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Error Estimates 
for Semidiscrete Finite Element Methods 

for Parabolic Integro-Differential Equations 

By Vidar Thomde and Nai-Ying Zhang 

Abstract. The purpose of this paper is to attempt to carry over known results for spa- 
tially discrete finite element methods for linear parabolic equations to integro-differential 
equations of parabolic type with an integral kernel consisting of a partial differential op- 
erator of order /3 < 2. It is shown first that this is possible without restrictions when the 
exact solution is smooth. In the case of a homogeneous equation with nonsmooth initial 
data v, v E L2, optimal 0(hr) convergence for positive time is possible in general only 
if r < 4 -,B. This depends on the fact that the exact solution is then only in H4-. 

1. Introduction. The aim of this paper is to analyze spatially discrete finite 
element methods for solving initial-boundary value problems of the form 

ft 

ut +Au B(t, s)u(s) ds + f _ Bu + f in Q x J, 

(1.1)u =O onaQ x J, 
u(, O) = v in Q. 

Here, u = u(x, t) is a function in Q1 x J, where Q is a bounded domain in Rd 
with a smooth boundary aQ, J = (O, J] with t > 0, and ut = au Further, A is a 
second-order elliptic partial differential operator, 

d 
a 

A = - 
t-x (,aij(x) .-x) + ao(x)I, 

i,j=1 

where (aij) is a time-independent matrix, which is symmetric and uniformly positive 
definite in QI, ao (x) > 0 in Q0, and B = B(t, s) is a general second-order partial 
differential operator of order /3 < 2, 

d a /d)j~ ,x 

B(tj s) = - u (bij(X; tI ) + bj(x;t, , ) + bo(x; t, s)I, 
i,j=1 

a -ai 
j11x 

and Bu = Bu(t) stands for the integral term in (1.1). Finally, f and v are prescribed 
real-valued functions. Throughout this paper, we shall assume that f and the 
coefficients of A and B are smooth. 

Parabolic integro-differential equations (PIDE) of the above type, and nonlinear 
variants thereof, arise in many applications, such as, for instance, in non-Fourier 
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models for heat conduction in materials with memory and in the theory of nuclear 
reactors; see, e.g., the introduction in Greenwell Yanik and Fairweather [3], where 
also references to studies of existence, uniqueness and regularity are given. 

For the purpose of numerical solution we assume that we are given a family {Sh} 

of finite-dimensional subspaces of Ho = Ho (Q) such that, with r a given integer 
> 2, 

(1.2) inf {jju - xiI + hllu - Xl1i} < ChOh8ujj8 for 1 < s < r, if u E Hs n Ho. 
XESh 

Here and below we work in the standard Sobolev spaces H' = H8(Q), the norms 
in which are denoted jj11 . I, with s omitted when zero so that jj . is the norm in 
L2 = L2(Q). No inverse assumption is used for {Sh}. 

The semidiscrete Galerkin finite element method that we shall study is then to 
find Uh: J - Sh such that 

rt 

(1.3) (Uh,t, X) + A(Uh, X) = f 
B(t, s; uh(a), X) ds + (f, X) 

_B(uh,X)+(f,X) VX E ShI t E J, 

Uh(O) = Vh. 

Here, vh is an appropriate approximation of v in Sh, (,.) is the standard inner 

product in L2, A(., ) and B(t,s;,.) are the bilinear forms associated with the 

operators A and B(t, s), i.e., 

d 
au aw 

A(u,w) = | L aij(x) - z + aouw) dx 

and 

B(t, s; u, w) 

