
MATHEMATICS OF COMPUTATION 
VOLUME 52, NUMBER 186 
APRIL 1989, PAGES 615-645 

Convergence of a Random Particle Method to 
Solutions of the Kolmogorov Equation 

Ut =vUXX + U(1- U) 
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Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday 

Abstract. We study a random particle method for solving the reaction-diffusion equar 

tion ut = vUxx + f (u) which is a one-dimensional analogue of the random vortex method. 

It is a fractional step method in which ut = lvUxx is solved by random walking the par- 

ticles while ut = f (u) is solved with a numerical ordinary differential equation solver 

such as Euler's method. We prove that the method converges when f(u) = u(1 -u), 

i.e. the Kolmogorov equation, and that when the time step At is O( aN ) the rate of 

convergence is like In N- W 1 where N denotes the number of particles. Furthermore, 

we show that this rate of convergence is uniform as the diffusion coefficient v tends to 

0. Thus, travelling waves with arbitrarily steep wavefronts may be modeled without an 

increase in the computational cost. We also present the results of numerical experiments 

including the use of second-order time discretization and second-order operator splitting 

and use these results to estimate the expected value and standard deviation of the error. 

1. Introduction. In this paper we study a random particle method due to 
Chorin [9] for approximating solutions of the one-dimensional reaction-diffusion 
equation, 

(1.la) Ut = VuX + f(u), 

(1.lb) u(x, O) = W, 

where the forcing function, f(u), satisfies 

(1.2a) f(O) = f(1) = O. 

(1.2b) f(u) > O for O < u <1, 

(1.2c) f'(u)<1 forO<u<1. 

We call this method the random gradient method. Algorithms based on this method 
have been used to solve Nagumo's equation [33] and the Hodgkin-Huxley equations 
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[34]. We prove the convergence of the random gradient method to solutions of the 
Kolmogorov equation, 

(1.3a) ut = vuLOU + u(1 - u), 

(1.3b) u(x, 0) = u?(x) 

subject to the constraints 

(1.3c) 0< u?(x) < 1 

(1.3d) lim u0(x) = 1, 
:_1: b00 

(1.3e) lim u0(x) = 0. 

Our work follows that of Roberts [31] who proved the convergence of a random 
particle method to Burgers' equation, ut + uuX = Vuzz. Related theoretical work 
includes [6], [13], [21], [22], [28], [29], [32]. A review of particle methods which use 
random walks to model diffusion may be found in [15]. 

Our interest in the random gradient method is primarily motivated by the fact 
that it is a one-dimensional analogue of the random vortex method [7] for ap- 
proximating solutions of the Navier-Stokes equations. We hope that a thorough 
examination of the errors obtained when using the random gradient method will 
yield a greater understanding of the error inherent in using the random vortex 
method, particularly the error due to the random walk. In order to motivate the 
subsequent discussion, we list here the most important characteristics that these 
two methods have in common. 

(i) Both are particle methods, with the particles representing point concentrations 
of some derivative of the solution. (The gradient of u in the case of the random 
gradient method, vorticity in the case of the random vortex method.) 

(ii) Both are splitting or fractional step methods. That is, the equation to be 
solved is split into two evolution equations, each of which is solved separately. This 
process is coupled by using the solution obtained after solving one of the evolution 
equations as the initial data for the other. 

(iii) In both methods one of the fractional steps is the heat equation, ut = vAu. 
In each method the numerical solution to the heat equation is obtained by random 
walking the particles. 

(iv) Finally, in both methods the second of the fractional steps is a nonlinear 
evolution equation. In the case of the random gradient method this is the reaction 
equation Ut = f(u), whereas for the random vortex method it is the Euler equations. 

Similar analogies may be drawn between the present method and the vortex sheet 
method [8] for approximating solutions of the Prandtl boundary layer equations. 
Numerical estimates of the convergence rate for the random vortex method have 
been given by Roberts [30] while convergence proofs for the method in the absence 
of boundaries may be found in [16], [26]. Theoretical work on the vortex method 
solution of the Euler equations includes [1], [3], [4], [12], [17], [19], [20], [23]. 

In our treatment of the random gradient method particles are not permitted to 
divide in two when their strengths surpass some critical value, as was originally 
proposed by Chorin. This greatly simplifies the convergence proof. Difficulties 
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which arise while trying to prove convergence for the algorithm with particle cre- 
ation are very similar to those which- arise when attempting to prove convergence 
of the random vortex method in the presence of boundaries. In this case, particle 
creation corresponds to the creation of vorticity, an important phenomenon in fluid 
flow. Hald [22] has proven the convergence of a method with particle creation for 
solving a one-dimensional diffusion equation with thermal convection. 

For a random variable Z let E[Z] denote the expected value of Z and var(Z) its 
variance. The main result of this paper is the following. 

THEOREM 1. 1. Assume 0 < v < 1. Fix T > 0 and choose a time step 0 < 
At < 1 such that T = kAt for some integer k. Let u(x, T) be the solution at time 
T of (1.3a-e) with initial data u0, and let ilk(x) be the corresponding computed 
solution with initial data Oi. Let N > 10 denote the number of particles used to 
generate ijk, and assume that At = 0( ,/N1). Then there exist positive constants 
C0o, Ci and C2, independent of v, At, and N, such that 

E(Iju(T) - ikLI) 

(1.4) ~~< (1+ Co )eTjjU0 - i~o1LI + ClinVt + C2l] 

var(Iju(T) -_ ikll) 

(1.5) 
~< (1+ Co 

)e |U-U Ohl + C1VV\t + C2 a 

In order to prove this theorem, several assumptions regarding uo and i0 have 
been made. In addition to satisfying the constraints (1.3c-e), it has been assumed 
that u0 is continuously differentiable on R and uo E L1 (R) n L??(R). The approx- 
imate initial data i0 is a step function approximation to u0 and is required to 
be monotonically decreasing. All hypotheses are listed in Subsection 8.1. We first 
prove the theorem for v = 1 and then use a simple scaling argument to demonstrate 
the validity of the result for v < 1. One of the most important consequences of 
Theorem 1.1 is that the error is independent of the diffusion coefficient, or 'viscos- 
ity', v. Thus, solutions with arbitrarily steep wavefronts may be modeled without 
any increase in the computational cost. 

The details of the random gradient method are developed in Section 2, beginning 
with some notation and followed by the algorithm itself. In Subsection 2.3 the class, 
S, of permissible starting approximations i? is defined and several preliminary 
lemmas are proved. Most of the error analysis is written in the language of solution 
operators. This notation is introduced in Subsection 3.1. A brief account of the 
proof may be found in Subsection 3.2, together with a description of how the details 
are divided among Sections 4-7. In Section 8 we put the various parts together and 
prove the theorem. Finally, in Section 9, we use the numerical method to compute 
a known exact solution of the Kolmogorov equation. This permits us to compare 
the convergence rate predicted by the proof with that obtained during an actual 
calculation. 

2. A Description of the Random Gradient Method. We begin this section 
with the introduction of some notation and a description of the algorithm. This is 
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followed by a discussion of the difficulties that are encountered for nonmonotonic 
initial data and the proof of several basic facts that hold for monotonic initial data. 

2.1. Step Function Notation. We will denote the numerical approximation of a 
function which is intended to be obtained on a computer by the symbol ''. Thus, 
iu(x, t) denotes an approximation to the solution u(x, t) of Eq. (1.la,b). We will use 
the term step function to refer to any piecewise constant function of x E R that has 
a finite number of discontinuities. 

In the random gradient method, i! is a step function approximation to u. Conse- 
quently, knowledge of the position of each discontinuity and of the amount of each 
jump is all that is required in order to know &. It is convenient to think of i at a 
given time t as being represented by N particles. Each particle has associated with 
it a position on the x-axis and a strength or weight, the particle's position being 
a point at which ii is discontinuous and its strength being the amount by which 
i! changes at that point. The position of the ith particle at time t = jAt will be 
denoted by Xi' and its weight by wi. We denote the computed solution after j time 
steps as fiu(x) and write 

N 

(2.1) iu (x) = , H(Xi -x)wi 
2=1 

where H(x) is the Heaviside function 

(2.2) H(x) ={1' ><O' 

We assume that the particles have been labeled so that for each j, 

(2.3) (2.3)~~~~~~ Xj <_ X2 < ... < XNj. 

This may require a relabeling of the particles at each time step, since random 
walking the particles can result in a different ordering of the particle positions. 
This is simply a notational convenience and has no effect on the actual details of 
the convergence proof. 

Let iii = fii(X) denote the value of iui at the ith particle position. For future 
reference we note that 

N 

(2.4) ij =ZH(Xj-Xij)wj Z wi. 
r=1 r>i 

Consequently, the strength of the ith particle is given by wi = - Wi'+. The 
variable N will always be used to denote the number of particles present in the 
flow; N is fixed for a given run of the numerical method. 

2.2. The Algorithm. We begin the random gradient method by determining a 
step function approximation i? to the exact initial data u0. Given the computed 
solution uW at time jAt, the solution at time (j + 1)At is obtained in two distinct 
steps: 

Step I. The first step is the numerical solution of ut = f(u). For fixed x, this is 
an ordinary differential equation (ODE) in t with initial data ii (x). The solution 
of this equation can easily be obtained using any explicit ODE solver. In the 
convergence proof that follows we will assume that Euler's method is used. It 
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should be noted, however, that the analysis (Section 6) carries through for higher- 
order Runge-Kutta methods as well. Furthermore, there are some cases in which 
Ut = f(u) may be solved exactly. For example, in Eq (1.3a,b), f(u) = u(1 - u), in 
which case the reaction equation ut = u(1 - u) may be solved exactly. 

When the solution of the ODE is obtained using Euler's method, the value of 
the intermediate solution at the point x is given by 

(2.5) 3'+1(x) = iu'(x) + Atf(ijj(x)). 

Here, At is the time step and the variable v has been used to denote the solution 
after one half of a two part fractional step. Since ii is a step function, so is Vj3+l 

the height of the step above the point x having been increased or decreased by the 
amount Atf(ijj(x)). This is equivalent to altering the weights wq so that the new 
weights wq +1 satisfy 

N 

(2.6) 'b+' (x) - >jH(Xi3- x)Wi41 
i= 1 

A simple formula can be derived for the wj+. Let vij+' - '+1 (Xi) and define 

=0N+ 0. Then 

(2.7) Wi =i V-i+l = i+1 + At[f(i) - f(u +I)t 
= w + At[f (uj) -f (j+ )I 

Boundary Conditions. The function i3+1 automatically satisfies the boundary 
condition (1.3e) since H(XJ - x) = 0 for all x > Xi. Furthermore, by summing 
over the wi and using (1.2a) it is easy to show that 3 w =1 implies E wij 1. 
Since Step II does not alter the particle strengths (as will be seen below), it follows 
that if E w? = 1, then the sum of the particle strengths is a conserved quantity in 
the random gradient method. In other words, ii satisfies the boundary condition 
(1.3d) at each time step if u? does initially. 

