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Improved Condition Number for Spectral Methods 

By Wilhelm Heinrichs 

Abstract. For the known spectral methods (Galerkin, Tau, Collocation) the condition 
number behaves like o(N4) (N: maximal degree of polynomials). We introduce a 
spectral method with an O(N2) condition number. The advantages with respect to 
propagation of rounding errors and preconditioning are demonstrated. A direct solver 
for constant coefficient problems is given. Extensions to variable coefficient problems 
and first-order problems are discussed. Numerical results are presented, showing the 
effectiveness of our methods. 

1. Introduction. Spectral methods involve representing the solution to a prob- 
lem in terms of a truncated series of smooth global functions. For Dirichlet problems 
the Chebyshev polynomials are the trial functions. It turns out that for the stan- 
dard spectral methods (Galerkin, tau, collocation) the condition number is very 
large and grows as o(N4) (N: maximal degree of polynomials) (see Orszag [16]). 

As a consequence we observe for direct solvers a strong propagation of rounding 
errors. For iterative methods an effective preconditioning is necessary (see Phillips 
et al. [17] or Heinrichs [8], [9]). A direct solver based on an ADI-factorization 
technique is proposed by Haidvogel and Zang [7], where the tau method has been 
used for discretization. 

We derive an improved spectral method with an O(N2) condition number which 
is also known from finite difference and finite element methods. The main idea is 
that we employ polynomials fulfilling the homogeneous boundary conditions. The 
Laplace operator (or any other elliptic operator) applied to a truncated series of 
these trial functions is then developed in a series of Chebyshev polynomials. The 
coefficients of this series are taken to be equal to the coefficients of the right-hand 
side expansion. The resulting spectral system has the improved condition number. 
Obviously, the derived approximation is identical to the approximation of Lanczos' 
tau method. A comparison with the approximation of [7] is made in Section 3. 

The described treatment can also be applied to the Bubnov-Galerkin method 
where polynomials with homogeneous boundary conditions are trial functions and 
the usual polynomials are test functions. A disadvantage of this approach is the fact 
that the Galerkin systems now become nonsymmetric. Since, in addition, the use 
of Fast Fourier Transforms (FFT's) is no longer possible, we prefer the treatment 
given here. 

In Sections 2 and 3 we describe the method for one- and two-dimensional con- 
stant coefficient Droblems. In Section 4 we DroDose an efficient elimination process 
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for the corresponding spectral systems. Subsequently, the system is solved by a 
block-Gauss elimination procedure. In Section 5 we investigate the case of inhomo- 
geneous boundary conditions and in Section 6 we give a short convergence analysis. 
Numerical results for some test examples are presented in Section 7. In Sections 
8 and 9 we show how this treatment can be extended to variable coefficient and 
first-order problems. For variable coefficient problems we employ a collocation 
method for discretization and propose a suitable iterative solver for these systems. 
Furthermore it is indicated that a straightforward extension of these ideas to time- 
dependent problems is not possible. We expect that the proposed treatment will 
find further applications in fluid dynamics and yield similar improvements. 

2. One-Dimensional Case. We consider the boundary value problem 

(2.1) -u" = f on Q = (-1, 1) 
with homogeneous boundary conditions u(-1) = u(1) = 0. For the spectral approx- 
imation of (2.1) we choose a basis, given by {(1- x2)Tk(x): k = 0, ... ,N}, which 
fulfills the homogeneous boundary conditions. Here, Tk denotes the kth Chebyshev 
polynomial, i.e., Tk(x) = cos(k arccos(x)). By means of a simple calculation we get 
the following formula. 

LEMMA 2.1. We have, for arbitrary constants ap, 
N \ I N 

- (aP( - 2)TPG) , ap(1-X2 )Tp(x2) bpTp(x), 

where 
N (2 for p = O 

bp=(p+l)(p+2)a++a-1 E (6q)aq and ap i for pa>l 
q=p+2 

q+p even 

Proof. Since 

-((1 - x2)TP(x))" = -(1 - x2)Tp'(x) + 4xTp(x) + 2Tp(x), 
we have by standard formulas (see [6]): 

N N+2 

(1- X2) E apTp =E epTp, where ep =-ap-2ap-2 
p=o p=O 

+ ( (ap + p-l)) ap - -ap+2, 

N N+1 1 
x Z apTp = fpTp, where fp = 2(ap-lap-i + ap+j) 

p=o p=O 

and 
N N-2 N 

ZapTp= gpTp, where gp = a- ' k(k2 _p2)ak, 
p=0 p=0 k=p+2 

k+p even 

N N-1 N 

ZapTp'= hpTp, where hp = 1 E (2k)ak. 
p=0 p=O k=p+1 

k+p odd 
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In all formulas we set ap = 0 for p < O. Hence we get for p > 2 