d 
~~~~~~d 

ad = | (Ebij(x; t, s) d a + Z bj(x; t, s) a w dxz, 

and B(., )= B(t;.,) is defined by (1.3). 

Our purpose here is to discuss to what extent known error estimates for the case 

of a parabolic differential equation (cf., e.g., Thomee [7]) carry over to the present 

situation. 
We shall consider first, in Section 2 below, the case of a smooth solution, i.e., 

when the smoothness of the exact solution is sufficient not to cause any compli- 

cations in the analysis. We shall then be able to show that the result for B = 0 

remains valid, i.e., that 

||Uh(t) - U(t)| < CllVh - vj| + Chr { IIVIlr + f |lUtllr ds} for t E J. 

We shall then turn to the homogeneous equation (f = 0) with nonsmooth initial 

data. For the differential equation case, it is known that if vh is chosen as Phv, the 

L2-projection of v onto Sh, then 

(1.4) llUh(t) - u(t)j < Ch rt/r|211v for t E J, 
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thus showing optimal-order convergence for positive t, even with v only in L2. 
This is related to the fact that the solution of a homogeneous parabolic equation 
is smooth for positive t, even when the initial data are not. In quantitative form, 
this may be expressed by the inequality 

(1.5) jjU(t)IIa < Ct-o'211vII for t E J, 

which is valid for any a > 0. 
Therefore, the first point on the agenda is to investigate the smoothness of the 

solution in the case f = 0 of (1.1), when v is nonsmooth. It turns out that in the 
PIDE case the inequality (1.5) remains valid, but in general only for a < 4 - P, 
where 3 is the order of B(t, s). This is shown in Section 3 below. 

It is natural that this smoothness property will be significant also in the study 
of the error in the semidiscrete solution. Our result is now that the error estimate 
(1.4) remains valid if r < 4 - /, or, more precisely, with r in (1.4) replaced by 
-y = min(4 -/3, r). This will be shown in Section 4. 

Earlier related results have been presented by Greenwell Yanik and Fairweather 
[3], who derived optimal-order error estimates in the case of a (nonlinear) problem 
with smooth solution, and with /0 < 1. An alternative proof of our smooth data 
result with R = 2 has been given recently by Cannon and Lin [2]. Both smooth 
and nonsmooth data estimates have been demonstrated in Le Roux and Thomee 
[4] for a semilinear problem with d = 0. For time stepping with special emphasis 
on economical quadrature, see Sloan and Thomee [5] (and also [4]). 

We shall end this introduction by fixing our notation and collecting some material 
concerning the differential equation case of (1.1), i.e., the case B = 0. In addition to 
Hr, we shall use the space H8 = H8(0), s > 0, defined by the norm 1v18 = I1A8/2v1I. 
We recall that for s an integer, H8 = {v E H8; A3v = 0 on 6Q for j < s/2}, and 
that the norms 11 11, and I 1, are equivalent on H8 (cf. [7]). 

Let thus E(t) denote the semigroup on L2 generated by the elliptic operator 
A, under homogeneous Dirichlet boundary conditions. The solution of the homo- 
geneous parabolic equation with initial data v is then u(t) = E(t)v and has the 
property 

(1.6) d() E(t)v < Ct-(q-P)/2-jjVjp for v E HP, tE J, O < p < q, j > 0. 
q 

Let further Eh (t) denote the finite element analogue of E(t), thus defined by the 
semidiscrete equation (1.3) with f = 0, B = 0. This operator on Sh may be defined 
alternatively as the semigroup generated by the discrete analogue Ah: Sh -) Sh Of 
A, where 

(Ah+O, X) = A(i, X) Vol X E Sh. 

The error in the semidiscrete solution is thus Uh(t) - u(t) = Eh(t)Vh - E(t)v. 
In the particular case that vh = Phv, the L2-projection of v onto Sh, we shall use 
the error operator Fh(t) = Eh(t)Ph - E(t). For this operator it is known that (cf. 
Theorem 3.1 of [1]) 

(1.7) IjFh(t)vjj < Chst-(8-P)/2lvIp, 0 < p < s < r. 
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Here and below, when q > 0, we write jIVjj-q and IVj-q for the dual norms to jjVllq 

and VlJq with respect to the L2 inner product. 
Related to the definition of the discrete elliptic operator Ah is that of the solution 

operator Th: L2 -+ Sh of the discrete elliptic problem, namely 

A(Th f, X) = (f, X) VX E Sh; 

it approximates the exact solution operator T = A-1: L2 __ H2 in the sense that 

(1.8) lThf- Tfjljq < ChP+q+2Ilfjlp for f E HP, 0 < p < r-2, -1 < q < r-2. 

The operator T is selfadjoint and positive definite on L2, and Th is selfadjoint, 

positive semidefinite on L2 and positive definite on Sh. We also recall the elliptic 

regularity property T: Hq -+ Hq+2 n Ho and the associated inequality 

(1.9) jjTf jjq+2 < Cllf llq for f E H, q ? 0. 

We finally recall the Ritz projection Rh: Ho -- Sh defined by 

(1.10) A(Rhu,X) = A(u,X) VX E Sh. 

