

THEOREM 6.3. Let i® € S and let K > 0 be such that X? € (—K,K) for all
1. Then for all a > 0,

2N\/me—a2/4jm‘
ayT

Proof. Set L = K + « and assume that —L < X{ <L,7=1,...,N. Using the
fact that 0 < @’ (z) <1 (and hence 0 < R;4/ (z) < 1) we find

|Rai () — Rart (z)] < (V3/18)(At)?

for all z € R. It follows that

61) P (IIRmﬁ" — Ra@ |1 > —‘gﬁi(K + a)(AtV) <

L
(6.2) |Rai’ — Rasil ||y = / |Rati (z) — Rasi® (z)] dz < -‘?L(At)?.

-L
This estimate is valid as long as our assumption that —L < Xf < L holds. Thus,

by Lemmas 6.1 and 6.2,

~i DT V3 2 S J
P | [Raei = Raei’ |1 > “5-L(AY? | < > P(x]|>1L)
1=1
< 2N\/me—a2/4jAt‘ O
aym

We now set & = 3vv/¢vIn N in (6.1) to obtain (3.9).

COROLLARY 6.4. Let a® € S be generated by N > 3 particles, let t = jAt, and
let K > 0 be chosen so that for alli, X? € (—K,K). Then for each j =1,2...,
and all v > 1 the inequality in (3.9) holds with

(6.3) Bi(t) = lg—g(K +3V1).

7. The L! Convergence of the Approximate Diffusion Operator Das. In
this section we prove that, whenever 4° € S, inequality (3.10) holds for all v > 1
where the constant B, = Bs(t) depends only on the initial data 4° and the time
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t = jAt. Setting v = 1 it follows that, given any £ > 0, we can find Ny = Ny(¢)
such that for all N > Ny,

N In N
P ("DAt'U] — Dps?? "1 > Bg(t)ﬁ:> <e

Thus, by using sufficiently many particles, one can guarantee that the error due to
approximating Da; by Da, is small with arbitrarily high probability. It is in this
sense that the approximate diffusion operator Dag converges to the exact diffusion
operator Da¢. Similar results hold in the L% norm ([22], [27]) and the sup norm
([18]).

Note that the convergence rate as stated here is O(In N/+/N). The true con-
vergence rate is probably O(1/v/N), with the factor In N being a spurious term
introduced by the analysis. Furthermore, note that the rate of convergence does
not depend on the time step At. Thus, since all of the other sources of error be-
have like O(At) and since it is considerably cheaper to halve the time step than
to quadruple the number of particles, this quickly becomes the dominant source of
error. This feature is common to all numerical methods which use random walks
or some other form of random sampling.

The results in this section are based on the work of Roberts. Most of the reason-
ing is identical to the argument in Section 4 of [31]. The main difference between
Roberts’ convergence proof for the approximate diffusion operator and the proof
here is that in his work the particle strengths are constant in time, whereas here
the particle strengths are random variables. This difference manifests itself primar-
ily in Lemma 7.4 where, in order to establish a pointwise bound on the difference
between Da.?’ and Dmﬁj , it is first necessary to bound the particle strengths.

7.1. The Underlying Probability Space ) and a Brief Outline of the Argument.
Implicit in inequalities (3.7), (3.9), and (3.10) is the existence of a probability space
(Q, %, u) over which the respective errors are random variables. We can construct
this probability space in the following way. Let (Q,Z,u) = (H;;l Qj,H;?:l 5,
H§=1 u;), where Q; = RN ¥, is the Euclidean Borel field on RV, and pu; = p;(At)
is Gaussian measure on R with mean 0 and variance 2At. Here, N is the num-
ber of particles, At the time step, and kAt the final time at which we wish
to examine the error; N, At, and k are all fixed. There is a simple one-to-
one correspondence between elements of {2 and a given run of the random gra-
dient method: each w € (1 corresponds to one realization of the random walks,
w=(nl...,nN,---,n¥,...,n%). The component space (Q2;,%;, ;) has been cho-
sen so that there is a one-to-one correspondence between an element w; € {1; and
the N random numbers used at the jth time step to random walk the particles,
Moo

Now let Z be a random variable on ({2, £, u) with E[Z] < oo, let O} =[], (i,
2y =Ty Zuuy = [1.2; i, and let wy denote an element of (7. By Fubini’s
theorem we have

@y Bz = [ [ 2@ = [ o2 @s),

where
Eo (2] = / 2wy, w0}ty (dwy)

J
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is the conditional expectation of Z with respect to the Borel field {(2;} x £} C X.
(See Chung [10] for a discussion of conditional expectation, conditional probability,
and an explanation of the basic facts regarding these concepts which we use below.)
Define

(7.2) Pq;(Z > €) = Eq,;[H(Z —¢)).

Since H(Z — ¢) is the characteristic function for the event A = Z > ¢, it follows
that Po,(A) is the conditional probability of A with respect to {{2;} x £3. Note
that Pn;(A) is a random variable which belongs to {(2;} x £3, and that it depends
on w} but not on w;. Furthermore, note that when Z = ||[Da¢®’ — Da¢d? |1, the
random variable P (A) does not depend on the random walks taken after time
JAt and hence, an equivalent way of writing Pqn;(A) is

P(||Da¢®’ — Datd?||; > €| the past up to time (5 — 1)At).