N 1 N 

b =2ap+8 , qaq-4pap-2 - q(q2 -p2 )aq 
q=p q=p 

q+p even q+p even 

N 

+ - E q(q2 - (p+2)2)aq 4 q=p 
q+p even 

N 

+ - E q(q2-(p +2)2)aq- _ip(p2 - (p+2)2)ap 
4 q=p4 
q+p even 

= (2 -4P + P(4p + 4)) ap + Z (8q - _q(q2 
_ 

p2) + -q(q2 - (p - 2)2) 

q+p even 

+1q(q -(p + 2)2 ))aq 

= (p2 23p2)1+ 
1 

(P 3p + 2)ap + E 8q + q ( p2 _ 1(p - 2)2- _ (p + 2)2) aq 

q+p even 

N 

= (p + l) (p + 2)ap + E (6q)aq . 
q=p+2 

q+p even 

A direct computation in the cases p = 0,1 completes the proof. 0 

From the formula of Lemma 2.1 it becomes obvious that the matrix B E 
RN+1,N+1 with 

(2.2) b = Ba 

is a positive upper triangular matrix. Its eigenvalues are (p + 1) (p + 2) for p = 

O,... , N and hence an O(N2) condition number can be expected. The pseudospec- 
tral approximation of (2.1) can now be determined by choosing b such that 

N\ 

, bpTp) (xj) = f (xj), j = O, * * , N, 
p=0 

at the Chebyshev nodes xj = cos(j7r/N). This can be done efficiently by using 
an inverse Fast Fourier Transform (FFT). The computational effort takes about 
0(N ln N) arithmetic operations. Thereafter, the coefficient vector a can be deter- 
mined by solving the system (2.2). Because of the special structure of B (triangular 
and the nonzero elements are columnwise equal) it can be solved in about O(N) 
arithmetic operations. 

3. Two-Dimensional Case. Now we consider the Poisson equation 

(3.1) -Au = f on Q = (_1,1)2 

with homogeneous boundary conditions on aQ. 
For the spectral approximation of (3.1) we choose the basis 

{(1-x2)(1 - y2)Tk(x)TL(y): k,l = O, ... I,N}. 
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The operator -A applied to a basis function gives 

-A(1 - x2)(1 - y2)Tk(X)TI(y) =x-(((1 -X2)Tk(X))"(-y2)T(y) 

+ ((1 - y2)T1(y))"(l -X2)Tk()). 

The Chebyshev expansion of -AUN (UN is the spectral approximation) is known 
from the formulas in the proof of Lemma 2.1. It becomes obvious that now the 
Chebyshev polynomials TN+1 and TN+2 occur in the representation. In order to 
get an equation system for Chebyshev polynomials of degree < N, we neglect these 
terms and approximate 

N 

(1 -x2),apTp 

p=o 

by 
N 1 (1 1 

ep Tp where ep =-_ap-2ap-2 + 1 - (ap + apc1)) ap -ap+2 
p=0 

a as in Lemma 2.1. Let E E RN+1,N+1 denote the matrix which represents the 
connection between a and e, i.e., e = Ea. Obviously, E is a tridiagonal matrix with 
positive diagonal entries and nonpositive off-diagonal elements. E is irreducible 
and diagonally dominant, hence an M-matrix, i.e., E-1 > 0 (all elements of E-1 
are greater or equal zero) (see also Meis and Marcowitz [14, Theorem 13.16]). 

Now the spectral matrix A in the coefficient space can be written by means of 
the tensor product 0 as follows: 

A = B0E+E0B, B0E = (Bej)ij=,o...N, 

where B is defined in (2.2). The Fourier coefficients fp,q of f can be calculated by 
FFT's and the corresponding linear system is 

Aa=f. 