In the appropriate domain we have Rhv = ThAv, and, by (1.9), the inequality (1.8) 

may also be expressed as 

(1.11) IjRhU - Ulljq < ChP+q1jujjp for u E HP nHo, -1<q<r-2, 2<p<r. 

Throughout this paper, C will denote, as above, a positive constant independent 

of h and the functions involved, not necessarily the same at different occurrences. 

2. Error Estimates in the Case of a Smooth Solution. This section 

is concerned with the following error estimates for the semidiscrete finite element 

method (1.3) in the case that the continuous problem (1.1) has a smooth solution. 

THEOREM 2.1. Let u and Uh be the solutions of (1.1) and (1.3), respectively. 
Then we have 

IIuh(t) -U(t)II < CIIVh- vIl + Chr {IIvir + IIUt ir ds} for t E J. 

Proof. Following Wheeler [8], we write the error, with Rh defined by (1.10), as 

e = Uh - U = (Uh - RhU) + (Rhu - u) = 0 + p. 

Here we have at once from (1.11) 

(2.1) IIp(t)JI < ChrTIu(t)IIr < Chr { ||V|r + f IlUt llr ds} for t E J. 

We continue to estimate 0 = uh - Rhu E Sh. We find easily by (1.1), (1.3) and 

(1.10) that 

(2.2) (0t, X) + A(O, X) =-(pt, X) + B(e, X) VX E Sh, t E J. 

We now write 0 = 01 + 02 where 01 and 02: J -+ Sh are determined by 

(0', X) + A(01I X) = -(pt, X) VX E Sh, t E J, 

al(o) = a(0), 
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and 

(2.3) (02, X) + A(021 X) = B(e, X) VX E Sh, t E J, 
02(0) = 0. 

Here the standard argument for the differential equation shows (cf. [7, Chapter 1]) 

(2.4) 1101(t)ll < Cllvh - vil + Chr {llvIlr + f utlir ds} for t E J, 

and we are left with estimating 02. 
Setting X = Th02 in (2.3), we find 

(Thot2, ot2) + 2 1d1l02(t)112 =|B(t, s; e(s), Th 02 (t)) ds 

(2.5) = d j B(t, s; e(s), ThO2 (t)) ds - B(t, t; e(t), ThO2(t)) 

rt 
-j Bt(t, s; e(s), Th02 (t)) ds, 

where Bt corresponds to the operator (of order ,l) obtained by differentiating the 

coefficients of B with respect to t. Hence, by integration with respect to t, we 

obtain 
t 

1102(t)112 < C f {IB(t, s; e(s), Th02(t))I + IB(s, s; e(s), Th02(s))I} ds 
(2.6) t s 

+ C ftf Bt(s, r; e(r), Th02(s))I dr d _= Q(t) for t E J. 

We shall prove that the quantity Q(t) thus defined satisfies 

(2.7) Q(t) < C {IIlVh - v + hr (iiVilr + I|UtlIr ds) + jlell ds} sup II02 (s) II. 

Assuming this for a moment, we find easily from (2.6) that 

1102(t)II < C {lIvh - vl + hr (JIvIlr + jlUtlir ds) + Ilell ds}. 

Combining this with (2.1) and (2.4), we derive 

jje(t)jj < IIp(t)lI + 1101 (t)jj + 1102(t)jj 

(2.8) < CII| -vi +- v {ChrIIVIlr + j jjUt|jrds} +Cf lie ds. 

An application of Gronwall's lemma now completes the proof. 

It remains to prove (2.7). For this purpose we need the following 

LEMMA 2. 1. Let B(t, s;., ) be a bilinear form associated with a partial differ- 
ential operator B(t, s) of order / < 2. Then 

IB(t, s; f, Thg)I < C(hilf II, + lIfII)IIgII for 0 < s < t E J, f C Ho, g E L2 

Proof. By (1.8) and (1.9) we have, with B* the adjoint of B, 

jB(t, s; f, Thg)I < IB(t, s; f, (Th -T)g)I + IB(.t, s; f, Tg)I 
? Cllf li lI(Th - T)gII1 + Ilf II IIB(t, 8)*TgII 

? C(hllf II, + I1f 11)1I911. L? 
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We now return to the proof of (2.7). By Lemma 2.1 we obtain easily 

rt 
(2.9) Q(t) < C (hIlel1 + lhell) dssup 1102(8)11, 

Jo<t 

and the proof of (2.7) can hence be completed by showing that 

(2.10) f jjejll ds < CIIvh - vjj + Chr1 (liVIIr + f| lut llr ds). 

Inserting X = 0 = 0(t) into the error identity (2.2), we obtain 

2dt 11112 + A(0, 0) = -(Pt, 0) + f B(t, s; e(s), 0(t)) ds 

< llPtll 11011 + o Ilelli dsllOll, 

< liPtll 11011 + (f llelli ds) + 2A(0,0). 

Therefore, we have after integration in time, 

10(t)112 + 1 ll012 ds < Cl00(0) 112 + Co llptll 11011 ds + Co (| lielli dr) ds 

< C010(O)II2 +0 (f liPtll ds) + 2 sup II0(s)II2 

+ot ( )2ds + C|( ilell, dr ds. 

Since the above inequality is valid for all t E J, we obtain 

SUp 2101(t9)jj2 + f1102 ds < C0l0(0) 112 + C (f IlPtII ds) 
(2.11) S<to 2 

+oft (f llell dr) ds. 

Now, recalling that the interval J is bounded, we find 

(f ilell, ds) < c 11l0112 ds+C (ft IlPIl ds) 

o t joj i h- t jjj2.d) 
< CJ 1101121 ds +C (hr-1 | lUlIr ds) 

and hence, using (2.11) for the first term on the right and the standard estimate 
for p, yields 

(f llelli cid) < Ollvh- vll 2 + Ch2(r-1) (IIVI12 + f IlUt llr ds) 

+ot (fiiiicr2 c + C Gronw llsemm da ds, 

whence (2.10) follows by using Gronwall's lemma. O 
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Remark 2.1. The difficult case in the proof is /l = 2. When /l < 1, we have 

(2.12) jB(t, s; e, x)I < C||e|| l|Xii , 

and hence easily from (2.3), with X 02(t), 

rt 

1102(t)jj C / le(s) 1j ds, 

which implies (2.8) more directly. Also, when P = 2, the proof of (2.7) from (2.9) 