Our proof of (3.10) proceeds as follows. We first divide the real line into two
pieces, (—L,L) and (-L,L)* = (—oo,—L) U (L,00), where L > 0 is free to be
chosen as we wish. We then write

P(|Dac® — Da¢d?||1 > €) < P(||Dact’ — DAtf)j”(-L,L) >€1)
+ P(||Da¢d — Dadll(—z,0)e > €2),
where ¢ = €1 + €z and |-+ - ||(—z,z) (resp. ||+ |[(=z,r)c) denotes the L' norm over
(=L, L) (resp. (—L, L)¢). To estimate the error on the tails (—L, L)¢ we bound the
error over (—oo,—L) (resp. (L,00)) under the assumption that all of the particles
lie in the interval (—B,B) C (—L,L) at times (j — 1)At and jAt. We then use

Lemmas 6.1 and 6.2 to estimate the probability that this assumption holds. To
estimate the error over the interval (—L, L) we show that for all w} € ]

(7.3) Pn,-("DAtf)j - bAtf)j”(-L,L) >e€1) <6,

where § depends on N, At, t = jAt, and the initial data 4® but not on wj. In
other words, we show that

P(|| D¢’ — ﬁAtf)jH(_L)L) > ¢ | the past up to time (5 — 1)At) <6

for all pasts up to time (5 — 1)A¢. This inequality follows from a probability
inequality of exponential type for the pointwise error at N points in (—L, L).

7.2. Pointwise Estimates. In this section we investigate the size of the pointwise
error |Da;#7(z) — Da¢®?(z)|. The principal result is that

(7.4) Pq,(|Dat® (z) — Dact? (z)| > aNw) < 2¢~2Ne

holds uniformly for all z € R where @ = max; w{ . We begin by showing that the
expected value of the random walk at time jAt is precisely the exact solution of
the heat equation with initial data o7.

LEMMA 7.1. Fizu° € S. Then for all z € R,

Eq,[Dat’ (z)] = Dagh? (z).
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Proof. Suppose that ?/(z) = H(X — z) where X € R is arbitrary. Then, by
(3.4), Da¢?? (z) = H(X +n — x) where 7 is a Gaussian random variable with mean
0 and variance 2At. Therefore, since  and X are independent, we find

~ : 1 o 2
Eq,[Dps?’ =——-/ H(X +n—x)e™ /4814
QJ[ atv (I)] \/M . ( n—z)e n
= (Gat *77)(z) = Dprd* ().

In general, 97 is of the form given by (2.6) and Da,?” is of the form given by (3.4).
The lemma now follows from the linearity of E and Da; and the independence of
the X’ ! and the nl. O

We now estimate the size of the pointwise error due to approximating Da;9’ (z)
by Da¢#?(z). Following Roberts [31], we use a probability inequality of exponential
type due to Hoeffding [24]. Similar inequalities may be found in Loéve [25].

LEMMA 7.2 (Hoeffding [24, p. 16]). Let Z1,...,Zn be N independent random
variables satisfying 0 < Z; < 1. Then for all a > 0,

(NZZ ;ZE[Z] >a) < em2Ne’,

=1

Applying this lemma twice, once to the Z; and once to the 1 — Z;, and then using
the fact that P(|X - Y|>a) < P(X-Y > a)+ P(Y - X >qa) forall X, Y, we
obtain the following more useful form of this inequality.

COROLLARY 7.3. Let Zy,...,Zn be N independent random variables satisfying
0< Z;, < 1. Then for all a > 0,

1 & 1 &
P(ﬁizzlzi—NZE[zi]

1=1

> a) < 9e~2Na*

Now define w as above and note that for each fixed z € R,
Zi=H(X; +n — o)w;w™ !
satisfies the hypotheses of Corollary 7.3. Furthermore,
(Nw) ' Dpsd (z -1 E Z;

and hence, by Lemma 7.1, (Nw)~!Da97(z) = N~' 3 E|[Z,). Applying Corollary
7.3 to the Z; we obtain the following result.

LEMMA 7.4. Letu® € S and let w = max;, wf Then for all a > 0 the inequality
(7.4) holds uniformly for all z € R.

Remark. If w) = O(N~1), then this estimate depends exclusively on the param-
eter a, the number of particles N, and the time ¢ = jAt. For, by Lemma 2.4, Nw
is O(et) for any 9/ which has been generated by the random gradient method from
initial data with particle strengths that are O(N71).

7.3. The L' Convergence of Da¢. We will now use the above pointwise estimate
to derive the error bound in the L' norm. We begin by establishing a bound of the
form given by (7.3).
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THEOREM 7.5. Let i° € S be generated by N particles and let w = max; wf
Then for all real o, L > 0,

, ~ . 1 2
7.5 Pa. [ |Dat?? — Dacd?||(— > 2L ——+an]) < 2Ne 2No"
(7.5) Q, (II At at? || (-L,1) [\/JV

Proof. For the duration of this proof we drop the superscript j from %/ and
write v. By Corollary 2.3, ¥ € S and hence Da;? and bAtf) are monotonically
decreasing functions bounded between 0 and 1. Therefore, we can find a sequence
a1,02,...,an with —L = a1 < a3 < --- < ay = L such that |Das0(a,—1) —
Dast(a,)| < VN~ forr=2,...,N. For each r let §(a,) = |DAtf)(a,)—DAtf)(a,)|.
Since Da;# and Da;d are monotone decreasing functions of z, it follows that for
each z € (a,-1,a,),

Dao(x) — DAtﬁ(I) < |DAtf)(a,_1) - DAtf)(a,)l + 0(a,)

< —IN + ma.x{ﬁ(ar—l)a 0((17)}

Similarly, one can show that —(D a5 (z)—Das9(z)) < VN~ +max{f(a,_1),0(a,)}
and hence, for z € (a,_1,a,),

\Dasi(z) — Daci(z)| < TIN +max{0(ar_1),0(ar)}.