The spectral approximation, given by 

N 

UN = (1-X2)(1 - y2) E ap,qTp(x)Tq(y) 
p,q=o 

can now be easily evaluated by FFT's and scaling. The derived approximation UN is 
identical to the approximation of Lanczos' tau method. It fulfills the homogeneous 
boundary conditions and is determined by matching the Chebyshev coefficients. In 
comparison with [7], we observe better approximation results (see Table 4) since 
we employ an approximation with polynomials of degree N + 2 (in each direction). 
In contrast to [7], matching is done using all Chebyshev coefficients fp,q (p,q = 

o, .. I,N). 
By using Gerschgorin's estimate it becomes obvious that the largest eigenvalues 

grow as O(N2). The smallest eigenvalues are calculated numerically by means of 
the QR-factorization (see Table 1). We note that they are strictly positive and have 
a fixed positive lower bound. Hence the condition number behaves like O(N2). 
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TABLE 1 

Smallest and largest eigenvalues Amin and Am.a of A 

N Amin Amax condition number condition number/N2 

4 3.12188 2.99319 .101 9.39146 .100 5.86967 .10-1 
8 3.13694 9.45206 101 3.01332 101 4.70831 10-1 

16 3.13767 3.74279 102 1.19286* 102 4.65961 10- 
32 3.13770 1.61179 103 5.13685 102 r.%01646 10-1 

Further insight into what happens may be gained by a local consideration of the 

analytical behavior of -A(TkTL), resp. -A((1 - x2)(1 - y2)TkTL). We get 

(3.2) -/ (TkTk) - ( 12 + 1 - ) TkT + lower-order terms in k, I 

and 

(3A((1 -X2)(1 _ y2)TkT) = (k2(1 y2) + 12(1-x2))TkTL 

+ lower-order terms in k, 1. 

From the representation (3.2) it becomes clear that for k - N (I - N) and x - 

?1 : O(N-2) (y - ?1 : O(N-2)) (as for the Chebyshev nodes) an N4 term 
appears and leads to largest eigenvalues growing as N4. From (3.3) it is clear that 

the largest eigenvalues grow as N2. On the other hand, the smallest eigenvalues 

do not behave like N-2 since the corresponding influence only comes from the four 

edges. Hence, there is no global effect, and the smallest eigenvalues do not tend to 

zero. 

We remark that the improved condition number can also be attained by pre- 

conditioning the usual spectral matrix by a diagonal matrix with diagonal entries 

equal to (1 - xA)(1 - y2), i, j = 1, ... ., N - 1. This observation becomes of great 
interest for iterative solvers and will be discussed in Section 8. 

4. The Direct Solver. Now we describe an efficient block Gauss elimination 

procedure for the spectral matrix A. Obviously, A has the following block Hessen- 

berg structure: 

C o C 0 P 0 P 0 O P 

D0 C 0 C 0 P *- *- 0P 
OcO C O P0 O --P O D 0 C 0 C 0 P 0 P 

D 0 C 0 C 0 PO 

D O C O C O 

DO 0 C OPO 

D 0 C O C 

0 D O C O 

D O C 
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Here D, P and C denote submatrices with the following structures: 

-D has the same structure as B (upper triangular matrix), 

-P has the same structure as E (pentadiagonal matrix), 

-C has the same structure as B + E (Hessenberg structure). 

We now explicitly give the matrices B and E: 

2 0 6 0 12 0 18 0 24 0 3N 
6 0 18 0 30 042 0 *6(N - 1) 0 

12 0 24 0 36 0 48 *.. 0 6N 
20 0 30 042 0 *.. 6(N - 1) 0 

30 0 36 0 48 *.. 0 6N 
42 042 0 .*. 6(N - 1) 0 

56 0 48 ... 0 6N 
B = 72 0 * 6(N - 1) 0 

O 90. 

0 6N 

N(N + 1) 0 

(N+ 1)(N+2) 

1/2 0 -1/4 
0 1/4 0 -1/4 0 

-1/2 0 1/2 0 -1/4 
-1/4 0 1/2 0 -1/4 

E = -1/4 0 1/2 0 -1/4 

-1/4 0 1/2 0 -1/4 
0 -1/4 0 1/2 0 

- 1/4 0 1/2 

Direct elimination for the matrix A requires storage of about o(N3) elements; for 
Gauss elimination about O(N6) arithmetic operations are necessary. By utilizing 
the block Hessenberg structure of A this can be reduced to about O(N5) operations. 
By a special elimination we show that A can be transformed to a band matrix. First 
we consider the matrix B. By subtracting from row 0 half of row 2 and further from 
row i the row i + 2 for i = 1, 2, ... , N - 2, we get a band matrix TB (T represents 
the elimination process). TB has the following structure: 

TB = 

62 0 0 
6 0 - 2 0 

12 0 -6 

0 
(i+1)(i+2) 0 6(i+2)-(i+3)(i+4) 

0 

(N - 1)N 0 6N - (N + 1)(N + 2) 
0 N(N + 1) 0 

(N + 1)(N + 2) 
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The same transformation can also be applied to E and yields 