follows in a straightforward way directly in the presence of the inverse assumption 

lIXiii < Ch-tiixii for X E Sh. 
Remark 2.2. The part of the standard approximability assumption (1.2) which 

concerns the gradient of u is somewhat difficult to satisfy in practice when r > 2. 
However, Theorem 2.1 remains valid if (1.2) is replaced by 

(2.13) inf {jju - xii + hllu - Xii1,nrh} < Ch8'Ilull, for 1 < s < r, if u E H, f Ho, 
XESh 

where Oh C Q is a mesh domain with supXE0\0h dist(x, dQ) < chr such that the 
elements of Sh vanish in Q\Qh, and where 11 I1,0h is the norm in H1 (Qh). This as- 
sumption holds for (carefully constructed) isoparametric finite element spaces. The 
modification of the proof consists in using the error estimates for Rh corresponding 
to (2.13), together with the inequality 

IIVll 1,0\0h < Chr/2 lIVIl2 

to show that (2.9) may now be replaced by 

rt 
Q(t) < C (hllell1,Onh + Ilell + hriiui12) dssup 1102(S)11, 

Jo S<t 

and in substituting 1 111,0h 
for 11 11 in the subsequent arguments. Using (2.12) 

for / < 1, it is seen that the change in the proof is only needed when P = 2. 

3. The Homogeneous Equation with Nonsmooth Data. In this section 
we shall discuss the regularity of the solution of (1.1) in the case that the PIDE is 
homogeneous (i.e., when f = 0) and v is only in L2. 

By Duhamel's principle, we may formally write (1.1) with f = 0 in the form 
t 

(3.1) u(t) = E(t)v + J E(t - s)Bu(s) ds for t E J. 

For our present purpose we shall consider u to be a solution of (1.1) with f = 0 
if u E C(J; H2) n C(J; L2) and satisfies (3.1). Here and below, C(J; H) denotes 
the continuous functions in J with values in the Hilbert space H, and similarly for 
C(J; H). We note, in particular, that when u E C(J; H), the H-norm of u(t) is 
bounded on J, whereas this is not necessarily the case if u E C(J; H). 

We shall prove the following result. 

THEOREM 3.1. For v E L2, the equation (3.1) admits a unique solution u, 
which belongs to C(J;H4-O) for 3 = 0 and 2, and to C(J;H3 n H2) for /8 = 1. 
Furthermore, 

IIU(t)iic. < Ct-a'21Ivjj fort E J, O < a <4-0. 
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We reiterate that this result shows the same smoothness property as for the 
purely parabolic equation when a < 4 - /. As we shall demonstrate by counterex- 
amples at the end of this section, this limit for a is sharp. 

Denoting the integral in (3.1) by w(t), we find, since u(t) = E(t)v + w(t), 
t 

w(t) = E(t - s)Bu(s) ds 

(3.2) =] XE(t - s)BEv(s) ds + ] E(t - s)Bw(s) ds 

V(t) + Kw(t), 

where BEv is defined by (1.1) with u(s) replaced by E(s)v. We shall prove that 
for v E L2 this Volterra-type integral equation in w has a unique solution w(t) E 
C(J; H4-) for / 0 = 0 and 2, and w(t) E C(J; H3 nf H2) for /l = 1, and that 

jjw(t)114_,3 < Cjjvjj for t E J. 

In view of the well-known estimate (1.6) for E(t)v, this will show Theorem 3.1. 
Note in particular that the term w(t) does not have the singular behavior of E(t)v 
at t = 0. 

For the purpose of the proof we shall analyze the two terms on the right in (3.2). 
We begin with the following lemma, where we note the alternative uses of the norms 
in fts and H8. This is motivated by subsequent applications to functions satisfying 
and not satisfying boundary conditions, respectively, the latter case occurring for 
functions of the form Bu when /l = 1. 

LEMMA 3. 1. Let a > 0. Under the appropriate regularity assumptions for g, 
we have 

xt 

(3.3) E(t - s)g(s) ds < Csup(lg(s)lcx + slg'(s)lj) for t E, 
Jo a+2 s<t 

and 

(3.4) f E(t - s)g(s) ds < Csup jjg(s)jj>+i 
O xa+3 S<t 

+ Ct-112 sup(jg(s)I | + slg'(s)lI,) for t E J. 
s<t 

Proof. Using integration by parts in the second term on the right, we find, since 
d TE(s) =-E(s), 

ds 
rt t rt 

t f E(t - s)g(s) ds = f(t - s)E(t - s)g(s) ds + f sE(t - s)g(s) ds 

(3o5) 
- tTg(t) + ] {((t - s)I - T)E(t - s)g(s) - sTE(t - s)g'(s)} ds 

- tTg(t) + tG(t). 

For the G(t) thus defined, we obtain by the boundedness of T: Ht+6 _ 
ft+2+6 

and by (1.6) that 
rt 

jG(t)ja+2+6 < Ct-1 j(t - S)-6/2j(jg(S)j + sIg'(s) 1a) ds 

< Ct-612 Sup(jg(s)jc, + slg'(s)ljx) for t E J, 6 = 0, 1. 
s<t 
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The desired inequalities now follow, since T: Hc - HQ+2 and T: HQ+l - H, + 
are bounded. O 

In order to derive the required estimate for the term V(t) in (3.2) we now show: 

LEMMA 3.2. Let B(t, s) be a partial differential operator of order /l < 2. Then 
v E L2 implies that BEv E C(J; H2-). If in particular, f3 = 0, then BEv E 

- 
*2 C(J;H 2). Furthermore, 

IIBEv(t)jj2-_ < CIIvII for t E J, 

and 

IIBEv(t)ll < Ct1-/2Illvll for t E J. 

Proof. We obtain by integration by parts 
t 