This yields the following estimate for the L' norm over the interval (—L, L):

N
D18 = Dacil-ry € 3 (ar = ar-s)| 7+ max{0lar-1). Oar)

<2L [—\71_]\—, +mrax0(a,)] .

The function © = max, 6(a,) is a random variable which depends on the 7, .. .,
nn. The probability that the error over the interval (—L,L) is greater than
2L[V/N~! + aNw] can be estimated in terms of the probability that © > aNw. To
see this, note that by the last inequality above,

L= 1 _
||DAtv — DAtv||(_L,L) <2L [\/—ﬁ + an]

1 1

= 2L ——+6] > 2L [——-+an] < 0> alNw.
[\/N VN

Therefore, since © > aNw implies |Da;9(a,) — ﬁAtf)(a,)l > aNw for some a,, we

can use Lemma 7.4 to obtain

Lo 1 _
PQJ. (”DA,:U - DAtv||(_L,L) >2L [—— + an])

VN
< P, (3r: |Dasi(ar) — Dasi(ar)| > aNw)
N
< Y Pa,(IDarb(ar) - Daci(a,)| > Nua) < 2Ne~2Ne" . O
r=1

Using (7.1), (7.2), and (7.5), we can now establish a bound which holds over the
entire space ((1,%, u).
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COROLLARY 7.6. Let w® € S be generated by N particles and let w = max; w{ .
Then for all a, L > 0,

(7.6) P (||DAtf)f — Dpe ||~y > 2L [7—1]7 + an]) < 2Ne2Ne’,

The next step is to prove a probability inequality for the error over the tails
(=L,L)°. Note that we are still free to choose L. Let K > 0 be chosen so that at
time ¢ = 0 all the particles lie in (=K, K). Let L = K + 23 where 8 > 0 is an
arbitrary parameter. The idea, due to Roberts [31], is to estimate the error as a
function of § under the assumption that at times (j — 1)At and jAt¢ the particles
remain in the interval (—K — 8, K + ). This reduces the problem to that of finding
the probability that the particles are in this interval at the (5 — 1)st and jth time
steps, a problem which may be solved with Lemmas 6.1 and 6.2.

THEOREM 7.7. Assume that i° € S is generated by N particles, all of which lie
in the interval (—K, K). Denote the time byt = jAt. Let 3 >0 and L = K + 20.
Then

. 2VAL _ 4NVt _
(7.7) P (||DAth _ DAtUJ“(—L,L)c > —\/'—7,-_6 ﬁ2/4At) < —\/\%—e ﬂ2/4t.

Proof. Let B = K + (3. We first show that for (a,b) = (—oc0,—L), (L, 00),

IDa¢® ~ Dac®ll(a,b)
(7.8) v A .
> 7A7_r-te—ﬁ2/4“ = 3 such that X7 ' or X! ¢ (-B, B).
To begin, let (a,b) = (—oo, —L). We prove the contrapositive of (7.8). Therefore,
assume

-B<X!I"" X/ <B ¥ie{l,...,N}.
By the triangle inequality,
1D — Dact ll(~o0,-L) < 1Datd = 1l(=co,~1) + lI1 = Das®’[|(~co, L)

and hence, it suffices to show that

VAt ﬂ2/4At

”DAtﬁj - 1||(—oo,—L) < —\/76_ and ||1 — ﬁAtﬁj,"(—oo,—L) =0.

The second statement is an immediate consequence of the fact that Da;97 (z) = 1
for all z < —L < —B. To prove the first statement, we use 0 < 1 — Da;#’(z) <
1— DatH(—B — ) for all z € R to show

~q VAL _ 2
I1 = Dat?? ||(~o0,—L) < 1DatH|l(—00,-8) = |Gt * H[(—c0,—p) < e B /aae,

A similar argument can be used to prove (7.8) with (a,b) = (L, 00). All that remains
is to estimate the probability that the right-hand side of (7.8) is true. Since ¢(z)
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is an increasing function of z, Lemmas 6.1 and 6.2 imply

N N
P(Ei: X! ™' or X] ¢ (-B,B)) < > _P(X!7'>K+p)+ Y P(X]|>K+8)
=1

i=1

)+ ()
SING | —(=———= | +2N¢ | ==
( 2(y - 1)At 24t
4N \/T -6%/455t
= BVT
Corollary 7.6, Theorem 7.7, and an appropriate choice of a and 8 now yields
(3.10).