3/4 0 -1/2 0 1/8 
0 1/2 0 - 3/4 0 1/4 0 

-1/2 0 3/4 0 - 3/4 0 1/4 
- 1/4 0 3/4 0 - 3/4 0 1/4 

TE- . . 
-1/4 0 3/4 0 - 3/4 0 1/4 

- 1/4 0 3/4 0 - 3/4 0 
- 1/4 0 3/4 0 - 3/4 

0 - 1/4 0 3/4 0 
- 1/4 0 3/4 

We now apply the transformation blockwise to the matrix A. It can be written as 
(I denotes the unit matrix): 

(I 9T)A = (I T)(B?E+E?B) = B?TE+E?TB 

CO C 0 D 
OC O C O D 0 
DO C 0 C 0 D 

D O C 0 C O D 

D O C 0 C O D 
D O C 0 C O 

D O C O C 
0 D O C O 

D O C 

Now we have a band matrix, and this system can be solved in about o(N4) arith- 
metic operations. The above process itself requires only about O(N2) operations. 
The procedure can also be applied to each block. This can formally be written as 
a multiplication with T 0 I, and we get H = (T 0 I) (I 0 T)A. H has the same 
block structure as (I 0 T)A but with matrices D and C of the following structures: 

-D has the structure of TB. 
-C has the structure of TE or TB + TE. 

The matrix H can also be written by means of the tensor product of TB and TE. 
We find 

H = (T?I)(I ?T)A = TB?TE+TE?TB. 

H is a band matrix with only about O(N2) nonzero elements. Hence, the system 
can be solved in about o(N4) arithmetic operations. By a further simultaneous 
exchange of rows and columns the band width of B and E, resp. TB and TE, 
can be halved. This also halves the band width of the tensor product matrix and 
operational costs can be reduced to a fourth. 

For the transformed matrix H we give the smallest and largest eigenvalues in 
Table 2. The condition number is somewhat worse than for A but still increases as 
O(N2). 
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TABLE 2 

Smallest and largest eigenvalues Amin and Amax of H 

N Amin Amax condition number condition number/N2 

4 1.97075. 100 3.38728 101 1.71878 101 1.07424 100 
8 1.11919 100 2.20707* 102 1.97202 102 3.08128 100 

16 5.55226 10-' 8.87355. 102 1.59819 103 6.24298 100 
32 1.84507. 10-1 3.77197* 103 2.04435* 104 1.99644 101 

We remark that by an alternating direction implicit (ADI) method (proposed, 
e.g., by Haidvogel and Zang [7]) the amount of work can be reduced to o(N3) oper- 
ations. But for an efficient determination of the parameters of ADI the eigenvalues 
have to be calculated. These pre-computations are already quite costly, and hence 
the total amount of work is comparable to our direct solver. Furthermore, for our 
method standard routines from programming libraries are available. 

We finally mention that this efficient direct solver can also be used to derive 
defect corrections for variable-coefficient problems. Here we refer to D'yakonov's 
method [16] where the Laplace operator is used for preconditioning. 

5. Inhomogeneous Boundary Conditions. We now consider the Poisson 
equation with inhomogeneous boundary conditions, given by 

(5.1) -Au= f on Q, u=g on ai. 

We describe a collocation method for problem (5.1) where the boundary conditions 
are collocated, too. First, we determine a smooth function uN which satisfies 

UN(xi,,xj) = g(xi, xj) for (xi, xj) E al. 

Usually, ul is also chosen as a suitable polynomial of degree < N in x, y. Further, 
let u% denote the collocation approximation (as in Section 3) for the solution u? of 
the problem 

-Au0 = f + Au, u0 = 0 on al. 

Then UN = Ul +U? is a collocation approximation for the solution of problem (5.1). 
The approximation error of this method can be estimated by the interpolation error 
of uN on the boundary ai and the collocation error for u% . A detailed analysis of 
convergence can be found in [11]. 

We remark that the above treatment can be extended to variable coefficient 
problems in a straightforward manner. 

6. Convergence. We give a proof of convergence in the one-dimensional case. 
The pseudospectral approximation UN E PON2 can be equivalently written as the 
solution of the discrete problem 

aN,w(UN,VN) = (f,VN)N,w for all VN E PN, 

where PN+2 = {UN = (1 -X2)ZN: ZN E PN} and PN denotes the space of 
polynomials of degree < N. Here, aN,w4 and (,* )N,w are given by 