Step II. It remains to solve the heat equation ut = vUX with initial data i3 +. 

First select N random numbers 1i, 2,...,.. U from a Gaussian distribution with 
mean 0 and variance 2vAt. The position of the ith particle X'j is then altered by 
the amount n7 to obtain X'i1 = X'+rn. Thus, 

N N 

(2.8) iV+1 (x) = >jH(Xi + n -x)wi1 = EH(Xij1 -x)wi1. 
i=l i=l 

2.3. Restriction to Monotonic Initial Data. In order to prove the convergence of 
this method to solutions of (1.3a-e), we have found it necessary to assume that the 
initial approximation ui is monotonic. This is due to the following reason. If one 
allows particle weights with different signs, then some realizations of the l, ... ., .N 

will result in jij+1 (x) < 0 for some x. This is true even if 0 < iii < 1 (and hence 
0 < 0j+1 < 1) everywhere. (See Fig. 3 of [21].) Not only are such negative solutions 
incorrect (solutions of (1.3a-e) always lie in [0,1]; see Section 5), but solutions of 
ut = u(l - u) with negative initial data blow up in finite time. This can lead to 
particle strengths which increase without bound, further degrading the numerical 
solution. In [21] Hald encountered precisely this same problem and also found it 
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necessary to assume that the initial data is monotonic. Given these considerations, 
we start by defining the class S of acceptable starting approximations. 

Definition 2.1. Let S be the class of all monotonically decreasing step functions 
ii which satisfy ii(-oo) = 1 and ii(oo) = 0. Thus, ii e S if and only if ii can be 
written in the form 

N 

(2.9) ii(x) H(Xi - x)wi 

where the weights w1,... , WN satisfy 

(2.1Oa) 0 < w- <1 
N 

(2. 1 b) E wj 1. 
i= 1 

We now show that the random gradient method maps the class S into itself, 
thereby avoiding the difficulties described above. 

Assumption. Here and for the remainder of this paper we assume f(u) = u(1-u). 
While many of the theorems that follow hold for general f, this assumption greatly 
simplifies the exposition. 

LEMMA 2.2. Fix At < 1 and assume that iii e S. Let 0j+1 and itj+l be given 
by (2.6) and (2.8), respectively. Then 0j+l e S and uj+l e S. 

Proof. First we show i3+' e S. Recall that Ewij = 1 implies E wj+l = 1. 
Furthermore, 

(2.11) wil= wiq + A~t f(iv~) -f (uil+ )) = wq [1 + A~t(1 - (ui + ~+ 1)) I > 0 

since wi [1 + At(1 - (ui + ij. ))] is the product of two positive quantities. This 

can be seen as follows. By assumption, wq > 0. Since 0 < iq < 1 for all i and since 
iJ = 1 only if i = 1, we have 

(2.12) -1 < 1-(U 0+ Uiq+1) < 1. 

Finally, w.j' > 0 and Ewij = 1 together imply wi1 < 1 for all i. Thus, 
0j+1 e S as claimed. Since vj++l e S and since an alteration of the particle 
positions has no effect on the weights, it follows that i3'+ e S as well. 0 

COROLLARY 2.3. Fix At < 1 and assume that u? e S. Then for all j > 1, we 
have 0j e S and Wj e S. 

Assumption. Throughout the remainder of this paper we assume that At < 1. 
One final fact will be established in this section, a bound on the particle strengths 

w-. By (2.10a) and Corollary 2.3, w3 < 1 for all ij. However, one needs to 
know that Nw. = 0(1) as N -- oo. If the strengths are initially chosen so that 
W9 = O(N-1), then this is a consequence of the following lemma. 

LEMMA 2.4. For iu e S let Wj = jH(Xj - x)wq be the computed solution at 
time T = jAt. Then for all i, the particle strengths wi satisfy 

(2.13) w. < w1. 

Proof. From (2.11) and (2.12) we see that w+ = w3 [1 + Lt(1 -(u + ui1 ))] ? 

w-(1 + zAt). The inequality in (2.13) follows immediately. o 
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3. Solution Operator Notation and an Outline of the Proof. The pri- 
mary purpose of this section is to develop a notation with which to discuss the 
error. We then present an outline of the convergence proof. We begin by assuming 
that v = 1. This makes the exposition simpler. This restriction will be removed at 
the end of Section 8. 

3.1. Solution Operator Notation. Define Ft, the exact solution operator for the 
Kolmogorov equation, by Ftu0(x) = u(x, t), where u(x, t) is the solution to (1.3a,b) 
at time t. Note that if t = jit, then u(x, t) = Fi tu0, where the superscript j 
indicates the jth power of the operator FAt. The reaction operator Rt and the 
diffusion operator Dt are defined similarly. Thus, Rtu0 is the solution at time t to 
the reaction equation with initial data uo, 

(3.1a) ut = u(1 -u), 

(3. lb) u(x,0) = u?(x), 

and Dtuo is the solution at time t to the heat equation with initial data uo, 

(3.2a) ut = ups, 

(3.2b) u(x,0) = u0(x). 

Let u(x) be an arbitrary piecewise continuous function. Define the approximate 
reaction operator RAt by 

(3.3) RAtu(x) = u(x) + Atu(x)(1 - u(x)). 

In other words, for each fixed x e R, RAttu(x) is simply the Euler's method ap- 
proximation after one time step to the solution of (3.1a,b) with initial data u(x). 
Similarly, for an arbitrary step function i! of the form (2.9) we define the approxi- 
mate diffusion operator DAt by 

N 

(3.4) DAtil(x) = H(Xi + ri - x)wi 
i= 1 

where r1, i .. ., rN are N independent random numbers chosen from a Gaussian 
distribution with mean 0 and variance 2A\t. Thus, 0j = R!Ati'-, 1J = DbAt, 
and iij = (DAtRAt) u? 

3.2. An Outline of the Proof. Let iu e S be a step function approximation 
to the initial data uO. The L' difference at time T = kAt between the exact 
solution of (1.3a,b) and our approximate solution may be divided into three distinct 
components, 

AIFA u -(DAtRAt)ki1OIIl ? IIFAtu?-(D ~tR~t)kuo i l 

(3.5) + II(DAtRAt)kuO - (DAtRAt)kiP ii' 
+ II(DAtRAt)ki1 - (DAtRAt)kiu 1II1. 

The first term on the right is called the splitting error. It is the error due to the 
fractional step or exact operator splitting. In Section 5 we prove that this error is 
O(3tt), 

(3.6) JIF tu - (DwvtR~tkul <Cit 
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The second term on the right is the error due to our approximation of the initial 
data u0 by the step function O9. In Section 4 we show that the operators Rt and 
Dt are stable in the L' norm and hence, that 

11 (DtRAt)kuO - (DAtRwt)kiPI111 < eTj'u0 - ii0111. 

The third term on the right in (3.5) is the error due to the numerical approxi- 
mation of the solutions to Eqs. (3.1a,b) and (3.2a,b). That is, the error that results 
from approximating the exact operators RAt and DAt by the approximate opera- 
tors RAt and DAt. Assume N and At have been chosen so that for some constant 
Co, A?t = Co A~NW . Since the effect of the operator DAt is random, the bound on 
this error takes the form 

(3.7) P (l(DAtRAt)kuo?- (DfAtIt)ki1Ol i > ? 
nN 

a C 

where -y > 1 is an arbitrary real number. To prove this, we use the L' stability of 
the operators Dt and Rt to divide this error into 2k pieces, 

11(DAtRAt)k'i - (DAtRAt)kiOIIl1 

(3.8)k1k 
?< eT d IIRStiiJ_ -RAtiij ||ll + eT Z IIDAti3 - DAti)3 ||l. 

j=O j=1 

Let t = jAt. In Section 6 we prove that for each j, 

(3.9) P(llRAtiij - RiAtiP3 || > '-B1(t)V'iHH(At)2) < N-5/4. 

This estimate is based on the fact that Euler's method has local truncation error 
O((i~t)2), that RtiP (x) = RAtiP (x) for all lxi > maxIXj1I, and on a probabilistic 
bound for the Xi'. In Section 7 we prove 

(3.10) P JD~tO - bD'till, > '-B2(t) nNA ) < 3N-5w4 

The proof is based on the pointwise estimate P(IDAti3(x) - DAti3(x)l > Ca) < 

e 2Nct , where a > 0 is arbitrary. Using (3.9) and (3.10) in (3.8) we obtain (3.7). 

4. The Exact Solution Operators Rt and Dt. In this section we develop 
some of the basic properties of the operators Rt and Dt, the principal result being 
that both operators are stable in the L' norm. We then use this fact to examine 
the propagation of the error which is induced by approximating the initial data 
with a step function. 

4.1. The Exact Reaction Operator Rt. It is a simple matter to check that the 
function defined by 

(4.1) Rtu(et - 1)u0() 

is a solution of the reaction equation (3.1a,b). The L' stability of Rt is an immediate 
consequence** of having an exact expression for Rtu0. 

**It has been pointed out by a referee that the LI stability of Rt also follows from the fact 
that u(1 - u) is Lipschitz continuous. 
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LEMMA 4.1 (L' Stability of Rt). Let u and v be measurable functions on R 
such that 0 < u, v < 1 and II u-v II, < 0. Then for any time t > 0, IIRtu-Rtv II < 

etIlu - vi1i. 

During the course of proving that the error due to exact operator splitting is 
small (Section 5) it will be necessary to bound Rt(u),. By differentiating (4.1) 
with respect to x we obtain the following result. 

LEMMA 4.2. Let u E C'(R) and assume that 0 < u < 1. Then for p = 1, x 
and any time t > 0, 

IIU IIp < oX implies II(Rtu)xIIP < etu IP. 

4.2. The Exact Diffusion Operator Dt. Define the heat kernel G(x, t) by 

-X72/4t 

(4.2) G(x, t) = e 

Occasionally, when there is no possibility of confusion, we will write Gt (x) instead of 
G(x, t). The solution of the heat equation (3.2a,b) is given by u(x, t) = (Gt * u0)(x) 
where * denotes convolution. Hence DAtuo = GAt * uO. A basic result from the 
theory of partial differential equations is that the diffusion operator Dt maps LP (R) 
onto LP(R) for 1 < p < x0 (see [14]). In particular, we have the following fact. 