BEv(t) = f B(t, s)E(s)v ds = -B(t, t)TE(t)v + B(t, O)Tv + B8TEv(t), 

where B8 is defined in terms of B, = (9/9s)B. Hence, by the boundedness of 
T: L2 H2, we find 

JIBEv(t) 112_p < C sup 11TE(s)vJ12 < CjjVjj. 
S<t 

When d3 0 and 3 = 1, 
rt rt 

IIBEv(t)ll < Cf IIE(s)vJ10 ds < Cf s-/2dsllvll < Ct1-1/2IIvII. 

For /3 = 0, B(t, s) is a multiplication by a scalar function and hence BEv(t) E H2 
fortEJ. E 

We are now ready to derive our estimate for the term V(t) in (3.2). 

LEMMA 3.3. Assuming v E L2, we have V E C(J; H4-) for /3 = 0 and 2, and 
V E C(J; H3 n fH2) for /3 = 1. Further, 

IIV(t)114-_ < Clivil for t E 7, fl < 2. 

Proof. Considering first /3 = 0 and 2, we have by (3.3) 

IV(t)14-0 < Csup(jBEv(s)j2-0 + sj(BEv)'(s)j2_0). 
S<t 

The first term on the right is estimated directly by Lemma 3.2, and for the second 
we have, since (BEv)'(s) = B(s, s)E(s)v + BtEv(s) and applying now also (1.6) 
and Lemma 3.2 to B8, that 

sj(BEv)'(s)j2yj < C(slE(s)vl2 + sjBtEv(s)j2_g3) < CIIvII. 

Here we have used the fact that for /3 = 0 the operators B and Bt consist of 
multiplication by a scalar function and are thus bounded in H2. 

In the case 3 = 1 we obtain similarly, using instead (3.4) and Lemma 3.2, 

IV(t)113 < Csup jiBEv(s)jjj + Ct-112 sup(jjBEv(s)jj + sjj(.BEv)'(s)jj) < Cllvll. 
8<t S<t 

The fact that V E C(J; ft2) follows from (3.3) of Lemma 3.1 with a = 0. The 
proof is now complete. E 

The following lemma is concerned with the properties of the operator K defined 
in (3.2). 
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LEMMA 3.4. The operator K is bounded in C(J; H2) and 

rt 

(3.6) IKg(t)12 0C1 1g(s)12ds fortE J. 

Furthermore, for g E C(J; H2), we have Kg(t) E C(J; H4) for f = 0 and Kg(t) E 
CJ; H3 nH2 )for fl = 1, and 

(3.7) IIKg(t)114- < C SUP g9(s)2 for t E J, /3 < 2. 
S<t 

Proof. Replacing g by Bg in (3.5), we obtain 

rt rt 
IKg(t) 12 < C sup IIBg(s) 11 + C J (Bg)'(s) II ds < C Ig(s) 12 ds, 

.9<t0? 

which shows (3.6) and the case fl = 2 of (3.7). For fl = 0, we have by (3.3) 

1Kg(t)14 < Csup(IBg(s) 12 + sI(Bg)'(s) 12) < CSUp 19(s)12 
S<t S<t 

and for fl = 1, by (3.4), 

IIKg(t)II3 < Csup IIBg(s) 1i + Ct-112 sup(IlBg(s)II + sII(Bg)'(s)II) 
.9<t S<t 

? Csup1g(s)I.2 
S<t 

This completes the proof. E 
Proof of Theorem 3.1. Consider the Volterra type equation w = V + Kw for w. 

Since by Lemma 3.4, K is a bounded operator in C(J; H2) which satisfies (3.6), 
and since V E C(J; H2) by Lemma 3.3, we conclude by the standard argument for 
Volterra equations that this equation has a unique solution w E C(J; H2), and 

IW(t)12 <_ CSUPIV(t)12 < CIIVII. 
S<t 

The regularity statements for w now follow by Lemmas 3.3 and 3.4, since 

(3.8) IIW(t)114_0 < IIV(t)114-0 + IIKw(t)114-0 < CIIVII + CSUP IW(s)12 < CIIVII. 
S<t 

In view of our above discussion this completes the proof of Theorem 3.1. E 
The following result will be used in Section 4. 

LEMMA 3.5. Let u(t) be the solution of (3.1) with v E L2. Then 

IIBtu(t)112-0 + IIBu(t)112-0 < CIIVII for t E J 

and 

IIBtu(t)II + IIBu(t)II - 0t1'31211v11 for t E J. 

Proof. Since Bu = BEv + Bw, the bounds for Bu follow easily from Lemma 
3.2 and (3.8). Since the arguments apply equally well to Bt, the lemma is estab- 
lished. E 

We shall now demonstrate that the result of Theorem 3.1 is sharp in the sense 
that, for general B of order /3, higher-order regularity than H4- cannot be attained 
for v only in L2. We shall do this by exhibiting one PIDE for each of the cases of 
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/3 = 0,1, and 2, with the property that if u(t) E H' for some a > 4 - 3 and some 
t E J, then v must belong to a space H8 with s positive. 

We consider first the equation (3.1) with B = I and prove that then u(t) - T2v E 
H5 for t E J. From this we may conclude that, if u(t) E H' with 4 < a < 5 and 
t E J, then T2v E H, n Hft4, so that v E H`4, which shows our claim for i = 0. 

Using our above notation, we have by (1.6) and (3.8), noting that w E ft4 for 
t E J, that 

rt 

IKw(t)Is < C J(t - s)-1/2 j Iw(r)14 drds < Clivil for t E J, 

and hence that Kw(t) E H5 for t E J. Further, 

V(t) = f E(t - s) f E(r)v dr ds = T2v - T2E(t)v - tTE(t)v, 

and since the last two terms are smooth for any positive t, this shows that w(t) - 
T2v = V(t) - T2v + Kw(t) E H5. Since u(t) - w(t) = E(t)v E H5 for any positive 
t, this implies u(t) - T2v E H5 for t E J and thus completes the proof. 

We next consider fl = 1 and choose B = D, _= /axi. We shall now show 
u(t) - TD, Tv E H, n H2 for t E J and any a < 4, from which we shall conclude as 
before that no higher regularity than u(t) E H3 holds for all v E L2, thus confirming 
the sharpness in this case. In fact, if u(t) E Ht with 3 < a < 4, then we would 