N 

aN,w(U,V) = (-U",V)N,W and (V,W)N,, = EV(Xj)W(Xj)Wj, 
j=O 
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where xj = cos(jIr/N) and wo = WN = ir/2N, wj = ir/N (j = 1,... , N - 1) are the 
weights of the Chebyshev-Gauss-Lobatto quadrature formula. Convergence will be 
proved by using variational principles (see the Babuska/Necas conditions [1], [15]). 
Here the stability and convergence of the spectral scheme is assured, provided the 
form aN,, fulfills some properties of continuity and coerciveness (see Canuto and 
Quarteroni [3]). The main problem is to show the coerciveness; we show that for 
each UN E PO+2 there exists a VN E PN such that 

(6.1) aN,w(UN,VN) > CIIUNIIVIIVNIIW, C > 0, 

where V = Hl,w n H2,w with the norm of H2 w and W = HO,w = Lw. (H8oW 
denotes the subspace of functions from Hl,w with compact support; Lw the space 
of w-integrable functions where w(x) = (1 - x2)-1/2.) Since UNVN E P2N, and in 
view of the equivalence of discrete and continuous norms, we get for VN = U" 

N 1~~~~~~1 ~ 

IaN,w(UN,VN)I = EU%1(Xj)U%1(xj)wj > c] (X)I12w(x)dx 
j=O 

- CIIVN 11W > C IIVN IILW IhUN IIH2,w. 

The last inequality follows from Poincare's theorem. Hence we get the estimate 
(see [3, Theorem 1.2]): 

IIU -UNII12,w ?_ infP+ {CilIU - WNII12,w 
WN E PON +2 { 

+ C2 SUP aN,W (WN, VN) aw (WN, VN) I 
VNEPN IIVNIIw 

+ I(fi VN)w-(f, VN)N,wI l 

IIVNllw I 

For u E HS,w, s > 2, the approximation error can be estimated by (see [2], [4]) 

IIU - WN112,w < cN2-SIIUII,"w. 

Since 
aN,w 

(wN,vN) - aw (wN,vN) = (-WYV,VN)N,w - (-W",VN)w, and using the 
estimate of [3, Lemma 2.5], resp. [4, Lemma 3.2], we get 

I(-WY VN)N,w -(-W, VN)wI < CIIVN llw W7 - PN-luWN11lw 
< CN 2sIWNIIs,wIIVNIIw. 

Here we have used PCwN = wN (PC denotes the interpolation operator onto PN) 
and the approximation property of the orthogonal projection PN-1 (see the ap- 
proximation results of Canuto and Quarteroni [2]). By the same arguments we 
get 

I (f, VN)w - (f VN)N,w I < CN-OlIf IIa,w for f E He a a> 1/2. 
IIVNll1w 

Altogether, we therefore conclude that 

IIU - UN 112,w < CN2-,IIUII,"w + C'NIllf 11a,W 

for u E HS,w, s > 2 and f E HU,w, a > 1/2. Hence, the proposed method 
allows stronger convergence estimates than those obtained for the usual collocation 
method. 
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Further convergence estimates in strong C-norms are given in [12]. There, we 
deduce estimates such as 

IIU -UN 11C2 < C ln NN2-.IIuIIcs, s > 2, 

where 11 * lics denotes the strong norm of C8[-1, 1]. 
Convergence estimates for the corresponding Galerkin (-Petrov) methods are 

given by Krasnosel'skii et al. [13]. Theorem 16.6 of [13] yields asymptotically opti- 
mal estimates in the norms of H2'2 and Cl. 

7. Examples. We examine numerical examples introduced in [7], [8], [9] and 
compare the collocation method with the proposed spectral method. For this pur- 
pose we calculate the absolute discretization error, measured in the pointwise max- 
imum norm (IIUN - UIIMAX). We implemented both methods on a Siemens 7.570-P 
computer and used double-precision arithmetic with an accuracy of 14 digits. The 
first example is given by 

(7.1) -AU= COS () Cos (2) (on Q)r u = 0 (on dQ) 

with the exact solution u = cos( x) cos( y). 

TABLE 3 

IU - UNIIMAx for example (7.1) 
N Collocation Our Method 

16 8.08. 10-13 6.11 .10-16 
32 1.59.10-12 1.12.10-15 

Inspection of the results in Table 3 shows that the collocation method strongly 
propagates rounding errors and its inherently high accuracy is somewhat disturbed. 
Here our method yields an increase in accuracy of about 2-3 digits, which is due 
to the smaller condition number. The second example is given by 

(7.2) -Au = 1 (on l), u = 0 (on a9l), 

where the exact solution can be written as an infinite series [7]. Now collocation is 
more accurate, which may be due to the fact that we neglected the highest modes 
in our method. Here, the phenomena of the first example cannot be observed 
since the discretization error is too large to be influenced by rounding errors. The 
numerical results for this example are presented in Table 4. For comparison, the 
corresponding results of [7] are also given. 