0

THEOREM 7.8. Let u° € S be generated by N > 3 particles, each with weight
w? = N~1, and assume that all of these particles lie in (—K,K). Denote the time
byt = jAt. Then for all v > 1, the inequality in (3.10) holds with
\/At]

(7.9) Ba(t) =2 [(K +6VE)(1 + 2€t) + =

Proof. Fix v € R with v > 1 and let a = 3\/YInN/V8N, 8 = 3\/AtIn N, and

9
L = K + 2B. Referring to (7.6), we have 2Ne=2Ne* = 2N~ 172N < oN— i,
Furthermore, since v and In NV are both > 1,

2L[m+an]—2K+6¢_¢1n (\/1_ 3\‘//__°\I/IEVN )
< 24(K +6V1)(1 + 2¢ )131_1::,

where we have used Lemma 2.4, together with w® = N~1, to deduce that Nw < ¢’.
Consequently, (7.6) becomes

o= InN _5
(710) P <||DAtf;3 ~ Dat? ||~y > 2v(K +6V1t)(1+ 2¢') —= ) <2N 4’7
: VN
With our choice of § the right-hand side of (7.7) becomes

’1
4N\f —p?jae_ AN N"4 8

< N1,
N 3/ VinN
Furthermore, since 7 > 1 and v > 1, we have
VAte—ﬂ2/4At= VAtN_%].1<’7VAt_-1_
NZ3 T = ™ VN

Substituting these two inequalities into (7.7) yields
i~ VAt 1 _35
P (”DAtU] = Dat? ||(~L,L)e 2 27—————) <N™47,

Combining this estimate with (7.10) above yields (3.10). O
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8. Convergence of the Random Gradient Method. We now prove the
convergence of the random gradient method. We begin by showing that if the
hypotheses listed in Subsection 8.1 below hold, then for all v > 1,

L i In N
P (||F£tu0 - (DAtRAt)kuolll > e ||u® — @O, + C1At + 02-?—_])
(8.1) o VN
< 2 N
< CON )

where the constants C; and C; depend only on 4%, %°, and the time T = kAt. The
most important hypothesis here is that for some constant Cg, At = Cy/ v/N. This
has the effect of balancing the error due to the time step (temporal discretization)
with the error due to the number of particles (spatial discretization). This inequality
tells us that the probability of the error being greater than

AeT[|u® — @|l1 + C1At + Cy ln N/ V/N]

decreases exponentially as a function of 4. This allows us to find the bounds for
the expected value and the variance of the error given in (1.4) and (1.5). Both of
these estimates follow from (8.1) and the well-known fact (see Chung [10, p. 42])
that for any random variable Z > 0 and any real number a > 0,

[ o]
(8.2) E[Z]<a (1 +Y P(Z> ra)) .
r=1

8.1. The Hypotheses. Throughout this section let 7' = kAt denote the time at
which we wish to compare the computed solution with the exact solution. We
assume that the following hypotheses hold:

Hypothesis A;. In addition to (1.3c—e) the exact initial data u° satisfies u® €
C'(R), 0 < u%(z) < 1forall z €R, and u? € L}(R) N L= (R).

Hypothesis A;. The approximate initial data 4° satisfies u® € S (see Subsection
2.3), 4° is generated by N > 10 particles, and the initial weights satisfy w? = N~1.

Hypothesis As. The computational parameters N and At have been chosen so
that for some constant Cy we have

Co
(8.3) At = TN

We also assume that the constant K > 0 has been chosen so that the variation
of 40 lies in (—K, K),

(8.4) X2 <K, i=1,...,N.

8.2. A Bound on the Probability Distribution of the Error. The proof of (8.1) is
accomplished in two steps. In the first step (Theorem 8.1) we use the estimates
from Sections 6 and 7 to establish the probability inequality (3.7) for the error due
to the approximate solution operators. In the second step (Theorem 8.2) we use

the deterministic bounds from Sections 4 and 5 to control the remaining sources of
error.

THEOREM 8.1. Assume that Hypotheses Ay, Aa, and Az hold and let By be
given by (6.3) and Bz by (7.9). Then the inequality in (3.7) holds for all v > 1 with

9 TeT
(8.5) Cy ={B:(T)Cs + Bz(T)}C—O-
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Proof. Let Z; = [|(DatRae)'% = (DacRae) |1, Vs = [|Raci? ~! = Rac@ ™1,
and W; = ||Da¢?? — Das?’||1. Repeated application of Lemma 4.1 and Corollary
4.4 yields Zx < €T YF_ (V; + W;). (This is (3.8).) Since Zo = 0, k = T+v/N/Co,
and (At)2 = C3/V/N, we have

InN ~4Cs In N
Zi > C: = E V.+W;) > —
k27 2\4/—1\7 j=1( J .7)— eT W

. ¥CoIn N  ~ACoCs In N
Vi+W;)> —= =
= 3y such that (V; + W;) > keT N TeT VN

= 35 such that V; > vB;(T)(In N)(At)? or W; > 1B, (T)lﬂ!X
vN
We now apply Corollary 6.4 and Theorem 7.8 to obtain
k k

InN InNV
P|Zy>~C;—=) <) P(V; >+B;InN(At)?) + P(W~2 B——)

( k 702 W) = ]_; ( J D1 ( ) ) :’; J ~ 2\/N

< 4kN_%" < ilzN"’. O
Co

Using Theorem 8.1 and the bounds from Theorems 4.5 and 5.4, we now derive
(8.1).