LEMMA 4.3. Let u be any measurable function of x G R and let 1 < p < 00. 

Then for any time t > 0, 

IjuIIp < 00 implies IIDtuIIp < IIuIIp. 

Remark. For any bounded, differentiable function u on R which satisfies ux E 
LI we have (Gt * u) = Gt * ux. Consequently, it follows from Lemma 4.3 that 

II(Dtu)Illp < IIuxIIp as well. 
The L' stability of Dt is an immediate consequence of Lemma 4.3 and the 

linearity of Dt. 

COROLLARY 4.4 (LI Stability of Dt). Let t > 0. Then for any bounded mea- 
surable functions u, v defined on R such that Iju-vII 1 < 0 we have IIDtu-DtvII 1 < 

Iu - viii. 

4.3. The Error Due to Approximating the Initial Data. The L1 stability of the 
operators Rit and DAt allows us to bound the error that occurs as a result of 
approximating the initial data uo with a step function O?. This is accomplished by 
examining the second term on the right in (3.5). This expression can be bounded 
in terms of the initial error by repeatedly applying Corollary 4.4 to functions of the 
form u = RAt(DAtRAt)3u0, v = RAt(DAtRAt)juii0 and Lemma 4.1 to functions of 
the form u = (DAtRAt)ju0, v = (DztRzt)'ii0. We note that the hypotheses of 
Lemma 4.1 require 0 < u, v < 1. This follows from the simple fact that 

(4.3) 0 < u < 1 implies 0 < Rtu(x) < 1 and 0 < Dtu(x) < 1. 

We state this result in a somewhat more general form here for future reference. 
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THEOREM 4.5. Let u and v be bounded measurable functions defined on R 
satisfying 0 < u, v < 1. Then 

II (DAtRAt)ku - (DAtRAt)kVll < ekZtIu - viii. 

5. The Error Due to Exact Operator Splitting. In this section we prove 
(3.6). The key idea is to show that w(x, t) = Ftu0(x) - DtRtu0(x) is a solution of 

(5.1a) wt = w + a(x, t)w + b(x, t), 

(5.lb) w(x, 0) = wo(x) 

with wo(x) = 0 and IIb( ,t)1j 0(t). Hence, there exists a constant A > 0 such 
that 

rT 

(5.2) IIw(-, T)IIi < eATIVwoII1 + eATj IIb(-, t) 11 1 dt 

for all times T > 0. By setting T = At, it follows that the splitting error after one 
time step is O(At2), 

(5.3) IIFztu0 - DwtRztu0 Iil < C(At)2. 
This inequality, together with the L' stability of the operator FAt, yields (3.6). 

The ideas we use to prove (3.6) have been used by Roberts [31] to establish an 
analogous result for operator splitting applied to Burgers' equation. Similar results 
in the L2 norm have been obtained by Beale and Majda [2] for viscous splitting of 
the Navier-Stokes equations. 

5.1. Some Properties of Solutions to the Kolmogorov Equation. Solutions of the 
nonlinear reaction-diffusion equation (1.la,b) satisfy a maximum principle in much 
the same way as do solutions of linear parabolic differential equations. Here we 
state the maximum principle for solutions of the Kolmogorov equation (1.3a,b). 
For a proof see [5]. 

LEMMA 5.1 (Maximum Principle). Let u, v be bounded solutions of (1.3a,b) on 
Q = R x [0, T] with initial data u?, v?, respectively. Suppose that v?(x) < u?(x) for 
all x e R. Then v(x, t) < u(x, t) for all (x, t) e Q. 

For bounded and sufficiently smooth initial data, solutions of (1.3a,b) exist, are 
unique, and possess bounded derivatives. In particular, solutions u of (1.3a,b) with 
u? E C'1 (R), 0 < u? < 1, and lu I10c < x satisfy 

(5.4) Ilux(trlo < t I0? lo 

a fact which we shall-have occasion to use. For details we refer the reader to [5] or 
[35]. Next we state the conditions under which solutions of (5.1a,b) satisfy (5.2). 

LEMMA 5.2. Fix T > 0 and let a(x, t) and b(x, t) be bounded, continuous 
functions on the strip Q = R x [0,T] such that a E C'(R), ax is bounded in 
Q, and b E L'(Q). Suppose w(x,t) is a solution of (5.1a,b) in R x (0,T] with 
w? E L'(R), and that w and wx are bounded in Q. Then w satisfies (5.2) for 
A = sup{0, a(x, t)}. 

Remark. The L' stability of solutions to (1.3a,b) follows from (5.2) and (5.4) pro- 
vided we restrict ourselves to solutions with initial data that are bounded between 
0 and 1 and have bounded first derivative. 
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5.2. The Splitting Error. We are now ready to prove (5.3). This is accomplished 
in two steps. The first step consists of using (5.2) to show that the L' norm of the 
function w(x, t) = Ftu0 - DtRtu0 is 0(t2). If one regards DAtRAtu0 as a numerical 
approximation to FAtuo after one time step of length At, then this is simply the 
statement that the local truncation error is of order (At)2. In other words, our 
numerical scheme (approximating FAtu0 by DAtRAtu0) is consistent. 

THEOREM 5.3. Let u(x, t) be a solution of the Kolmogorov equation (1.3a,b) 
with initial data uo e C' (R). Assume that 0 < u0 < 1 and that uo e L' (R)nLL' (R). 

Then (5.3) holds with 

(5.5) C = e3At {eAt IlullIo + 4 Vsi } ii ? Ii. 

Proof. We will show that w(x, t) = Ftuo(x) - DtRtuo(x) satisfies a differential 
equation of the form (5.1a,b) on = R x [0, At] with initial data w0(x) 0 0 and 
where b(x,t) in (5.1a) satisfies IlbIIL1(Q) = O(At2). Then (5.3) is a consequence 
of (5.2). Let u(x,t) = Ftu0(x) and v(x,t) = Rtu0(x). Then w(x,t) = u(x,t) - 

(G * v)(x,t), where G(x,t) is the heat kernel (4.2). By differentiating w with 
respect to t and using the fact that vt = v(1 - v) and Gt = Gxx one can show that 
w satisfies (5.1a,b) with a = 1 - (u + G * v) and b = G * v2 - (G * v)2. 

It follows from Lemma 5.1 that I u(&,t)IKIo < 1 for all time t > 0. Furthermore, 
by (5.4), Iux(-It)IK0o < et? uO I c Identical estimates hold for v and G * v. For, 
by (4.3), Ilv(-.t)llo < 1 and hence, II(G * v)lIIo < 1 for all t > 0. (When it is 
convenient to do so we will often suppress mention of the variable t.) By Lemma 
4.2, llvxllIK < etIluxJIIo and, upon writing (G * v)x = (G * vx), one finds that 

I(GC*v)x I I < etIIuxOII Thus, a, ax, b, w and wx are bounded continuous functions 
on 

It remains to show that IlbIIL1(0) = O(At2). To this end, Lemma 5.2 will once 
again be used, this time applied to the function b = G*v2 - (G*v)2. Differentiating 
b with respect to t and remembering that vt = v(1 - v) and Gt = Gxx, one finds 
that b satisfies 

(5.6a) bt = bxx + 2b + c(x, t), 

(5.6b) b(x, O) = 0 

with c = 2[(G*vX)2+(G*v)(G*v2 ) -G*v3]. Noting that v and vx are bounded and 
continuous in Q, it follows that b, bx, and c are as well. Now consider t E [0, zAt]. 
We claim that 

rt r0o 
(5.7) jf Ic(xs)Idxds < 2Cte2t, 

o 00 

where C is given by (5.5). This follows from IIc( ,t)I I < 2Ce-2t whenever t < At, 
a fact which we now prove. By Lemmas 4.2 and 4.3, 

II(G * VX)2111 < ?IG * vxlloollG * vxJj ? lIvxll~oollvxlll < e2t Iu IIUO 11 IUo . 
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To estimate the remaining portion of c, we write 

11(G * v)(G * v2) - (G * v3)IIl 

< f f G(x - y)G(x - z)Iv(z)v2 (y) - V3 (z) I dy dz dx 
-o -00 -0o 

< J J G(x - y)G(x - z)v(z)(v(y) + v(z))lv(y) - v(z)l dydzdx 
00o -00 -00 

=2 fJf G )G(x - z) vx(z+O(y-z))dO Iy-zldydzdx 
-0 -00 -0o 

? 21v~x(.t)lll J G(y)G(z)ly - zI dydz 

< 477 e1Ilu0XlI, 

where we have used the fact that 0 < v < 1. Thus, 

llc(&,t)Ili ? 2 {e2t IlubI lulIIo + jiiet llux Ili} < 2Ce-2t, 

whereby (5.7) holds for t e [0, At] as claimed. Since b(x, t) is a solution of (5.6a,b), 
it now follows from Lemma 5.2 that Ilb(&,t)ll1 < 2Ct. Applying Lemma 5.2 once 
more, this time to w(x, t) on Q = R x [0,At], we obtain (5.3). E 

Continuing to think of DAtRAtuo as a numerical approximation to FAtu0, we 
may now use consistency (Theorem 5.3) together with stability (see the remark 
after Lemma 5.2) to prove that for fixed time T = kz~t, (D~tRAt)kuO - Fku0 
as At -? 0. The proof proceeds precisely as it would for a numerical method; at a 
given time step j we use stability and consistency to reduce the error at time jit 
into the error at time (j - 1)A?t plus a term of order (At)2. Thus, the error at time 
T = kAt is the sum of k terms, each of order (zAt)2 plus the error due to the initial 
approximation (which in our case is 0). The only detail remaining is that, in order 
to apply the stability and consistency results, we must check that the functions 
obtained at the intermediate time steps satisfy the appropriate hypotheses. 

THEOREM 5.4. Let u be a solution of the Kolmogorov equation (1.3a,b) with 
initial data uo E C'(R) such that 0 < uo < 1 and uo E LI'(R) n L(R). Then (3.6) 

holds where, for T = kAty 

(5.8) C, = Te {e fIleullo + __?JIIu}XII i 

Proof. Let uj = F3 u0. By the maximum principle, 0 < uJ < 1 for each j and, Lt 

since uo E L?(R), (5.4) implies (u3)x E L?(R). Similarly, let v3 = (DAtRAt) uo. 