have DiTv E Hc-2, which is not true for all v E L2, since D14, is not in H-2 for 
all 4' Eft2 when a -2 > 1. 

Here we know that w E C(J; H3 nf H2) and hence TD1w E C(J; H4 n ft2), so 
that E(t - -)TD w E L1 ((O, t); Htc), uniformly in t, for any a < 4, where L1 (J; H) 
denotes the set of functions J -* H with H-norm integrable over J. Thus, 

rt 
Kw(t) = (I - E(t - r))TD,w(r) dr E H f n H2 for t E J. 

This time, 
rt 

V(t) = E(t - s) DiE(r)v dr ds 

rt 
= TDiTv - TDiTE(t)v - TE(t - s)DiE(s)v ds, 

J 

where the last two terms are both in Ht nH2 for t E J. This shows u(t) -TD1Tv = 

E(t)v + w(t) - TDiTv E Ht n ft2 for t E J and completes the proof. 
We finally consider f3 = 2 and now choose B = A. This time we shall show 

u(t) - etTv E H3 for t E J, from which we infer that u(t) E ft2 is the highest 
regularity valid for all v E L2. 

We now have w E C(J; ft2) and 
rt rt 

Kw(t) = w(s) ds - E(t - s)w(s) ds, 

where the second integral is in C(J; 3), because E(t - .)w E L1((0,t);H3), uni- 
formly in t. Further, V(t) = Tv - TE(t)v - tE(t)v, so that w is of the form 

t 
w(t) = Tv + g(t) + tnw(s) ds, with g EL,(J; Ht3) nC C(J; Ht3). 
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Hence, 
rt 

w(t) = Tv + g(t) + f et-S(Tv + g(s)) ds = etTv + h(t), 

where h(t) E fH3 for t E J. By the regularity of u(t) - w(t) = E(t)v, this completes 
the proof. 

4. Error Estimates for the Homogeneous Equation with Nonsmooth 
Data. In this section we shall prove the following nonsmooth data error estimate 
for the spatially discrete finite element method for our homogeneous PIDE. 

THEOREM 4.1. Let u be the solution of (1.1) with f = 0 and v E L2, where 
B(t, s) is a partial differential operator of order f3, fl < 2. Let further Uh be the 
solution of the corresponding semidiscrete problem (1.3) with f = 0 and Vh = PhV. 

Then we have 

IIUh(t) - u(t)II < Ch' t-,121VIIv for t E J, where -y = min(4- , r). 

Clearly, in view of Theorem 3.1, the power of h occurring in this estimate is best 
possible. 

In the proof we may, and shall, assume that 4 - fl < r, so that -y = 4 - /3. In 
fact, if r = 2 or 3 and /3 < 4- r, then we may interpret B to be of order 4- r, and 
the results in this case will lead to the correct conclusion. 

Defining the discrete analogue Bh = Bh(t, s): Sh -* Sh of B = B(t, s) by 

(Bh(t, S)y), X) = B(t, s; y), X) Vy), X E Sh, 0 < S < t E J, 

we write the semidiscrete problem (1.3) with f = 0 in the form 

rt 
Uh,t + AhUh = Bh(t, S)Uh(s) ds=iBhUh(t) for t EJ, 

Uh(O) = PhV. 

By Duhamel's principle we then have for the semidiscrete solution 
t 

Uh(t) = Eh(t)PhV + Eh (t - s)BhUh (s) ds. 

Together with (3.1), this shows for the error e = Uh - u that 
t 

e(t) = (Eh(t)Ph - E(t))v + Eh (t - s)BhUh (s) ds 

rt 
- E(t - s)Bu(s) ds 

(4.1) = Fh(t)v + Fh (t - s)Bu(s) ds 

rt 
+ f Eh(t - s)(Bhuh(s) - PhBu(s)) ds 

eo(t) + el(t) + e2(t) _ eo(t) + e(t). 

We shall prove below, by estimating el (t) and e2 (t) separately, that 

(4.2) jeV(t)II < Ch4-,1IVII. 
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Together with the known estimate (1.7) for eo(t) = Fh(t)v, the error for the finite 
element solution of the associated differential equation problem, this will complete 
the proof. We remark that, analogously to the integral term in (3.1), the contribu- 
tion of e to the error thus does not exhibit any singularity at t = 0. 

The proof will be based on a sequence of lemmas. In the first one we study the 
selfadjoint operator Hh(t): L2 - Ho' defined by 

Hh(t) = Eh(t)Th - E(t)T. 

This operator is a time integral of -Fh(t) and is introduced to avoid the singular 
behavior of Fh (t) at t = 0. 

LEMMA 4.1. We have 

(4.3) IHh(t)VI-q < ChPtl-(p-q)/211VII for t E J, 1 < q + 2 < p < r, 

and 

(4.4) IIHh(t)vll < COh4 v12 for t E J, r > 4. 

Proof. We may write 

Hh(t) = ThFh(t) + (Th - T)E(t). 

Since by (1.6) and (1.8), the last term above may be bounded as desired, we need 

only consider the first term on the right. We shall now appeal to the analysis used 

in [7, Chapter 6], and estimate eo(t) = Fh(t)v in the appropriate discrete seminorm 

defined by IVI -,h = (Thjv, v)1/2 (for v E Sh also for s =-1). We start by proving 

(4.3). Using Lemma 3 of [7, Chapter 6] we obtain 

() Theo0-q < CjeoI-(q+2),h + Chq leo1-2,h 

?< Cjeoj(q+2) + Chq leol2 + Chq+2 leoll for O < q < r-2, 

and, for q=-1, 

(4.6) ITheoll = IeoI-1,h < C(leol-i + hlleoll). 

For any p E H we have by (1.7) that 

I(eo, p)j = {(v, Fh(t)p)I < Chit-(j-i)/211v1V IIpli for 0 < i < j < r, 

whence 

Ieo(t)I-i < Chrt-(j-i)/211v11 for 0 < i < j < r. 

Together with (4.5), (4.6) and (1.7), this shows 

JThFh(t)Vj-q < ChPtl-(P-q)/211vII for 1 < q + 2 < p < r, 

which completes the proof of (4.3). 