THEOREM 8.2. Assume that Hypotheses Ay, As, and A3z hold. Then for all
~ > 1 the inequality in (8.1) holds with Cy given by (5.8) and Cy by (8.5).

Proof. Applying Theorems 4.5 and 5.4 to (3.5), we see that

|FE,u° — (DacRas)ki|l < CrAt + €T [[u® — 0|y
+[|(DatRae)* i — (DacRae)*a)s.-
Let h(T, At,N) = C, At + €T |[u® — @°||; + C2In N/+/N. Since v > 1,
| FEu® — (DatRae)*@®|| > vR(T, At, N)
= [(DaeRad) i — (Dackar) @l > 403 22

VN’
It now follows from Theorem 8.1 that
P(|F§,u® — (DatRas)*@lls > ~h(T, At, N))

- ~ - InN
<P (“(DAtRAt)kUO — (DatRa)*i01 > ~Co )

vN
4T
<—N77. 0O
<G

8.3. The Ezpected Value and Variance of the Error. We now prove the bounds
on the expected value and the variance of the error in (1.4) and (1.5) for v = 1.
We remove this assumption in Subsection 8.4.

THEOREM 8.3. Assume that Hypotheses A1, As, and Az hold. Let Cy be given
by (5.8) and Cy by (8.5). Then the inequality in (1.4) holds when v = 1.
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Proof. Define h as above. Setting v = 1,2,... in (8.1) and applying (8.2), we
obtain

E[|F£,u° — (DatRat)*@0)1] < h(T, At, N) (1 + = Z N")

h(T,At, N) (1 + 3) .o
Co
THEOREM 8.4. Assume that Hypotheses A1, Az, and A3 hold. Let Cy be given
by (5.8) and Cy by (8.5). Then the inequality in (1.5) holds when v = 1.

Proof. Set Z = ||Fk,u® — (Da¢Rat)*@0||;. Since var(Z) = E[22] — E[Z)? <
E[Z?), it suffices to bound E[Z?]. From Theorem 8.2 we have

P(Z* 2 (4h(T, At, N))?) = P(Z > Ah(T, At N)) < 2o N7,
0

Setting v = /r for each r € {1,2,...} and applying (8.2) we find
E[Z?) < h(T, At, N)? (1+—ZN f)

To estimate the series on the right set 5= N~! and f# = —Inb. Then

oo 00 (o)
Zbﬁ§b+/ e_ﬁﬁdz=b—[<%—+M)e_ﬁﬁ]
r=1 1 IB IB 1
2 2 5
—_ Z)eBP<cIN?
=b+ (ﬂ2 + ’3> e ” < 2N ,
where we have used the hypothesis that N > 10 and hence 8 =In N > 2. Thus,

E[Z% < h(T, At,N)? (1 + EN-I) < (1 + 1) h(T,At,N)?. O
Co Co

8.4. Dependence of the Error on Arbitrary v < 1. We will now remove the
restriction v = 1. For arbitrary positive v < 1 let u,, be the solution of Eq. (1.3a,b)
with initial data ul. Define u(z,t) = u,(\/vz,t). Then u satisfies (1.3a,b) with
diffusion coefficient 1 and initial data u%(z) = u2(,/vz). Note that ||0;ule =
VV10zus [loo and [|8zully = [|0zus 1.

The random gradient method scales in the same manner. In other words, let
¥ be the random gradient solution of (1.3a,b) at time T = kAt with diffusion
coefficient v. Denote the initial particle positions by X?(v). Then for any k >
0, u*(z) = @k(\/vz) is the random gradient solution of (1.3a,b) with diffusion
coefficient 1 and initial particle positions X? = X?(v)//v. This statement follows
immediately from the fact that if  is a Gaussian distributed random variable with
variance 2vAt, then n/,/v is a Gaussian random variable with variance 2At¢.

It now follows that ||lu, (T) — @k|l; = /¥||u(T) — @*||; and hence, by Theorem
8.3,

E(|luy(T) = @5 ll:) = VVE(|[u(T) - @)

< \/17(1+ Ci) [ T||lu® = a4 +ClAt+CglnN
0

VN
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It is necessary, however, to investigate the dependence of the constants C; and Cy
on v. From (5.8) we have

4\/2At
C, =Te'T {eT”azuO”oo \/_ } 102601

MK} 1626011

(8.6)
TeT {ﬁeTllazuglloo N

Thus the splitting error is O(y/v). Note that if one is modeling a wave front initially
of the form g, (z) = g(z/\/v) for some arbitrary C! function g, then, even though
09, = O(v~1/2), the constant C; remains O(1) owing to the factor v/~ multiplying
|0zuS |00 in (8.6) above.

In order to examine the dependence of Cy on v, let K(v) be chosen so that
-K(v) < X?(v) < K(v) for all 5. Then K = K(v)/\/V satisfies (8.4) and we find

02:%5(1{\/(;) T)C§+2 (\/_ )1+2 +% %T

Hence, C, = \/vC; is bounded uniformly in v for v < 1 as claimed. The conclusion
that Cy is O(v~'/2) may be misleading however. For example, with waves initially
of the form given by ¢, above, one generally chooses the approximate initial data
so that K (v) = O(\/v). In this case C; = O(1).