Repeated application of (4.3) yields 0 < v3 < 1. Furthermore, Lemmas 4.2 and 
4.3 imply that II(v3)xIlcx ? eJ0tI1uIIoo and 11(v3)xIIj < eJdAtIIu0IIi. Hence, (v3)x E 

L'(R) n L??(R). We can now use the L' stability of FAt (one must verify, by 
induction, that uj-1 - vi-1 E L') and Theorem 5.3 to obtain 

IIFAju0 - (DAtRAt) ju0II| 
< IIFAtu' - FAtvIj- 111 + IIFAtv' - DAtRAtv3- Il1 
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where the constant Cj-j is given by (5.5) with u0 replaced by vJ-1. Hence, 

k-1 

IIFktU? - (DAtRAt)kuO|1 < E e(k-1 i)AtC3(tAt)2 < maxC3TeT At. 

j=Ojk 

Now use the L' and L' bounds on (v3), found above to obtain 

max C3 = max e3At e (v3 o + OFF 2A II(v3)-I1A 
j<k <~k tRWC +1(3X1 

< e3T {eT11U0 1COo +4 v/'2 }?At 1 14xl 

6. The Error Due to the Approximate Reaction Operator RAt. In this 
section we prove that the inequality in (3.9) holds for -y > 1 where the constant 
B1 = B1 (t) depends only on the initial data i? and the time t = jALt. The proof is 
based on the following two points: 

(i) Given any L > 0 such that for all i,Xii E (-L,L) then, by (2.1), x < -L 
implies iPJ(x) = 1 and x > L implies iPJ(x) = 0. Therefore, RAtiP (x) = RAtiP (x) 
for lxi > L and the L' estimate of the error is reduced to an estimate over the 
interval (-L, L), 

IIRAtiP - RAtiV lii = f lRA tu(x) - Rit iv(x)l dx = IIRAtU3 - JAtU3ll(-L,L). 
-L 

(ii) For fixed x, RAt is simply Euler's method for approximating the solution of 
an ODE, and hence the local truncation error is known to be O(A?t2). This fact 
can be exploited to obtain a bound for jRAtiu(x) - RAtiu(x)l which is uniform 
in x. 

Together, (i) and (ii) imply IIRAtiP - RiAtiP3jjj = IIRAtiP - RAtu3II(_LL) < 

const 2L(A?t)2. In general, however, the size of the interval (-L, L) cannot be given 
a deterministic bound. For the particle positions Xg are random variables, yet L 
has been chosen so that IXj I < L for all i. Consequently, the most that one can 
hope for is to find the probability that L is a given size. This is accomplished by 
examining the movement of the particles. 

Recall that Xg is obtained from X'-1 by adding a normally distributed random 
variable rq with mean 0 and variance 2z\t to Xi'. The movement of the particles 
is thus governed by the distribution of the rg, 

P(r' < ) = e- /4Atds =X(I) 

where X is the probability distribution function for a Gaussian distribution with 
mean 0 and variance 1 (see Chung [10, p. 100]). By writing Xi = Xp + r1 + + r1 

and noting that rq + + r1 is a normally distributed random variable with mean 
0 and variance 2jAt we obtain the following result. 

LEMMA 6.1. Let K > 0 by chosen so that X? E (-K, K) for all i. Then for 
all a > 0, 

-a\ 
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It is well known that X(x) decreases at an exponential rate as x -x -oc. This 
allows us to compute a bound on +(x) and hence on the probability that the particles 
lie outside a given interval. 

LEMMA 6.2. For any x < O, 

+(x) 1 I e-x2/2 

Proof. Since s < x < 0, we have s/x > 1 and 

1 f 12X 822 _ 1 q$(x) = X s2/2 ds < -|e- de - l____ /2. a 

We now establish a probability inequality for IIRAtil3 - RiAti? 1' which depends 
on the parameter a. An appropriate choice of a then yields (3.9). 

THEOREM 6.3. Let i? E S and let K > 0 be such that X4 e (-K, K) for all 
i. Then for all a > O, 

v/-3 ~2\ 2 N ?i 2/4jAt 
(6.1) P (lRAti! - RJti! Il > -(K + a) < e / 

Proof. Set L = K + a and assume that -L < Xi' <L, i= 1,. .., N. Using the 
fact that 0 < iiJ(x) < 1 (and hence 0 < Rtii3(x) < 1) we find 

IRAtiLj(x) - RJAtij(x)I < (V'3/18)(zAt)2 

for all x E R. It follows that 

fL (6.2) II RAtu3 - RAtu3I||l = | IR,\tuj(x) - R~tu (x)I dx < -Lt(zt)2 . 

This estimate is valid as long as our assumption that -L < Xi' < L holds. Thus, 
by Lemmas 6.1 and 6.2, 

P (lR/ti'- l?"tui ll > -L(zAt)2) 2 N P(IXI I > L) 

2NV/Jaet-e2/4jAt 
o 

We now set a = 3-yvil-n-N in (6.1) to obtain (3.9). 

COROLLARY 6.4. Let u0 E S be generated by N > 3 particles, let t = jAt, and 
let K > 0 be chosen so that for all i, X,? e (-K,K). Then for each j = 1, 2... 
and all -y > 1 the inequality in (3.9) holds with 

(6.3) B1(t) = -(K + 3V). 9 

7. The L' Convergence of the Approximate Diffusion Operator bt. In 
this section we prove that, whenever u? E S, inequality (3.10) holds for all -y > 1 
where the constant B2 = B2 (t) depends only on the initial data u? and the time 
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t = jAt. Setting -a = 1 it follows that, given any E > 0, we can find No = No(E) 
such that for all N > No, 

P (1DwvtO - bvtv 11 1 > B2 (t) gVN) < E. 

Thus, by using sufficiently many particles, one can guarantee that the error due to 
approximating DAt by DAt is small with arbitrarily high probability. It is in this 
sense that the approximate diffusion operator DAt converges to the exact diffusion 
operator DAt. Similar results hold in the L2 norm ([22], [27]) and the sup norm 

([18]). 
Note that the convergence rate as stated here is 0(lnN/V'N). The true con- 

vergence rate is probably 0(1/IN), with the factor lnN being a spurious term 
introduced by the analysis. Furthermore, note that the rate of convergence does 
not depend on the time step At. Thus, since all of the other sources of error be- 
have like O(At) and since it is considerably cheaper to halve the time step than 
to quadruple the number of particles, this quickly becomes the dominant source of 
error. This feature is common to all numerical methods which use random walks 
or some other form of random sampling. 

The results in this section are based on the work of Roberts. Most of the reason- 
ing is identical to the argument in Section 4 of [31]. The main difference between 
Roberts' convergence proof for the approximate diffusion operator and the proof 
here is that in his work the particle strengths are constant in time, whereas here 
the particle strengths are random variables. This difference manifests itself primar- 
ily in Lemma 7.4 where, in order to establish a pointwise bound on the difference 
between DAti3 and DAti3, it is first necessary to bound the particle strengths. 

7.1. The Underlying Probability Space Q and a Brief Outline of the Argument. 
Implicit in inequalities (3.7), (3.9), and (3.10) is the existence of a probability space 
(Q, E, yu) over which the respective errors are random variables. We can construct 
this probability space in the following way. Let (t, E, yl) = (H 1 ?;, Hj= i 

rik= ,uA), where Q = RN, Ej is the Euclidean Borel field on RN, and yj = Pi(At) 
is Gaussian measure on RN with mean 0 and variance 2At. Here, N is the num- 
ber of particles, At the time step, and kAt the final time at which we wish 
to examine the error; N, At, and k are all fixed. There is a simple one-to- 
one correspondence between elements of Q and a given run of the random gra- 
dient method: each w e Q corresponds to one realization of the random walks, 
w = (n,1 X. . . X -,. . ., ,k. . .,rN). The component space (0j, Ej, yj) has been cho- 
sen so that there is a one-to-one correspondence between an element wj e Qj and 
the N random numbers used at the jth time step to random walk the particles, 

Now let Z be a random variable on (Q, E, pu) with E[Z] < oo, let Q*= Hs R, 
E* = Hl1s, , , = rlHj ,pi, and let w* denote an element of W. By Fubini's 
theorem we have 

(7.1) E[Z] = f f Z(w, w)Mj (dw 3) (dw) = f E [Z]gj (dw*), 

where [ 
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is the conditional expectation of Z with respect to the Borel field {Qj} x E* C S. 
(See Chung [10] for a discussion of conditional expectation, conditional probability, 
and an explanation of the basic facts regarding these concepts which we use below.) 
Define 

(7.2) Pnj (Z > s) E0j [H(Z - E)]. 

Since H(Z - E) is the characteristic function for the event A _ Z > a, it follows 
that Pnj(A) is the conditional probability of A with respect to {Qjj} x E. Note 
that Pnj (A) is a random variable which belongs to {Qj } x E*, and that it depends 
on w* but not on wj. Furthermore, note that when Z = IIDAtbi - DAtOi Iil, the 
random variable Pnj(A) does not depend on the random walks taken after time 
jAt and hence, an equivalent way of writing P0j (A) is 

P(IIDAt3 - DAt3 II i > E I the past up to time (j - 1)At). 

Our proof of (3.10) proceeds as follows. We first divide the real line into two 
pieces, (-L, L) and (-L, L)C = (-oo, -L) U (L, oo), where L > 0 is free to be 
chosen as we wish. We then write 

P(IIDAti3 - DAtv Ii > E) < P(IIDAtO - DAtV0II(-L L) > E') 

+ P(IIDAti - DAtVII(-L L)C > E2), 

where E = e1 + E2 and I II(-LL) (resp. 11 ... II(-LL)C) denotes the L1 norm over 
(-L, L) (resp. (-L, L)c). To estimate the error on the tails (-L, L)C we bound the 
error over (-oo, -L) (resp. (L, oo)) under the assumption that all of the particles 
lie in the interval (-B,B) c (-L,L) at times (j - 1)At and jAt. We then use 
Lemmas 6.1 and 6.2 to estimate the probability that this assumption holds. To 
estimate the error over the interval (-L, L) we show that for all w* e Q* 

(7.3) Pnj(IIDAt0i - DAt 'II(_LL) > E) < 6X 

where 6 depends on N, At, t = jAt, and the initial data i0 but not on w*. In 
other words, we show that 

P(IIDAtvO - DAtv' II(-L L) > E I the past up to time (j - 1)Lt) < 6 

for all pasts up to time (j - 1)At. This inequality follows from a probability 
inequality of exponential type for the pointwise error at N points in (-L, L). 