For the proof of the corresponding part of (4.4) we note that 

Theo,t + eo = po -(Rh - I)E(t)v, 

and hence, by Lemma 4 of [7, Chapter 3], Lemma 3 of [7, Chapter 6], (1.8) and 

(1.6), that for r > 4 

liTheoll = IeoI-2,h < Csup(sIpP(s)I-2,h + IPo(s)I-2,h) < Ch 4V12. J 
S<t 
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In our next lemma we shall use the notation 

Fhg(t) = fFh(t - s)g(s) ds for t EJ, g E C(J; L2). 

LEMMA 4.2. Under the appropriate regularity assumptions for g, we have 

(4-7) jtFhg(t)Ij <Ch'+2 sup(lg(s)|P + stg'(s)|p) 
s<t 

fortEJ, p=O and2, r>p+2, 

(4.8) IIFhg(t)(I < Ch3 {sup ||g(S)II + t-/2 SUp(||g(S))( + SIIg(S)[)(} 

for tEJ, r> 3 

and 

(4.9) |lFhg(t)lll < Chsup(IIg(s)(I + sI9g'(s)(() for t E J, r > 2. 
3<t 

Proof. In the same way as in (3.6) we obtain 

t t 
tFhg(t) = j(t - s)Fh(t - s)g(s) ds + j SFh(t - s)g(s) ds 

rt 
= tHh(0)9(t) + {((t - s)Fh(t - S) - Hh(t - S))g(S) 

-sHh(t - s)g'(s)} ds. 

The estimate (4.7) now follows by straightforward application of the estimates (4.3), 
(4.4), (1.7) and (1.8) for Hh(t) and Fh(t) (note that Hh(0) = Th - T). 

Similarly, we have for r > 3 

IjFhg(t)II < Ch3 {sup 11g(s)IIi + Ct-1 f(t - S)-1/2j(IIg(S)I + sljg'(s) II) ds} 
.9<tO 

< Ch3 {sup llg(s)1 + t-112 sup(lg(s)(1 + sllg'(s)II)}, 
S<t B<t 

proving (4.8), and (4.9) follows in the same way if we also utilize the fact 

(4.10) IlFh(t)vl1 < Cht-r1llvI for v E L2, r > 2. 

To prove this last estimate, we note that 0o(t) = Eh(t)Phv - RhE(t)v satisfies 

(eo,t, X) + (VOo, Vx) = 0 for X E Sh, 

and hence by known estimates, 

IIV0O(t)112 < IIeo,t(t)II 110o(t)II < C(t-l llvII)(Ch 2t-1 IIVII) < Ch 2t-2 11V112. 

Since Vpo may also be bounded by the right-hand side of (4.10), this establishes 
the desired result. E 

We are now ready for the estimate needed for the term ei in (4.1). 
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LEMMA 4.3. Under the assumption of Theorem 4.1 we have for ei (t) - 

Fh (Bu) (t) 

lled(t)ll < Ch4-llvll for t E 7, l < 2, 
and 

lled(t)lli < Chllvll for t E 7, f3 = 2. 

Proof. When /3 = 0 and f3 = 2, we have by Theorem 3.1 and Lemma 3.5 

lBu(s)l2_p + sl(Bu)'(s)l2_p < Cllvll + s|B(s, s)u(s)l2-, + sjBtu(s)l2_ 

< ClivII + Cslu(s)l2 + slBtu(s)l2- < CdlvII. 

The result therefore follows in these cases by (4.7) with p = 2 - /. For /3 = 1 the 
estimate follows similarly by (4.8), Theorem 3.1 and Lemma 3.5. 

The last inequality of the lemma is a consequence of (4.9), Theorem 3.1 and 
Lemma 3.5. E 

We now turn to the term e2 defined in (4.1). Since e2 E Sh, we shall only need 
to bound (e2, X) for X E Sh. We note that by our definitions 

(Eh (t - ) (Bh Uh () - Ph Bt (s)), X) = (Bh Uh () - Ph Bu (s), Eh (t - s)x) 
= fJ B(s, r; e(T), Eh(t - s)X) dr, 

and hence, since e(t) = Fh(t)v + e(t), 
rt rs 

(e2(t), X) = f f B(s, r; Fh(T)v, Eh(t - s)X) dr ds 

(4.11) + 
f f 

B(s, r; 6(r), Eh(t - s)X) dr ds 

= e21 (t; X) + e22(t; X) 

For the purpose of estimating e21 (t; X) we define the functional 
z ~~t rs 

B(t; f, g) = f B(s, r; f (r), g(t - s)) dr ds 

and show the following lemma, where f (t) denotes fo' f (s) ds, and similarly for g(t). 

LEMMA 4.4. Under the appropriate regularity assumptions for f and g, we 
have 

z 

(4.12) B(t; f, g)l < C sup(I f (s)IJ.a + sI f (s) Ja-3<) sup(I (s)1,I + slg(s) 1K ) 
.9<t S<t 

for t E J, 0 < O < 2, 3 = O and 2, 

and 

(4.13) IB(t; f, g)I < Csup(s1/2 If(s) 11) sup(s1/2 g(s)I1) for t E 7, =1. 
S<t S<t 

Proof. By integration by parts we get 
- rt 

B(t; f, g) = f B(s, s; f(s), g(t - s)) ds 

rt 

(4.14) t B(s, T; f(T), g (t - s)) drT ds 
2 

= EBj(t; f,9g) 
j=l 
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Multiplying by t and using integration by parts once more, we obtain for the first 
term 

z t 
tBi(t; f, g) = f sB(s, s; f(s), g(t - s)) ds 

rt 
+ f(t - s)B(s, s; f(s), g(t - s)) ds 

rt 
= ft B(s, s; f(s), g(t - s)) ds 

(4.15) Jo 

+ f sB8(s, s; f(s), g(t - s)) ds 

rt 

+ f sB(s, s; f(s), g(t - s)) ds 

rt 
+ f(t - s)B(s, s; f(s), g(t - s)) ds, 

where B8 is obtained by differentiating with respect to the first two arguments. In 
the second term in (4.14) we interchange the order of integration and integrate by 
parts again to obtain 

z ~~~t rt 

B2(t; f,9) = - f B(s, r; f(r), g(t - s)) ds dr 

t 

(4.16) = B(r, r; f(r), g(t - r)) dr 

~t ~t 
- f f B8s,(s, r; f(r), g(t - s)) ds dr. 

Together, (4.15) and (4.16) thus show 

tB(t; f, g) = f B(s, s; f(s), g(t - s)) ds + f sB8(s, s; f(s), (t - s)) ds 

rt 
+ f sB(s, s; f(s), g(t - s)) ds 

rt 

(4.17) + f(t - s)B(s, s; f(s), g(t - s)) ds 

t 
- t] B8(s,s;f(s),g(t - s))ds 

~t ~t 
- t f f B.(s, r; f(r), g(t - s)) ds dr. 

By considering various possibilities for fi = 0 and 2, 0 < , < 2, we find 