A similar argument can be used to establish the validity of the bound on the
variance of the error in (1.5) for arbitrary v < 1.

9. Numerical Results. In order to compare our theoretical bounds with the
actual performance of the method, we use it to compute a known exact solution.
We also present the results of computations with a second-order solution of (3.1a,b),
an exact solution of (3.1a,b) and second-order operator splitting (Strang splitting).
These experiments allow us to test the sharpness of our estimates and our under-
standing of the way various sources of error behave.

9.1. The Test Problem. For v = 1 the Kolmogorov equation (1.3a,b) has a
traveling wave solution of the form

(9.1) u(z,t) = g(z — at)

with speed o = 5/v/6 and wave form g(z) = (1 + (v/2 — 1)e*/V8)~2, Our approxi-
mation to u® was determined by placing N particles, each with weight wf = N~1,

at . i |
XO={9 (1-%), i1=1,...,N-1,
9! (zw) = N.
For this choice of 4° we have
1
2 oo _ofL)
(52) lu? —ully =0 (N)

For u given by (9.1) define the center of the wave at time ¢ to be the point
z. = z.(t) such that u(z.,t) = 1/2. We measure the error at time T = 1 on a grid
of 1001 points centered at z. and spaced a distance Az = 0.02 apart. We estimate
the expected value of this error by averaging it over twenty independent trials.
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Denote this average by &F = &rf(At,N). The independence of the trials with
respect to one another has been achieved by starting each trial with a different,
independently chosen seed for the random number generator. We also report the
standard deviation of our sample of twenty errors about their mean, denoted by
o = o(At,N). The error in each of the discrete L!, L?, and L* norms decreases
at roughly the same rate. We present only the results in the L! norm.

9.2. Numerical Results. Table 1 contains &T and o for a computation with
the random gradient method as described in Section 2. The number of particles
increases by 4 as one moves to the right along a row, while the time step decreases
by 2 as one moves down a column. The average error et roughly decreases by 2 as
one moves diagonally down one row and right one column. We therefore conclude
that for this problem the proper relationship between At and N is

(9.3) At =0 (-\/%) .

The relation At = O(+v/N~!) which we have arrived at by theoretical considerations
appears to be an underestimate of the dependence of the error on N. In other words,
if we set At = O(\VJ_V —1), then the errors that depend on N will decrease twice as
fast as the errors that depend on At, until eventually these latter sources of error
dominate all others. The method will still converge, but we will be doing four times
as much work*** to get the same results.

TABLE 1
Estimated mean and standard deviation of the error in the L' norm.

First-order solution of the ODE u; = u(l — u).

Number of Particles

At 1000 4000 16000 64000 256000 1024000

1 4568 + .0659 4361 £+ .0334 .4431 &+ .0095 .4448 + .0057 .4435 +.0020 .4434 £ .0010

2-1 [ 2345 +.0473 2240+ .0297 .2160 %+ .0124 .2220 + .0063 .2188 +.0024 .2191 +.0014

4~! |.1396 +.0380 .1204 +.0220 .1106 +£.0099 .1146 + .0069 .1121+.0027 .1118 +.0013

81 |.1107+.0167 .0692 +.0170 .0585+.0087 .0598 +.0072 .0568 + .0029 .0569 + .0013

16-! ] .0977 + .0204 .0525+.0120 .0333 +.0070 .0328 +.0053 .0287 +.0029 .0287 +.0012

3271 ].0973 +£.0181 .0461 +.0122 .0250 +.0063 .0187 +.0034 .0152+.0030 .0142 + .0015

Fix At = 1 and note that for all N, efr(1, V) is within o(1, N) of 0.443, i.e., for
At = 1,erT is well within statistical error of being constant. This is because those
sources of error due to temporal discretization (e.g., the errors in (3.6) and (6.2))
dominate those errors due to spacial discretization (e.g., (9.2)). These two sources
of error are roughly in balance when At = 41! and N = 1000. This can be seen by
noting that if one moves to the right along the row or down the column from this
point, then the error remains within 20(4~!, 1000) of being constant.

We can determine the dependence of the error on one of the parameters by
letting the other be a small, fixed value and observing how the error behaves as

***We have neglected the cost of sorting the particles at the end of each time step.
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a function of the first. For example, for fixed N = 1024000, €T clearly decreases
like O(At). On the other hand, if we fix At = 327! we find that for N < 64000
the error decays like vVN~1. The error is (statistically) constant for N > 64000
because for (At,N) = (327!,64000) the two sources of error are again roughly in
balance and hence, to the right of this point, the dominant source of error is that
due to the time step At.

Note that this balance point lies on the same diagonal as the one found earlier,
At = 47!, N = 1000. This diagonal represents the optimal choice of computational
parameters. On either side of this diagonal we would be doing more work to achieve
the same level of error. Of course, in practice it is usually impossible to determine
this diagonal. Therefore, the best strategy is to simply refine the parameters at the
optimal rate, presumably that given by (9.3). Although this will not necessarily
result in the least amount of work for a given level of error, it will result in the
error decreasing at the best possible rate.

TABLE 2
Error in the L' norm after one run.

First-order solution of the ODE u; = u(1 — u).