For reasons mentioned in Section 3, our method yields a higher accuracy. 

TABLE 4 

IIU - UN JIMAX for example (7.2) 

N Collocation Our Method Tau Method [7] 

16 7.47. 10-7 3.99 10-6 3.52 i0-5 
32 5.51 10-8 2.07 10-7 2.23 10-6 
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8. Variable-Coefficient Problems. For nonlinear or nonconstant coefficient 
problems the presented tau method is no longer efficiently implementable (see also 
Gottlieb and Orszag [6, Section 10]). The corresponding spectral matrices are dense 
and the spectral systems cannot be solved efficiently by using FFT's. In this case, 
collocation (or pseudospectral) methods are recommended. The resulting spectral 
systems can be efficiently solved by means of iterative methods [7]-[10], [16], [17], 
[19]. For an iterative method the reduced condition number further leads to an 
improved convergence property (see, e.g., [14]). 

However, a straightforward adaptation of the preceding ideas to collocation with 
the usual Chebyshev nodes (extrema of Chebyshev polynomials) is not possible. 
This can easily be seen by considering the expression (3.3). In the four edges, 
the expression -A((1 - x2)(1 - y2)TkTL) is always zero, and hence collocation at 
these points is not possible for elliptic problems where the right-hand side is not 
compatible with the boundary conditions. For instance, we refer to the example 
(7.2) of Section 7. This means that the Gauss-Lobatto nodes cannot be used, 
and the advantage of FFT is lost. However, Gauss nodes can still be used. We 
recommend the use of the Chebyshev polynomials for which fast transforms are 
still available (see [12]). But in comparison with FFT they still need twice the 
amount of work and are hardly competitive computationally. 

Hence we prefer a somewhat different treatment. Let us consider a variable 
coefficient problem given by 

(8.1) Lu = -au-buyy + cu +duy + eu = f on Q 

with homogeneous boundary conditions on A9. Here a, b, c, d, e and f denote 
;ven functions defined on Q, where a > 0 and b > 0 on QI. In place of (8.1) we 

numerically solve the modified singular problem 

(8.2) L,u = g on Q, 

where 

Lu =(1-x2)(1-y2)Lu and g = (1-X2)(1-y2)f. 

This can also be written as 

- (1 - y2 )a((l - x2)Uxx) - (1 - x2)b((1 - y2)U YY) 

(8.3) + (1 _ Y2)c((1 - x2)ux) + (1 - x2)d((1 - y2)U Y) 

+ (1-X2)(1-y2)eu = g. 

Now, for an iterative solution of spectral systems the preconditioned Richardson 
relaxation [9], [19] is recommended. For a more detailed description, denote 

QN ={(Xi, Yj) =(cos - Xcos r): i, = 0 * ... ,N }, 

ON = onQN, 69N = aon?N for Q = (-1,1)2, and let G(f2N) be the space of grid 
functions defined on QN. Let further 9N E G(fN) with components gNi = g(xi, y3) 
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and uNE G( N), uN = 0 on (9FN, be given. The iteration then proceeds as follows: 

uj+ = Uiz + wjPN(LN UNuN-g9N) on ON, 
N 

UiN+ =0o on QN foryj= 0, 1,2,... 

Here we denote by 

L N the spectral discretization operator of L, 

PN the preconditioning operator, 
wi the relaxation parameter. 

For an efficient relaxation these components have to be chosen in a suitable manner. 
A stable evaluation of LsNu3N can be done using the splitting of formula (8.3). The 
evaluation of (1 - x2 )u, (1 y2)uy and (1-x)uz, (1-y2)uy can be accomplished 
in a stable way with a rounding error propagation of at most O(N2). This is an 
easy consequence of the following lemma: 

LEMMA 8.1. Let VN(X) =p=OapTp(x); then 

N 

(8.4) -(1 - X2)VN(X)" = E 7pTp(X) 
p=O 

and 

N+1 

(8.5) (1-X2)VN(X)' =E rpTp(x), 
p=o 

where 
N 

op =p(p - 1)ap - ap 1 (2k)ak 
k=p+2 

k+p even 

and 

rp P 12 ap_1+P 
I 

aP+i forp=0,1,...,N+1. 
2 ~~~2 

Here, cp is defined as in Lemma 2.1 and we set a-, = aN+1 = aN+2 = 0 

Proof. The proof can easily be accomplished using the standard formulas noted 
in the proof of Lemma 2.1. 0 

Since FFT's should be applicable, we use in (8.5) only the N-series and set 
TN+1 = 0. After an FFT into physical space, the multiplication by the coefficient 
functions (1 - y2)a, (1 - x2)b, (1 - y2)c, (1 - x2)d and (1 - x2)(1 - y2)e can be 
accomplished pointwise. In algebraic notation, this can be represented by a matrix 
multiplication. This is stable and only takes O(N2) arithmetic operations. Hence 
we get an efficient computation of LsNu- implementable with FFT's, which causes 
rounding error propagation of at most O(N2). 