(4.18) IB(, ; f, g)I < Clf lo,g lgl< for fl = 0 and 2, 0 < r. < 2, 

and similarly for B8 and B, . Using this in (4.17) yields at once the first result of 
Lemma 4.4. 

The second result of the lemma follows directly from (4.14), since 

IB(.,.; f, g)l < Clif li IgIi for f3 = 1, 
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and similarly for B,. The reason why we are treating 13 = 1 separately is that 
for l3 = 1, c = 2 the factor If l-i in (4.18) would have to be replaced by Ilf l-1, 
since Vg does not generally vanish on O90 and this last norm is undesirable in our 
application below. O 

We are now ready to estimate the term e21 (t; x) in (4.11). 

LEMMA 4.5. We have 

1e21(t;X)l < Ch4-"llv1l IIXII fort E J, XE Sh, 1< 2, 

and 
te21(t;x)l < ChtIvtl IXI-l,h for t E J, X E Sh, 3 = 2. 

Proof. We first discuss ,B= 0 and 2. We have 

(4.19) e2l (t; X) = B(t; Fhv, Ehx) = B(t; Fhv, Fhx) + B(t; Fhv, Ex) 
= e211(t; X) + e212(t; X) 

We shall estimate the two terms in the right-hand side individually. 

With 
- 

as usual denoting integrals over J, we find, since (Fhv)-(t) = -Hh(t)v+ 

Hh (0)v, that by (4.12), (1.7), (4.3) and (4.10), with x = min(13, 1), 

Ie2ll(t; x)t 

(4.20) < C sup(lHh(s)vl,-,. + slFh(s)v ,3-r.) sup(lHh(s)X|K + slFh (s)XI|K) 
_S< S<t 

< Ch2-(f-K)h2-KllVII IIXII < Ch4-IIIvII IIXII_ 

Since (Ev)- (t) = -TE(t)v + Tv, we obtain similarly 

Ie212(t; x)l 

(4.21) < Csup(IHh(s)vI,8-2 + sIFh(s)vIO-2) sup(ITE(s)xI2 + sIE(s)x12) 
.8<t S<t 

< Ch4-OIIVII IIXII_ 

Together, (4.19), (4.20) and (4.21) imply the first result of the lemma. 

When 13 = 2, we also have, since (Ehv)' (t) = -ThEh(t) V + ThV, 

1e2l(t; X)I < Csup(lHh(s)vll + slFh(s)vIl) sup(IThEh(s)XIl + sIEh(s)xIl) 
8<t S<t 

< ChIlvIl IXI-l,h, 

where in the last step we have used the following inequality (cf. [6, Lemma 3]) for 

the case p = q = 1: 

(4.22) IEh(t)Xlq,h < Ct-(p-q)12|X|p,h for t E J, p < q. 

When 13 = 1, we have by Lemma 4.1, (4.13) and (4.22) 

Ie2l (t; X)I < C SUp(s1/21IHh(s)v II) sup(s1/2 IEh(s)xIl) < Ch3lvIl IIlX. 
s<t s<t 

The proof is now complete. O 

Proof of Theorem 4.1. We shall now complete the proof of Theorem 4.1 by 

showing the estimate (4.2) for e = el + e2 and consider first the case 13 < 1. 

Recalling the notation of (4.11), we have now by (4.22), 

et x C ft |e22 (t; X) I < C Ij |e'(r) 11 IlEh (t - s)xJ1,9 dr ds < C j le'll drllXlI . 
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Hence, using also Lemmas 4.3 and 4.5, we find 

jje(t)jj < ?led(t)II + 11e2(t)jj < Chu4- IIvII +Co Ilell ds, 

from which the desired result follows by Gronwall's lemma. 
We turn to fi= 2. Now 

ot 
e22(t; X) = f f B(s, r; e(r), Fh(t - s)X) dr ds 

{t rs 
+ f f(e(r), B(s, r)*E(t - s)X) dTr ds 

= e221 (t; X) + e222 (t; X) 
Interchanging the order of integration and integrating by parts, we have 

e221(t; X) = f f B(s, r; e(r), Fh(t - s)X) ds dr 

o t 

= ] B(t, r; e(r), Hh(O)X) dr-] B(, r; e(r), Hh(t - r)X) dr 

-f f B8(s, r; e(r), Hh(t - s)X) ds dr. 

Estimating these three terms individually gives, using (4.3) with p = 1, q = -1, 
rt ot 

1e221(t;X)I < Co Ile_l dssup fjHh(s)Xjjj < Ch Ilell, dsIXIII. 
S<t0 

Similarly, we get 
rt ot 

Ie222(t; x)I < c f lell ds sup IITE(s)x112 < C Ilell dslIXII. 
0 8<t0 

Thus, 

Ie22(t; x)I ? Chf Ilell dsIXII + C lell dslIXII, 

which together with Lemma 4.5 yields 

11e2(t)jj < Ch2 l2vii +Ch Ivlell, ds + C | lell ds. 

We shall prove presently that, when fi = 2, we have 

(4.23) 11V(s)JIi < Chllvl for s E J. 

Assuming this for a moment, and using also Lemma 4.3, we obtain that 

jje(t)jj < iiei (t)jj + 11e2(t)jj < Ch2 lviiI + C of lell ds, 

which concludes the proof of (4.2) as above. 
It now remains only to prove (4.23). This time we write 

rt rt 
e22 (t; X) = B (s, r; e(r), Eh (t - s)X) ds dr 

t t 

= ] B(t, r; e(r), ThEh(O)X) ds dr-] B(r, r; e(r), ThEh(t - r)x) dr 

- t f t 
I 9 I s r; ') Th Eh_ 

rr 
t -; s) X) ds dr, 
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whence by (4.22) 

rt rt 

1e22(X)I < Co Ilel dssup IlThEh(s)xIIl ?< Co IlelI dsIIXII-l,h. 
S<t0 

Applying the second estimate of Lemma 4.5, we have 

I(e2(t), X) C {hllvll + | lell ds} IXII-1,h, 

and hence, by duality, 

Ite2(t)I|1 < C {htlvIl + IleIll ds}. 

Together with the second estimate of Lemma 4.3, this shows 

rt 
Ije(t)Itj < liei (t)IIi + 11e2(t)I|1 < Chllvll + C Iklelli ds. 

By Gronwall's lemma, the proof of (4.23), and hence of the theorem, is now 
complete. [ 

Remark 4.1. Theorem 4.1 remains valid when the approximation (1.2) is weak- 
ened to (2.13). In fact, for 3 < 1, only the L2 norm error estimate for Rh is needed 
in the proof, and for /3 = 2 it suffices to consider r = 2, in which case (2.13) implies 
(1.2). 
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