Number of Particles

At 1000 4000 16000 64000 2560000 1024000

1 0.5504 0.3863 0.4548 0.4394 0.4447  0.4439
2-1 [ 0.2287 0.2110 0.2168 0.2192 0.2202  0.2215
4711 0.0995 0.1148 0.0989 0.1056 0.1125  0.1136
8-1]0.1116 0.0531 0.0575 0.0579 0.0551  0.0576
1671 | 0.0976 0.0419 0.0276 0.0359 0.0300 _ 0.0289
327'] 0.103¢ 0.0453 0.0192 0.0256 0.0116 _ 0.0137

In Table 2 we present the L! error at time T = 1 after only one trial. In other
words, one realization of the random variable whose expected value and standard
deviation have been estimated in Table 1. In all cases the error after one trial lies
within 20 of err. Furthermore, along the diagonals the errors in Table 2 decrease
very nearly at the rate of At = O(v/N~!). The important point to note here is
that one generally obtains good results with one trial. It is not necessary to average
the computed solution over several trials in order to obtain decent results.

This statement can be made rigorous in the following way. Suppose T/Cp = 1.
For v = 1, inequality (8.1) implies

.. ~ In N

P <||thu° — (DasRag)*al)|; < e |Ju® — a0, + C1AL + 02—?——>
(9.4) VYN
13T
- C()N'

The right-hand side of (9.4) is an increasing function of NV and, when N = 1000, we
have 1 — 4T /CoN = 996/1000. Thus, inequality (9.4) assures us that if N > 1000,
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then better than 99% of the time

- o~ InN

FEu® — (DatRar) a1 < eTl[u® — 0|1 + C1At + Cy—=.

I Fa¢ (DatRae)*u” |1 I li +Cy 2N

We know of no way to improve the accuracy of the random walk. However, there

are several ways to obtain a method which is higher-order in time. We begin by
considering a second-order ODE solver. Define

R (@) = () + FUE(E) + [0(0) + AS@ @)

This is simply Heun’s method for solving (3.1a,b) ([11, p. 364]). Table 3 contains the
result of a series of runs with RAt replaced by R2nd It is immediately apparent that
there has been an overall decrease in the error as compared to Table 1. However,
the rate of convergence has not changed—even as a function of At alone. On the
average the errors still decay like O(At).

TABLE 3
Estimated mean and standard deviation of the error in the L' norm.

Second-order solution of the ODE.

Number of Particles

At 1000 4000 16000 64000 256000 1024000

1 .2688 & .0516 .2394 + .0238 .2410 +.0117 .2414 &+ .0055 .2421+.0029 .2417 +.0013

271 | 1177+ .0347 .0947 £+ .0199 .0788 +.0111 .0814 +.0062 .0786 +.0029 .0788 % .0020

4-1 |.1009 +.0236 .0584 +.0132 .0348 +.0073 .0334 £.0055 .0297 +.0027 .0295 £ .0020

81 |.0997 +.0175 .0494 +.0099 .0265 +.0084 .0171 +.0048 .0131 = .0030 .0127 +.0016

161 ].0964 £+ .0200 .0476 £+ .0100 .0234 +.0057 .0135+.0028 .0079 +.0022 .0061 +.0013

3271 ].0979 +.0189 .0449 +.0119 .0232 +.0053 .0121 +.0023 .0073 +.0018 .0039 + .0010

We interpret this data in the following way. When Ra: is replaced by fig“td, the
(At)? in (3.9) is replaced by (At)3.! Thus, the dependence of the last term on the
right in (3.5) on At is now O((At)?) rather than O(At). However, its dependence on
N is still O(v/N~1). From (9.2) we see that the middle term is O(N~!) and hence
is presumably negligible compared to the last term. However, the first term—the
error due to operator splitting —remains O(At).

To increase the accuracy of this first term, we now employ the following operator
splitting algorithm known as Strang splitting [36],

~i+1 _ p2nd
@) = R2, Dac R3S, 01

tThis statement is easily proved. We simply use the well-known fact that the local truncation
error for a second-order ODE solver is O((At)3) to replace the right-hand side of (6.2) by (At)3
times the appropriate constant.
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Note that Strang splitting costs no more than first-order splitting. One simply
takes half a time step at the beginning and another half time step at the end:

@l = }éi’}%b.ﬁt(RzAnthAt)j—le‘;%ﬁo.
With Strang splitting we expect the error due to exact operator splitting to be
IFA:u® — (Ratj2DatRaes2) ully < CVv(At)?.

Although we do not prove this statement, it should be possible to prove it by
applying the argument in the proof of Theorem 5.3 to the function

ws(zv t) = Ftuo(z) - Rt/2Dth/2uO(z)‘

In this regard, we note that Beale and Majda have shown that Strang splitting for
the Navier-Stokes equations is second-order accurate [2].

TABLE 4. (L! norm)
Second-order solution of the ODE with Strang splitting.