7.2. Pointwise Estimates. In this section we investigate the size of the pointwise 
error IDAtO(x) - DAtbi(x)I. The principal result is that 

(7.4) Pi,, (I DAti(x) - DAtOi(x)I > yNw-) < 2e-2N,2 

holds uniformly for all x e R where wt = maxi wqi. We begin by showing that the 
expected value of the random walk at time jAt is precisely the exact solution of 
the heat equation with initial data vi. 

LEMMA 7.1. Fix i e S. Then for all x e R, 

E0j [DAti' (x)] = DAti' (x). 
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Proof. Suppose that vi3(x) = H(X - x) where X e R is arbitrary. Then, by 
(3.4), Datbi (x) = H(X + r - x) where rq is a Gaussian random variable with mean 
0 and variance 2At. Therefore, since rq and X are independent, we find 

Enj [DAt~i3(x)] = f H(X +r- x)e- 2/4at dr 

= (GAt * vi)(x) = DatOi(x). 

In general, vi is of the form given by (2.6) and DAtOi is of the form given by (3.4). 
The lemma now follows from the linearity of E and DAt and the independence of 
the Xii- and the rqi. 0 

We now estimate the size of the pointwise error due to approximating DAtOi(x) 
by DAti3 (x). Following Roberts [31], we use a probability inequality of exponential 
type due to Hoeffding [24]. Similar inequalities may be found in Loeve [25]. 

LEMMA 7.2 (Hoeffding [24, p. 16]). Let Zl,... ,ZN be N independent random 
variables satisfying 0 < Zi < 1. Then for all a > 0, 

(T 
N N 2 

(N a, Zz N a E[Zz] > ax < e- 2Na 

i=1 ~i=1 

Applying this lemma twice, once to the Zi and once to the 1- Zi, and then using 
the fact that P(IX - YI > a) < P(X - Y > a) + P(Y - X > a) for all X, Y, we 
obtain the following more useful form of this inequality. 

COROLLARY 7.3. Let Z1,.. ., ZN be N independent random variables satisfying 
0 < Zi < 1. Then for all a > O, 

(|N Zi - E E[Zi] > a) < 2e 

Now define w- as above and note that for each fixed x EARI 

Zi = H(Xi + i - x)WiW- 

satisfies the hypotheses of Corollary 7.3. Furthermore, 

(NW')-Dat0i(x) = N-1 E Zi 

and hence, by Lemma 7. 1, (NW) -1 Dati (x) = N- 1 I, E[Zi]. Applying Corollary 
7.3 to the Zi we obtain the following result. 

LEMMA 7.4. Let i? e S and let w- = maxi wi. Then for all a > 0 the inequality 
(7.4) holds uniformly for all x e R. 

Remark. If w? = O(N-1), then this estimate depends exclusively on the param- 
eter a, the number of particles N, and the time t = jAt. For, by Lemma 2.4, NW- 
is O(et) for any vi which has been generated by the random gradient method from 
initial data with particle strengths that are O(N-1). 

7.3. The L' Convergence of DAt. We will now use the above pointwise estimate 
to derive the error bound in the L' norm. We begin by establishing a bound of the 
form given by (7.3). 
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THEOREM 7.5. Let i0 e S be generated by N particles and let w- = maxi wJ. 
Then for all real a, L > 0, 

(7.5) P3j (IID,,tii - Dbt 3 II(-L L > 2L + cYNj ) ? 2N62Na2. 

Proof. For the duration of this proof we drop the superscript j from vi and 

write v. By Corollary 2.3, v e S and hence DAti and DAti are monotonically 
decreasing functions bounded between 0 and 1. Therefore, we can find a sequence 

ala2,...,aN with -L = al < a2 < ... < aN = L such that IDAtV(ar-l) - 

DAti(ar)I < VN-1 forr =2,...,N. Foreachr let O(ar) = JDAtV(ar)-DAtV(ar)j. 
Since DAti and DAti are monotone decreasing functions of x, it follows that for 
each x E (ari1,ar), 

DAtV(x) - DAti(x) < IDAtv(ar-l) - DAti(ar)I + O(ar) 

< 1 
max{O(ar-1), 0(ar)}. 

Similarly, one can show that -(DAti(x)-DAt3(x)) < V4-'+max{0(ar-1), O(ar)} 

and hence, for x e (ar-1, ar), 

IDAtV(x) - DAtP(x)I < 1+ maxIO(ar-1) O(ar) I vW 
This yields the following estimate for the L' norm over the interval (-L, L): 

N 1 

IIDAtv-D bAtfII(-LL) < E(ar -ar-i) [V= + max{0(ari ), 0(ar)}J 

<2L + max 0(ar)] 

The function E3 = maxr O(ar) is a random variable which depends on the 7h,.... 
7)N. The probability that the error over the interval (-L, L) is greater than 
2L[v'N-1 + aNw- ] can be estimated in terms of the probability that e3 > aNw'. To 
see this, note that by the last inequality above, 

IIDAti - DAtilI(-LL) < 2L [W +aNw] 

L[j. + ] [Aj +aNwb] a e > aNw. 

Therefore, since (e > aNw- implies IDAtt(ar) - DAti(ar)I > aNw- for some ar, we 
can use Lemma 7.4 to obtain 

Poi (IDA~t - DAtfl(-LL) > 2L [AiK + aN'W ) 

< Pnj (3r: IDAt (ar) - DAt (ar) ?> aNw-) 
N 

< ZPs2j(IDAt3(ar) - DAt(ar)I > Nw- a) < 2Ne2Na. 
r= 1 

Using (7.1), (7.2), and (7.5), we can now establish a bound which holds over the 
entire space (Q, , Mu). 
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COROLLARY 7.6. Let i0 e S be generated by N particles and let fv = maxim wq. 
Then for all a, L > 0, 

(7.6) P (IIDiti - bDtV3 II(-L,L) > 2L + aNw] ) < 2Ne-62N 

The next step is to prove a probability inequality for the error over the tails 
(-L, L)c. Note that we are still free to choose L. Let K > 0 be chosen so that at 
time t = 0 all the particles lie in (-K, K). Let L = K + 2/3 where f > 0 is an 
arbitrary parameter. The idea, due to Roberts [31], is to estimate the error as a 
function of f under the assumption that at times (j - 1)zAt and jAt the particles 
remain in the interval (-K -13, K +13). This reduces the problem to that of finding 
the probability that the particles are in this interval at the (j - 1)st and jth time 
steps, a problem which may be solved with Lemmas 6.1 and 6.2. 

THEOREM 7.7. Assume that i/ e S is generated by N particles, all of which lie 
in the interval (-K, K). Denote the time by t = jAt. Let 3 > 0 and L = K + 213. 
Then 

(7.7) P (|D/tv3-DAtV3 | I(-LL)C > and e-: /4At) < Nfaie-2/4t 

Proof. Let B = K + 3. We first show that for (a, b) = (-oo, -L), (L, oo), 

IIDAtOi - DAtV'6II(a,b) 

(7.8) >~/ e32/4At => i such that Xi or X' : ( B) 

To begin, let (a, b) = (-oo, -L). We prove the contrapositive of (7.8). Therefore, 
assume 

-B < Xii- 1Xii < B Vli E {1, . .. I NJ. 

By the triangle inequality, 

IIDAtO - DAtVII(-oo,-L) < IIDAtO3 - lI(-oo,-L) + Ill - DAtvII (-oo,-L) 

and hence, it suffices to show that 

IDAtv' - 1II(-,-L) < V?te- _2/4At and Il -bDAt0VII(-oo,-L) = 0- 

The second statement is an immediate consequence of the fact that DAtO (x) = 1 
for all x < -L < -B. To prove the first statement, we use 0 < 1 - DAti(x) < 
1 - DAtH(-B - x) for all x E R to show 

111- DitOi||(-oo,-L) < IIDAtHILI(-0-,-#) = IIGAt * Hll(_0o,-,3) < tm e3 2/4At. 

A similar argument can be used to prove (7.8) with (a, b) = (L, oo). All that remains 
is to estimate the probability that the right-hand side of (7.8) is true. Since 0(x) 
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is an increasing function of x, Lemmas 6.1 and 6.2 imply 

N N 

P(3i: Xi' or Xj 
. 

(-B, B)) < ZP(IX '1! > K +f) + EZ P(lXjlI > K +/3) 
i=1 i=1 

< 2NO ( 2NO)Zt ( / 

4N VJt- 2/4jAt 0 

Corollary 7.6, Theorem 7.7, and an appropriate choice of a and f now yields 
(3.10). 

THEOREM 7.8. Let i0 e S be generated by N > 3 particles, each with weight 
w9 = N-1, and assume that all of these particles lie in (-K, K). Denote the time 
by t = jAt. Then for all y > 1, the inequality in (3.10) holds with 

(7.9) B2(t) =2 [(K + 6V)(1 + 2et) + /-A-] 

Proof. Fix My E R with By> 1 and let a = 3 /ylnN/Vf8V, f = 3 /ytlnN, and 

L = K + 2pl. Referring to (7.6), we have 2Ne-2Na - 2Ne 4 lnN < 2N 47. 

Furthermore, since -y and ln N are both > 1, 

2L[> + aN'D] =2(K + 6f( + nN )Nu 

< 2,a(K + 6\/-)(1 + 2et) In N lnN 

where we have used Lemma 2.4, together with w? = N-, to deduce that Nfv < et. 
Consequently, (7.6) becomes 

(7.10) P (IIDAtii-DAtv3II(-LL) > 2y(K + 6V7)(1 + 2et) nN < 2N- 47. 