For an anisotropic test problem with coefficients 

a(zx,y) = 1+eexp(x), 001 1 
b(x, y) = 1 + E exp(y), 
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and c = a, d = by, e = O, we have numerically calculated the smallest and largest 
eigenvalues of L N (see Table 5). The calculations were done by using certain 
variants of the power method. The results once more indicate an O(N2) condition 
number of LaN. For the Poisson equation, the smallest eigenvalues approximate 
Amin = 3.138, which should also be a good prediction for the smallest eigenvalue of 
the singular operator L = -(1 - x2)(1 _ y2)A. 

TABLE 5 

Smallest and largest eigenvalues of LsN 

& N Amin Amax 

16 3.138 402.82 
0. 

32 3.138 1752.79 
16 3.541 457.02 

0.1 
32 3.542 1976.13 
16 6.293 1002.90 

1.0 
32 6.294 4247.37 

From these considerations it can be deduced that pure Richardson relaxation 
without defect correction yields a convergence factor of 1- O(N-2). Clearly, better 
factors can be obtained by using a suitable preconditioning. Here we recommend 
a correction based on the five-point finite difference discretization (see [9], [19]) of 
(8.2) at the Chebyshev nodes. Here the term (1- x2) (1- y2) has to be incorporated 
into the difference formula. In the selfadjoint case with c = ax, d = by and e = 0, 
we make use of the formula in [9]. In (xi, yj) E Nwe obtain 

0 0 

L ? Po,fl- 1 0 

where P = 1/(2s1/281) and 

00',Jl= -b (Xi,2(Yi +Yj+l))si, 2 ~ ~ /Sj+1/2 

fl& 1 = -b (x 2(y8+ Yi-i)) sjlii 

d -1o= -a (2(xi +xi-1),yiS) 
Ij Si-/ 

pl,o= -a -(2xi + xi+l 1)' yi) 
A0,0 2 S(p-1,0 + p1,0 + :0,-1 i+1/2 

3" = (fl",o + 3" + fl&L1 + fl.'/1). 
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Here we denote si = sin(iIr/N), Si+1/2 = sin((i+1/2)ir/N) for i = 0, .. ., N. We are 
now in a position to prove some nice properties of the corresponding discretization 
matrix LND. 

LEMMA 8.2. The matrix LND has real eigenvalues, the largest one growing as 
O(N2). In particular, for the Poisson equation, the smallest eigenvalues have a 
lower bound of 1/2. Hence the condition number of L JD grows only as O(N2). 

Proof. We observe that Lij can be written as Li = di,jL DI di,j = sisj 
where LiFjD is a symmetric star. Hence, in matrix notation, we obtain LFND = 

DNLFND, where DN = diag(di,j)i,j=1,...,N-1. Now the original eigenvalue problem 
is equivalent to the symmetric problem 

D1/2 -N 1l/2 S 
DN 2LF{DDN(2eN = AeN. 

This proves that all eigenvalues are real. The fact that the largest eigenvalue grows 
as O(N2) easily follows from Gerschgorin type estimates. Since L`j has a Z- 
structure (i.e., the off-diagonal elements are nonpositive), we only have to find a 
vector ZN - (zt'3) with z4/ > 0 (i, j = 1,j.. , N - 1) such that (L DzN) '3 > z2t'3 N N FD L~~~~~- 2 "N 

(i, j = 1, ... , N - 1). Then it follows that the matrix LFND is an M-matrix, and its 
eigenvalues have a lower bound of 1/2 (see Schr6der [18, Chapter II, Proposition 
1.4]). Now we prove that the special vector ZN with z"i = s1/2s1/2 leads to the 
desired result. First, we consider points of Q far away from the boundary. For large 
N we obtain (in obvious notation for stars) 

LFj = 2Sj2[-l 2 -1] + s 2] 

If we show that 

(.) N([ 2 
-1]81/2),? >! 3/2 

(8.6) 2 ( [-1 2 -l]-Si)i>4 (i = 1,.. ., N-1) for s1/2 sinl/2 X, 

then it also follows that 

The last inequality easily follows from X2 + Y2 > 2xy for real x, y. (8.6) is a 
consequence of the fact that the finite difference operator is identical to the second- 
order difference star. Hence, the left-hand side in (8.6) approximates the second 
derivative of the function - sin1'2 x in xi = i7r/N. Since further 

(- sin1N2 x) = sin-3/2x + 1 sin12 x > - /sin~32 x for xE [O,ir] 
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we obtain the desired result. A special treatment of points near the boundary 
confirms the above result. 0 

Numerical calculations show that the smallest eigenvalue also approximates Amin 
- 3.138 for increasing N. 