Number of Particles

At 1000 4000 16000 64000 256000 1024000

1 1124 + .0192  .0668 + .0121 .0444 + .0085 .0396 £ .0052 .0397 £.0029 .0394 + .0024

271 ].1008 +.0229 .0585+.0115 .0324 +.0056 .0273 +.0054 .0236 +.0026 .0239 + .0015

4-1 | .1008 £+ .0196 .0517 +.0091 .0238 +.0033 .0146 +.0032 .0087 & .0019 .0086 + .0013

81 | .0994 +.0184 .0484 +.0095 .0241 +.0057 .0129+.0024 .0064 +.0011 .0036 + .0009

16~1 | .0969 +.0202 .0476 +.0101 .0225 =+ .0051 .0125+.0026 .0066 +.0015 .0029 % .0007

3271].0982 +.0192 .0447 +.0118 .0233 +.0056 .0121 +.0025 .0067 +.0016 .0031 =+ .0006

In Table 4 we present the results of using this algorithm on the test problem. We
note a further decrease in the error as compared to Tables 1 and 3. In particular,
for At =1 and N > 16,000 the error is an order of magnitude smaller than that
in Table 1! Also note that for At < 1/8 the errors that depend on At appear to be
so small there is little further decrease in the error if one fixes N and lets At — 0.
However, the overall dependence of the error on N has not changed—the error still
depends on N like O(v/N~1).

We conjecture that the choice of parameters which results in the first and last
terms on the right in (3.5) decreasing at the same rate is now At = O(1/v/N).
However, we find it somewhat puzzling that for large, fixed N, say N = 1024000,
the error does not decrease like O(At?) and can offer no explanation.

Table 5 contains the data from columns 2, 4, and 6 of Table 4 organized so
that, provided our conjecture is correct, the most efficient way to decrease the
errors now lies on the diagonal. Note that on and below the diagonal which begins
with (At, N) = (271,4000) the error decreases at a rate roughly equal to At? =
O(1/+/N), which is consistent with our conjecture. This results in a small savings
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TABLE 5
The most efficient use of resources lies along the diagonals.
Second-order solution of the ODE with Strang splitting.
Number of Particles
At 4000 64000 1024000

1 0668 +.0121 .0396 £ .0052 .0394 £ .0024

2-1 | .0585+.0115 .0273 +.0054 .0239 +.0015

41 1.05174.0091 .0146 & .0032 .0086 + .0013

81 | .0484 +.0095 .0129 +.0024 .0036 + .0009

161 | .0476 +£.0101 .0125 4 .0026 .0029 + .0007

3271 ].0447 £ .0118 .0121 £.0025 .0031 % .0006

TABLE 6
Estimated mean and standard deviation of the error in the L' norm.
Exact solution of the ODE.
Number of Particles
At 1000 4000 16000 64000 256000 1024000

1 1372 £.0351 .0993 + .0217 .0877 +.0105 .0848 +.0057 .0850 £ .0030 .0843 + .0013
271 ] 1053 +.0290 .0697 +.0168 .0462 +.0085 .0445 +.0061 .0413 +.0025 .0410 % .0020
471 | 1004 +.0224 .0554 +.0116 .0292 +.0063 .0251 +.0048 .0208 +.0026 .0203 % .0020
81| .0996 + .0177 .0491+.0097 .0259+.0079 .0159 +.0044 .0114 +.0029 .0106 +.0016
16! | .0964 +.0201 .0476 +.0100 .0233 +.0056 .0134 +.0028 .0077 +.0021 .0056 + .0012
3271] .0979 +.0190 .0449 +.0119 .02324.0053 .0121 £.0023 .0073 +.0018 .0038 + .0010

in computational effort. To decrease the error by four, the original version requires
N — 16N and At — At/4, resulting in 64 times as much work.!T On the other
hand, the higher-order method only requires 32 times as much work to achieve one
fourth the error. For methods in which the work required at each time step is
O(N?) the savings is proportionally smaller.

Finally, we replace Ra; by Ra: (it is easy to compute the exact solution of
Eq. (3.1a,b)). In this experiment we do not use Strang splitting. The results are
presented in Table 6. For those choices of N and At for which one expects the
errors due to At to be noticeable, we find a moderate improvement over the results
displayed in Table 3. On the other hand, when the O(\/N —1) errors dominate, the
errors in Table 6 are quite close to those in Table 3. Upon comparing Table 6 with
Table 4, we conclude that if one is going to go to the trouble of using a higher-order

tt Again, we have neglected the work required to sort the particles at the end of every time
step and assumed the work at every time step is O(N).
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solution of the ODE (3.1a), then one should also use Strang splitting, especially
since it requires no additional computational effort.

9.3. Conclusions. The theoretical estimates presented in Theorem 1.1 are most
likely an underestimate of the true rate of convergence. In order to prove this
theorem, we have found it necessary to assume that At = O(i‘/j\f_ —1). However,
based on the numerical results presented here, we conclude that this is an inefficient
choice of parameters. One can argue that this is a special test problem and that
more general problems may converge at a slower rate. However, most solutions of
(1.3a,b) converge to traveling wave solutions in time (e.g. [5]) and it seems likely that
the method’s behavior with this particular traveling wave solution is representative
of its general behavior when approximating a traveling wave solution. The failure
of our analysis to accurately predict the true rate of convergence is probably due to
our use of the triangle inequality in (3.8). In contrast, Hald was able to establish the
correct rate of convergence for the method considered in [22], precisely because he
could write down the exact and computed solutions at any time ¢, thereby avoiding
the need to apply the triangle inequality.
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