With our choice of f the right-hand side of (7.7) becomes 

9 
4N _ie_/32/4t - 4N N_ 4'y 5 

3 \/i - 3/; VI - 

Furthermore, since j > 1 and -y > 1, we have 

_VAt_' At v' 9 ____t 
e /4At - V__N- 

4- 
< 

a a 

ar a/ - \/Trv/ 

Substituting these two inequalities into (7.7) yields 

P (JJDti - Dbtv3II(_LL)C > 2,^i Ai) < N 47 

Combining this estimate with (7.10) above yields (3.10). 0l 
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8. Convergence of the Random Gradient Method. We now prove the 
convergence of the random gradient method. We begin by showing that if the 
hypotheses listed in Subsection 8.1 below hold, then for all ty > 1, 

P (IIF tUO - (DfatRat)ki?jOI|l > a [eT IIuo0_ iiO + Cl At + C2 
n 

N4) 

4T VY < -N a, 
CO' 

where the constants Ci and C2 depend only on uo, u?, and the time T = kAt. The 
most important hypothesis here is that for some constant Co, At = Col/aYN. This 
has the effect of balancing the error due to the time step (temporal discretization) 
with the error due to the number of particles (spatial discretization). This inequality 
tells us that the probability of the error being greater than 

[eT Tuj0 _ ii0111 + C, At + C2 lnN/l/W] 

decreases exponentially as a function of -y. This allows us to find the bounds for 
the expected value and the variance of the error given in (1.4) and (1.5). Both of 
these estimates follow from (8.1) and the well-known fact (see Chung [10, p. 42]) 
that for any random variable Z > 0 and any real number a > 0, 

(8.2) E[Z] < a (1 + P(Z > ra)) 

8.1. The Hypotheses. Throughout this section let T = kAt denote the time at 
which we wish to compare the computed solution with the exact solution. We 
assume that the following hypotheses hold: 

Hypothesis A1. In addition to (1.3c-e) the exact initial data uo satisfies uo e 

C'(R), 0 < uo(x) < 1 for all x e R, and uo e L'(R) n L0 (R). 
Hypothesis A2. The approximate initial data i? satisfies u? e S (see Subsection 

2.3), i0 is generated by N > 10 particles, and the initial weights satisfy w? = N-'. 
Hypothesis A3. The computational parameters N and At have been chosen so 

that for some constant CO we have 

(8.3) At= 
co 

We also assume that the constant K > 0 has been chosen so that the variation 
of i lies in (-K, K), 

(8.4) JXj~j < K, i =1.,N. 

8.2. A Bound on the Probability Distribution of the Error. The proof of (8.1) is 
accomplished in two steps. In the first step (Theorem 8.1) we use the estimates 
from Sections 6 and 7 to establish the probability inequality (3.7) for the error due 
to the approximate solution operators. In the second step (Theorem 8.2) we use 
the deterministic bounds from Sections 4 and 5 to control the remaining sources of 
error. 

THEOREM 8. 1. Assume that Hypotheses Al, A2, and A3 hold and let B, be 
given by (6.3) and B2 by (7.9). Then the inequality in (3.7) holds for alley > 1 with 

TeT 
(8.5) C2 = {B, (T)CO2 + B2 (T) } c 
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Proof. Let Zj =II(DAtRAt)'ii0-(DAtRAt)'i20I1,, Vj = IIRAtii-1-RAtii'-1Ij1, 

and Wj = IIDAtv' - DAti31. Repeated application of Lemma 4.1 and Corollary 
4.4 yields Zk < eT Ek_1 (Vj + Wj). (This is (3.8).) Since Zo = 0, k = T,/N/0o, 
and (At)2 = C02/VN, we have 

Zk > aC2 a 3 (Vj + Wj) > Tfa 

Cy2 In N _C C02 In N 
=3j such that (V3 + Wj) > I 

T TeT V/jN 

=3 3j such that Vj > 'yBi(T)(InN)((At)2 or Wj > 'yB2(T) 
InN 

We now apply Corollary 6.4 and Theorem 7.8 to obtain 

P (Zk > 'aC2 a) < 1:P(Vj > AB In N(At)2) + P pWj > AB2 ) 
j=1 j=1 

5 4TN <4kN <4 -No . O 
Co 

Using Theorem 8.1 and the bounds from Theorems 4.5 and 5.4, we now derive 
(8.1). 

THEOREM 8.2. Assume that Hypotheses A1, A2, and A3 hold. Then for all 
i ? 1 the inequality in (8.1) holds with C0 given by (5.8) and C2 by (8.5). 

Proof. Applying Theorems 4.5 and 5.4 to (3.5), we see that 

IIFAtu0 - (DAtRAt)kiOl < ClAt + eTI|uo- Iii 
+ II (D~tR~t )kiO _ (DAtRAt)kiZ 0II1. 

Let h(T, AtN) = C1?At + eTIIuO - ii0II + C2 lnN/lY2V. Since -y > 1, 

IIF tu -(DAtRAt)kiOhli? >h(TzAtN) 

=> II(DAtRAt)kO - (DAtRAt)kiOIIl >C2 lnN 

It now follows from Theorem 8.1 that 

P(IIFktU0 f-(DAtRAt)kiOII1 > ah(TAt, N)) 

< P (I(DAtRAt)kuo - (DAtRAt)kiOiII1 > yC2 N) 

'4T N1 <-N-z. O 
Co 

8.3. The Expected Value and Variance of the Error. We now prove the bounds 
on the expected value and the variance of the error in (1.4) and (1.5) for v = 1. 
We remove this assumption in Subsection 8.4. 

THEOREM 8.3. Assume that Hypotheses A1, A2, and A3 hold. Let Ci be given 
by (5.8) and C2 by (8.5). Then the inequality in (1.4) holds when v = 1. 
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Proof. Define h as above. Setting -y = 1, 2,... in (8.1) and applying (8.2), we 
obtain 

E[IIFAtuo - (DAtRAt)kisll] < h(T, At, N) 1 + C4 Nr) 

< h(TAt, N) (1 + CT 

THEOREM 8.4. Assume that Hypotheses Al, A2, and A3 hold. Let C, be given 
by (5.8) and C2 by (8.5). Then the inequality in (1.5) holds when v = 1. 

Proof. Set Z = IIFAktu - (DAtRAt)kioIlll. Since var(Z) = E[Z2] - E[Z]2 < 

E[Z2], it suffices to bound E[Z2]. From Theorem 8.2 we have 

P(Z2 > (yh(T, At, N))2) = P(Z > yh(T, At, N)) < C N-4 . 
co 

Setting \y = H for each r e {1, 2, ... } and applying (8.2) we find 

E[Z2] ? h(T, At, N)2 + C N-) 

To estimate the series on the right set b = N- and I =-in b. Then 

Zb/ <?b+f e d d ==b- [(T2+ 2V) e 
r=l1 

;T2 + ) 2 
where we have used the hypothesis that N > 10 and hence f = in N > 2. Thus, 

E[Z2] < h(T, At, N)2 1 + 0T N-1) < 1+ C) h(T, At, N)2. 0 

8.4. Dependence of the Error on Arbitrary v < 1. We will now remove the 
restriction v = 1. For arbitrary positive v < 1 let u. be the solution of Eq. (1.3a,b) 
with initial data u,. Define u(x,t) _ u,(Fx,t). Then u satisfies (1.3a,b) with 
diffusion coefficient 1 and initial data u0(x) = u,(\Ivx). Note that IIQxulIK = 

\v/llxuvKlloo and IIQ9ull, = IIQ9uvlIIl. 
The random gradient method scales in the same manner. In other words, let 

iup be the random gradient solution of (1.3a,b) at time T = kAt with diffusion 
coefficient v. Denote the initial particle positions by Xj?(v). Then for any k > 
0, iik(x) = 

(iik(\Fx) is the random gradient solution of (1.3a,b) with diffusion 
coefficient 1 and initial particle positions Xj? = Xi?(v)/V\ii. This statement follows 
immediately from the fact that if ij is a Gaussian distributed random variable with 
variance 2LvAt, then 71/+/DI is a Gaussian random variable with variance 2At. 

It now follows that Iuv (T) - flk I = \P-llu(T) - iik 11, and hence, by Theorem 
8.3, 

E(Ilu,(T) -_ ik I) = \/?E(IIu(T) - iik 
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It is necessary, however, to investigate the dependence of the constants Ci and C2 
on Iv. From (5.8) we have 

C, = Te4T e TIx u0O + 11 a+ }2Lt IIaSU 11' 
(8.6) 

V7 

(8.6)= Te {J-Ve eTII0VuU00 + IAIF u|It. 

Thus the splitting error is O(/ii). Note that if one is modeling a wave front initially 
of the form g,(x) _ g(x/l/iI) for some arbitrary C1 function g, then, even though 

09g = Q(w-'1/2), the constant C, remains 0(1) owing to the factor +/D2 multiplying 
IIoxu3Ijoo in (8.6) above. 

In order to examine the dependence of C2 on Iv, let K(v) be chosen so that 
-K(M) < X0(v) < K(v) for all i. Then K _ K(v)/\/i satisfies (8.4) and we find 

\v3-(K (v) 02 FK(v)1-'\2AxNt Te T 
C2 - X 3K> +v3T) Co2 + 2 [ /i 6v/T (1 + 2e T) + AR]C 

Hence, C2 = -/i2C2 is bounded uniformly in Iv for Iv < 1 as claimed. The conclusion 
that C2 is 0(v-/2) may be misleading however. For example, with waves initially 
of the form given by gv above, one generally chooses the approximate initial data 
so that K(v) = O(.,/fi). In this case C2 = 0(1). 

A similar argument can be used to establish the validity of the bound on the 
variance of the error in (1.5) for arbitrary Iv < 1. 

9. Numerical Results. In order to compare our theoretical bounds with the 
actual performance of the method, we use it to compute a known exact solution. 
We also present the results of computations with a second-order solution of (3. la,b), 
an exact solution of (3.1a,b) and second-order operator splitting (Strang splitting). 
These experiments allow us to test the sharpness of our estimates and our under- 
standing of the way various sources of error behave. 

9.1. The Test Problem. For Iv = 1 the Kolmogorov equation (1.3a,b) has a 

traveling wave solution of the form 

(9.1) u(x, t) = g(x - at) 

with speed a = 5/\/6 and wave form g(x) = (1 + (\/ -_ 1)ex/\/6)-2. Our approxi- 
mation to u0 was determined by placing N particles, each with weight w. = N-' 
at 

X?-J9 (1-N)X i~~~1,... IN - 1 

i4=b 9- N) N. 
For this choice of i? we have 

(9.2) 11U0 - u0111 = 0 N 

For u given by (9.1) define the center of the wave at time t to be the point 

XC = xC(t) such that u(xc, t) = 1/2. We measure the error at time T = 1 on a grid 
of 1001 points centered at xc and spaced a distance A\x = 0.02 apart. We estimate 
the expected value of this error by averaging it over twenty independent trials. 
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Denote this average by eTr = eirr(At, N). The independence of the trials with 
respect to one another has been achieved by starting each trial with a different, 
independently chosen seed for the random number generator. We also report the 
standard deviation of our sample of twenty errors about their mean, denoted by 
af = a(ZAt, N). The error in each of the discrete L', L2, and L?? norms decreases 
at roughly the same rate. We present only the results in the L1 norm. 