The convergence factors after this preconditioning are equal to those obtained 
without multiplication by (1 - x2) (1 _ y2). Here we refer to results given in [9], 
where we have applied this relaxation in a multigrid context. It is still of great 
interest to find even better or less expensive defect corrections which utilize the 
improved condition number. 

9. First-Order Problems. We consider the first-order problem 

(9 1) ~~~~u' = f on Q = (-1, 1), 

u(1) =0 or u(-1) =0. 

Depending on the boundary conditions, we use a spectral approximation given by 
N 

UN (x) = (1 ? x) E apTp (x). 
p=O 

The first-order derivative of UN can be represented in the following way. 

LEMMA 9. 1. There holds 
N N 

U(x)'= ZrpTp(x) and u-(x)' = pTp(x), 
p=O p=O 

where 
N 

(9.2) rp = (p + 1)ap + at-1 E (2k)ak 
k=p+1 

and 
N 

(9.3) s = -(p + 1)ap - a1 E (_l)k+P(2k)ak. 
k=p+1 

cap is defined as in Lemma 2.1. 

Proof. We have 
N N-1 

iN(X)= + E ap Tp (x) + (1 ? x) E hpTp(x), 
p=O p=O 

where hp a c E Nk=p+l;k+podd(2k)ak. By further making use of the formulas 
given in the proof of Lemma 2.1, we easily obtain (9.2) and (9.3). 0 

The matrices representing the relations (9.2) and (9.3) are called R and S. Ob- 
viously, R and S are upper triangular with real positive and negative eigenvalues 
+(p + 1), p = 0, ... , N. Again, we obtain largest eigenvalues increasing only as 
O(N) instead of O(N2). 

Next, we consider constant coefficient systems. We shall analyze the case of two 
equations. After diagonalization, such a system takes the form (see also Funaro [5]) 

(9.4) =f on = (-1,1) 
V = g 
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with 
u(l) = av(l), U(-1) = OV(-1), 

where a, ,B are two real numbers. 
Problem (9.4) admits a unique solution, provided a and P satisfy the condition 

(9.5) a,f :l 1. 

Here we use approximations given by 

UN= (1-X)WN+ -N and VN=(l+X)ZN+&N, 

where WN, ZN E PN and IN, 6N E R. The WN and ZN are determined as the 
spectral tau approximation of the problems 

((1-x)w) = f and ((1 + x)z) = g. 

Subsequently, the real numbers -YN, 6N are chosen in such a way that the boundary 
conditions are fulfilled. By making use of (9.5), we obtain 

2a 2a 
1- = aIf(ZN(1) + WNN(-1)) and 6N = 1 (azN(1) + WN(-1)) 

Hence, the approximations UN, VN are fully determined and the improvements 
mentioned above are realized. 

Consider now variable coefficient systems given by 

alux + a2Vx = f on 
a3uX + a4Vx = g 

with boundary conditions 

aiu(l) + a2V(1) = 0, iER 1234 
a3U(-1) + a4V(-1)=o, a2 e R, i = 1, 2, 3,4. 

a1,... , a4 denote continuous functions on Q, prescribed in such a way that the 
quantity det(" 'I ) never vanishes on [-1, 1]. 

As already seen for second-order problems, direct solvers based on the tau 
method are no longer available; iterative methods based on collocation have to 
be used. To achieve a reduction of the condition number, the system should be 
multiplied by (1 - x) and (1 + x). Hence we get 

a, (1- x)ux + a2 (1- X)Vx = (- X)f, a3(1 + x)ux + a4(1 + X)Vx = (l + x)9- 

The trivial equations at x = 1, resp. x = -1, are replaced by the correspond- 
ing boundary equations. Now pseudospectral discretization can be applied in a 
straightforward manner. Iterative methods can be efficiently implemented using 
FFT and, if there is no preconditioning, convergence factors of 1 - O(N-1) can be 
expected. Efficient preconditioners for such problems are proposed by Funaro [5]. 
The corresponding eigenvalues are real positive and lie between 1 and ir/2. 
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