9.2. Numerical Results. Table 1 contains err and af for a computation with 
the random gradient method as described in Section 2. The number of particles 
increases by 4 as one moves to the right along a row, while the time step decreases 
by 2 as one moves down a column. The average error err roughly decreases by 2 as 
one moves diagonally down one row and right one column. We therefore conclude 
that for this problem the proper relationship between A\t and N is 

(9.3) At=0(\/). 

The relation A\t = O( ,~/K-1) which we have arrived at by theoretical considerations 
appears to be an underestimate of the dependence of the error on N. In other words, 
if we set A\t = O( /N_-'), then the errors that depend on N will decrease twice as 
fast as the errors that depend on A\t, until eventually these latter sources of error 
dominate all others. The method will still converge, but we will be doing four times 
as much work*** to get the same results. 

TABLE 1 

Estimated mean and standard deviation of the error in the L1 norm. 

First-order solution of the ODE ut = u(1 - u). 

Number of Particles 

At 1000 4000 16000 64000 256000 1024000 

1 .4568 ? .0659 .4361 ? .0334 .4431 ? .0095 .4448 ? .0057 .4435 ? .0020 .4434 ? .0010 

2-1 .2345 ?.0473 .2240 ?.0297 .2160 ?.0124 .2220 ?i0063 .2188 ?.0024 .2191 ?.0014 

4-1 .1396 ?.0380 .1204 ?.0220 .1106 ?.0099 .1146 ?i0069 .1121 ?.0027 .1118 ?.0013 

8-1 .1107 ?.0167 .0692 ?.0170 .0585 ?i0087 .0598 ?i0072 .0568 ?.0029 .0569 ?.0013 

16-' .0977 ?.0204 .0525 ? .0120 .0333 ?i0070 .0328 ?i0053 .0287 ?.0029 .0287 ?.0012 

32-1 .0973 ?.0181 .0461 ?.0122 .0250 ?i0063 .0187 ?i0034 .0152 ?.0030 .0142 ?.0015 

Fix A?t = 1 and note that for all N, efr(1, N) is within a(1, N) of 0.443, i.e., for 
A\t = 1,eirr is well within statistical error of being constant. This is because those 
sources of error due to temporal discretization (e.g., the errors in (3.6) and (6.2)) 
dominate those errors due to spacial discretization (e.g., (9.2)). These two sources 
of error are roughly in balance when At = 4-1 and N = 1000. This can be seen by 
noting that if one moves to the right along the row or down the column from this 
point, then the error remains within 2of(4-1, 1000) of being constant. 

We can determine the dependence of the error on one of the parameters by 
letting the other be a small, fixed value and observing how the error behaves as 

***We have neglected the cost of sorting the particles at the end of each time step. 
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a function of the first. For example, for fixed N = 1024000, eir clearly decreases 
like O(LAt). On the other hand, if we fix At = 32-' we find that for N < 64000 
the error decays like vVN- . The error is (statistically) constant for N > 64000 
because for (Z\t,N) = (32-1,64000) the two sources of error are again roughly in 
balance and hence, to the right of this point, the dominant source of error is that 
due to the time step A\t. 

Note that this balance point lies on the same diagonal as the one found earlier, 
A\t = 4-1, N = 1000. This diagonal represents the optimal choice of computational 
parameters. On either side of this diagonal we would be doing more work to achieve 
the same level of error. Of course, in practice it is usually impossible to determine 
this diagonal. Therefore, the best strategy is to simply refine the parameters at the 
optimal rate, presumably that given by (9.3). Although this will not necessarily 
result in the least amount of work for a given level of error, it will result in the 
error decreasing at the best possible rate. 

TABLE 2 

Error in the L' norm after one run. 

First-order solution of the ODE ut = u(1 - u). 

Number of Particles 

At 1000 4000 16000 64000 2560000 1024000 

1 0.5504 0.3863 0.4548 0.4394 0.4447 0.4439 

2-1 0.2287 0.2110 0.2168 0.2192 0.2202 0.2215 

4-1 0.0995 0.1148 0.0989 0.1056 0.1125 0.1136 

8-1 0.1116 0.0531 0.0575 0.0579 0.0551 0.0576 

16-1 0.0976 0.0419 0.0276 0.0359 0.0300 0.0289 

32-1 0.1034 0.0453 0.0192 0.0256 0.0116 0.0137 

In Table 2 we present the L' error at time T = 1 after only one trial. In other 
words, one realization of the random variable whose expected value and standard 
deviation have been estimated in Table 1. In all cases the error after one trial lies 
within 2a of eTr. Furthermore, along the diagonals the errors in Table 2 decrease 
very nearly at the rate of A\t = O(JK-1). The important point to note here is 
that one generally obtains good results with one trial. It is not necessary to average 
the computed solution over several trials in order to obtain decent results. 

This statement can be made rigorous in the following way. Suppose T/Co = 1. 
For y = 1, inequality (8.1) implies 

P (IF ktUO _(D)AtRjtAt)kui~jj1 < eTjjIiio- 11ll + ClZ~t + C2 In) 

(9.4) 4 DT kjo eIuoiIi 
4T 

- CoN 

The right-hand side of (9.4) is an increasing function of N and, when N = 1000, we 
have 1 - 4T/CoN = 996/1000. Thus, inequality (9.4) assures us that if N > 1000, 
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then better than 99% of the time 

IIFk u0 - (D tRit)kioIl < eTIIu -_ ii01 + Cl/t + C2 In N 

We know of no way to improve the accuracy of the random walk. However, there 
are several ways to obtain a method which is higher-order in time. We begin by 
considering a second-order ODE solver. Define 

A2fld j(X) = i0(X) + - [ f (ii(x)) + f (i (x) + A tf (0 (x)))]. 
2 

This is simply Heun's method for solving (3.1a,b) ([11, p. 364]). Table 3 contains the 
result of a series of runs with RiAt replaced by Rf2nd. It is immediately apparent that 
there has been an overall decrease in the error as compared to Table 1. However, 
the rate of convergence has not changed even as a function of At alone. On the 
average the errors still decay like O(Lt). 

TABLE 3 

Estimated mean and standard deviation of the error in the L1 norm. 

Second-order solution of the ODE. 

Number of Particles 

At 1000 4000 16000 64000 256000 1024000 

1 .2588 ? .0516 .2394 ? .0238 .2410 ? .0117 .2414 ? .0055 .2421 ? .0029 .2417 ? .0013 

2-1 .1177 ? .0347 .0947 ? .0199 .0788 ? .0111 .0814 ? .0062 .0786 ? .0029 .0788 ? .0020 

4-1 .1009 ?.0236 .0584 ?.0132 .0348 ?.0073 .0334 ?.0055 .0297 ?.0027 .0295 ?.0020 

8-1 .0997 ?.0175 .0494 ?.0099 .0265 ?.0084 .0171 ?.0048 .0131 ?.0030 .0127 ?.0016 

16-1 .0964 ?.0200 .0476 ? 0100 .0234 ?.0057 .0135 ?.0028 .0079 ?.0022 .0061 ?.0013 

32-1 .0979 ? 0189 .0449 ?.0119 .0232 ?.0053 .0121 ?.0023 .0073 ?.0018 .0039 ? 0010 

We interpret this data in the following way. When R?ot is replaced by I2ntd, the 
(z\t)2 in (3.9) is replaced by (ZAt)3.t Thus, the dependence of the last term on the 
right in (3.5) on At is now O((z\t)2) rather than O(zt). However, its dependence on 
N is still O(V-N1). From (9.2) we see that the middle term is O(N-1) and hence 
is presumably negligible compared to the last term. However, the first term- the 
error due to operator splitting--remains O(L\t). 

To increase the accuracy of this first term, we now employ the following operator 
splitting algorithm known as Strang splitting [36], 

+ 1= R- DAtDRA . 

tThis statement is easily proved. We simply use the well-known fact that the local truncation 
error for a second-order ODE solver is O((At)3) to replace the right-hand side of (6.2) by (At)3 
times the appropriate constant. 
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Note that Strang splitting costs no more than first-order splitting. One simply 
takes half a time step at the beginning and another half time step at the end: 

fil = R2 D~t(R2f dD~t)i 1 &t/2 -o 

With Strang splitting we expect the error due to exact operator splitting to be 

IIFu0 - (Rit/2DwtR/?t/2)ku Ill <_ CV'(zt)2. 

Although we do not prove this statement, it should be possible to prove it by 

applying the argument in the proof of Theorem 5.3 to the function 

ws (x, t) = Ft uo (x) - Rt/2 DtRt/2 u0 (x)). 

In this regard, we note that Beale and Majda have shown that Strang splitting for 

the Navier-Stokes equations is second-order accurate [2]. 

TABLE 4. (L' norm) 

Second-order solution of the ODE with Strang splitting. 

Number of Particles 

At 1000 4000 16000 64000 256000 1024000 

1 .1124 .0192 .0668 ? .0121 .0444 ? .0085 .0396 ? .0052 .0397 ? .0029 .0394 ? .0024 

2-1 .1008 ?.0229 .0585 ?.0115 .0324 ?.0056 .0273 ?.0054 .0236 ?.0026 .0239 ?i0015 

4-1 .1008 ?.0196 .0517 ?.0091 .0238 ?.0033 .0146 ?.0032 .0087 ?.0019 .0086 ?.0013 

8-1 .0994 ?.0184 .0484 ?.0095 .0241 ?.0057 .0129 ?.0024 .0064 ?.0011 .0036 ?.0009 

16-1 .0969 ?.0202 .0476 ?.0101 .0225 ?.0051 .0125 ?.0026 .0066 ?.0015 .0029 ?.0007 

32-1 .0982 ?.0192 .0447 ?.0118 .0233 ?.0056 .0121 ?.0025 .0067 ?.0016 .0031 ?.0006 

In Table 4 we present the results of using this algorithm on the test problem. We 

note a further decrease in the error as compared to Tables 1 and 3. In particular, 

for At = 1 and N > 16, 000 the error is an order of magnitude smaller than that 

in Table 1! Also note that for A\t < 1/8 the errors that depend on At appear to be 

so small there is little further decrease in the error if one fixes N and lets At -+ 0. 

However, the overall dependence of the error on N has not changed the error still 

depends on N like O(V'N-1). 

We conjecture that the choice of parameters which results in the first and last 

terms on the right in (3.5) decreasing at the same rate is now At = 0(1//N_). 

However, we find it somewhat puzzling that for large, fixed N, say N = 1024000, 

the error does not decrease like O(zAt2) and can offer no explanation. 

Table 5 contains the data from columns 2, 4, and 6 of Table 4 organized so 

that, provided our conjecture is correct, the most efficient way to decrease the 

errors now lies on the diagonal. Note that on and below the diagonal which begins 

with (st,N) = (2-1,4000) the error decreases at a rate roughly equal to Z\t2 - 

0(1/v/N), which is consistent with our conjecture. This results in a small savings 
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TABLE 5 

The most efficient use of resources lies along the diagonals. 

Second-order solution of the ODE with Strang splitting. 

Number of Particles 

At 4000 64000 1024000 

1 .0668 +.0121 .0396 ?.0052 .0394 ?.0024 

2-1 .0585 ?.0115 .0273 ? .0054 .0239 +.0015 

4-1 .0517 + .0091 .0146 + .0032 .0086 + .0013 

8-1 .0484 + 0095 .0129 +.0024 .0036 .0009 

16-1 .0476 + .0101 .0125 + .0026 .0029 + .0007 

32-1 .0447 .0118 .0121 +.0025 .0031 +.0006 

TABLE 6 
Estimated mean and standard deviation of the error in the L1 norm. 

Exact solution of the ODE. 

Number of Particles 

At 1000 4000 16000 64000 256000 1024000 

1 .1372 ? .0351 .0993 ?.0217 .0877 ? .0105 .0848 ? .0057 .0850 ? .0030 .0843 ? .0013 

2-' .1053 ? .0290 .0697 ? .0168 .0462 ? .0085 .0445 ? .0061 .0413 ? .0025 .0410 ? .0020 

4-1 .1004 ?.0224 .0554 ? .0116 .0292 ?.0063 .0251 ?.0048 .0208 ?.0026 .0203 ?.0020 

8-1 .0996 ?.0177 .0491 ?.0097 .0259 ?.0079 .0159 ?.0044 .0114 ?.0029 .0106 ? .0016 

16-1 .0964 ?.0201 .0476 ?.0100 .0233 ?.0056 .0134 ?.0028 .0077 ?.0021 .0056 ?.0012 

32-' .0979 ?.0190 .0449 ?.0119 .0232 ?.0053 .0121 ?.0023 .0073 ?.0018 .0038 ?.0010 

in computational effort. To decrease the error by four, the original version requires 
N -- 16N and At -/ At/4, resulting in 64 times as much work.tt On the other 
hand, the higher-order method only requires 32 times as much work to achieve one 
fourth the error. For methods in which the work required at each time step is 
O(N2) the savings is proportionally smaller. 

Finally, we replace RAt by Rit (it is easy to compute the exact solution of 
Eq. (3.1a,b)). In this experiment we do not use Strang splitting. The results are 
presented in Table 6. For those choices of N and At for which one expects the 
errors due to At to be noticeable, we find a moderate improvement over the results 
displayed in Table 3. On the other hand, when the Q(v'N-1) errors dominate, the 
errors in Table 6 are quite close to those in Table 3. Upon comparing Table 6 with 
Table 4, we conclude that if one is going to go to the trouble of using a higher-order 

ttAgain, we have neglected the work required to sort the particles at the end of every time 
step and assumed the work at every time step is O(N). 
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solution of the ODE (3.1a), then one should also use Strang splitting, especially 
since it requires no additional computational effort. 

9.3. Conclusions. The theoretical estimates presented in Theorem 1.1 are most 
likely an underestimate of the true rate of convergence. In order to prove this 
theorem, we have found it necessary to assume that At = 0( aYN- 1). However, 
based on the numerical results presented here, we conclude that this is an inefficient 
choice of parameters. One can argue that this is a special test problem and that 
more general problems may converge at a slower rate. However, most solutions of 
(1.3a,b) converge to traveling wave solutions in time (e.g. [5]) and it seems likely that 
the method's behavior with this particular traveling wave solution is representative 
of its general behavior when approximating a traveling wave solution. The failure 
of our analysis to accurately predict the true rate of convergence is probably due to 
our use of the triangle inequality in (3.8). In contrast, Hald was able to establish the 
correct rate of convergence for the method considered in [22], precisely because he 
could write down the exact and computed solutions at any time t, thereby avoiding 
the need to apply the triangle inequality. 

Lawrence Livermore National Laboratory 
P.O. Box 808 
Livermore, California 94550 
Puckett@crg.llnl.gov 

1. C. ANDERSON & C. GREENGARD, "On vortex methods," SIAM J. Numer. Anal., v. 22, 
1985, pp. 413-440. 

2. J. T. BEALE & A. MAJDA, "Rates of convergence for viscous splitting of the Navier-Stokes 
equations," Math. Comp., v. 37, 1981, pp. 243-259. 

3. J. T. BEALE & A. MAJDA, "Vortex methods I: Convergence in three dimensions," Math. 
Comp., v. 39, 1982, pp. 1-27. 

4. J. T. BEALE & A. MAJDA, "Vortex methods II: Higher order accuracy in two and three 
dimensions," Math. Comp., v. 39, 1982, pp. 29-52. 

5. M. BRAMSON, "Convergence of solutions of the Kolmogorov equation to travelling waves," 
Mem. Amer. Math. Soc., no. 285, 1983. 

6. Y. BRENIER, A Particle Method for One Dimensional Non-Linear Reaction Advection Diffusion 
Equations, Technical Report No. 351, Instituto de Investigaciones en Matematicas Aplicadas y en 
Sistemas, Universidad Nacional Autonoma de Mexico, 1983. 

7. A. J. CHORIN, "Numerical study of slightly viscous flow," J. Fluid Mech., v. 57, 1973, pp. 
785-796. 

8. A. J. CHORIN, "Vortex sheet approximation of boundary layers," J. Comput. Phys., v. 27, 
1978, pp. 428-442. 

9. A. J. CHORIN, Numerical Methods For Use in Combustion Modeling. Proc. Internat. Conf. 
Numer. Methods in Science and Engineering, Versailles, 1979. 

10. K. L. CHUNG, A Course in Probability Theory, Harcourt, Brace & World Inc., 1974. 
11. S. D. CONTE & C. DE BOOR, Elementary Numerical Analysis, 3rd ed., McGraw-Hill, New 

York, 1980. 
12. G. H. COTTET, Methodes Particulaires pour 1'Equation d'Euler dans le Plan, These de 3bme 

cycle, Universit6 Pierre et Marie Curie, Paris, 1982. 
13. G. H. COTTET & S. GALLIC, A Particle Method to Solve Transport-Diffusion Equations, 

Part I: The Linear Case, Rapport Interne No: 115, Centre de Mathematiques Appliqu~es, Ecole 
Polytechnique, Paris, 1984. 

14. G. B. FOLLAND, Introduction to Partial Differential Equations, Princeton Univ. Press, 1976. 
15. A. F. GHONIEM & F. S. SHERMAN, "Grid free simulation of diffusion using random walk 

methods," J. Cornput. Phys., v. 61, 1985, pp. 1- 37. 
16. J. GOODMAN, "Convergence of the random vortex method," Comm. Pure Appl. Math., v. 

40, 1987, pp. 189- 220. 



SOLUTIONS OF THE KOLMOGOROV EQUATION ut = vuzr + u(- u) 645 

17. C. GREENGARD, "Convergence of the vortex filament method," Math. Comp., v. 47, 1986, 

pp. 387-398. 
18. 0. HALD, Private communication. 
19. 0. HALD & V. M DEL PRETE, "Convergence of vortex methods for Euler's equations," 

Math. Comp., v. 32, 1978, pp. 791-809. 
20. 0. H. HALD, "The convergence of vortex methods for Euler's equations II," SIAM J. Numer. 

Anal., v. 16, 1979, pp. 726-755. 
21. 0. H. HALD, "Convergence of random methods for a reaction-diffusion equation," SIAM J. 

Sci. Statist. Comput., v. 2, 1981, pp. 85-94. 
22. 0. H. HALD, "Convergence of a random method with creation of vorticity," SIAM J. Sci. 

Statist. Comput., v. 7, 1986, pp. 1373-1386. 
23. 0. H. HALD, "Convergence of vortex methods for Euler's equations, III," SIAM J. Numer. 

Anal., v. 24, 1987, pp. 538-582. 
24. W. HOEFFDING, "Probability Inequalities for Sums of Bounded Random Variables," Amer. 

Statist. Assoc. J., v. 58, 1963, pp. 13-30. 
25. M. LOEVE, Probability Theory, Springer-Verlag, Berlin and New York, 1977. 
26. D. G. LONG, Convergence of the Random Vortex Method in One and Two Dimensions, Ph.D. 

Thesis, Univ. of California, Berkeley, 1986. 
27. E. G. PUCKETT, "A study of the vortex sheet method and its rate of convergence," SIAM 

J. Sci. Statist. Comput., v. 10, 1989, pp. 298-327. 
28. P. A. RAVIART, "An analysis of particle methods," CIME Course on Numerical Methods 

in Fluid Dynamics, Publications du Laboratoire d'Analyse numerique, Universit6 Pierre et Marie 
Curie, Paris, 1983. 

29. P. A. RAVIART, Particle Approximation of Linear Hyperbolic Equations of the First Order, 
Publications du Laboratoire d' Analyse num6rique, Universit6 Pierre et Marie Curie, Paris, 1983. 

30. S. G. ROBERTS, "Accuracy of the random vortex method for a problem with non-smooth 
initial conditions," J. Comput. Phys., v. 58, 1985, pp. 29-43. 

31. S. ROBERTS, "Convergence of a random walk method for the Burgers equation," this issue, 
pp. 647-673. 

32. G. ROSEN, "Brownian-motion correspondence method for obtaining approximate solutions 
to nonlinear reaction-diffusion equations," Phys. Rev. Lett., v. 53, 1984, pp. 307-310. 

33. A. S. SHERMAN & C. S PESKIN, "A Monte Carlo method for scalar reaction diffusion 
equations," SIAM J. Sci. Statist. Comput., v. 7, 1986, pp. 1360-1372. 

34. A. S. SHERMAN & C. S. PESKIN, "Solving the Hodgkin-Huxley equations by a random 
walk method," SIAM J. Sci. Statist. Comput., v. 9, 1988, pp. 170-190. 

35. J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 
1983. 

36. G. STRANG, "On the construction and comparison of difference schemes," SIAM J. Numer. 
Anal., v. 5, 1968, pp. 506-517. 


	Cit r308_c322: 


