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On the Numerical Solution 
of the Regularized Birkhoff Equations 

By Christoph Borgers 

Abstract. The Birkhoff equations for the evolution of vortex sheets are regularized in 
a way proposed by Krasny. The convergence of numerical approximations to a fixed 
regularization is studied theoretically and numerically. The numerical test problem is a 
two-dimensional inviscid jet. 

1. Introduction. In [10] and [111], Krasny proposed and studied a method for 
the numerical computation of vortex sheet evolution. In this method, the Birkhoff 
equations [3] are regularized, and the regularized equations are then solved numer- 
ically. 

The initial value problem for the Birkhoff equations is unstable. For analytic 
initial data, an analytic solution is known to exist for short time, cf. [14]. Numerical, 
asymptotic, and rigorous analysis have shown that the analyticity can be lost after 
a finite time; cf. [9], [13], and [6]. To prove the long-time existence of a weak 
solution is an open problem. 

The regularized problem proposed by Krasny is well-posed. For short time, the 
convergence of solutions of the regularized problem to solutions of the original one 
has very recently been proved by Caflisch and Lowengrub [5]. 

We consider the numerical solution of the regularized equations. For a fixed 
regularization, we show the convergence of the numerical approximations. We show 
that this implies that the regularized sheets cannot self-intersect or intersect each 
other unless they do so at the initial time. Krasny expected this to be true, and 
used it as an accuracy check for his computations. 

We also present a numerical accuracy study for the case of a pair of vortex 
sheets of equal strengths, opposite signs, periodic in the x-direction with period 1, 
and initially almost parallel. Such a pair of vortex sheets is a simple model of an 
inviscid jet. Flows of this kind have previously been studied by, e.g., Abernathy and 
Kronauer [1], Boldman, Brinich and Goldstein [4], Aref and Siggia [2], and Meiburg 
[12]. In [1] and [4], the point vortex method was used. Based on numerical evidence, 
it is now believed that this method does not converge past the critical time, i.e., 
the time of loss of analyticity; cf. [9]. Aref and Siggia [2] used the vortex-in-cell 
method. We have not yet compared the accuracy of their calculations with that of 
ours. The method in [12] is similar to Krasny's. 
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We ask the following question: Does one need an accurate computation of the 
details of the vortex sheet evolution in order to accurately determine global param- 
eters associated with the flow, such as the momentum thickness? Our numerical 
experiments suggest that the answer is yes. 

2. The Equations and Their Regularization. We consider inviscid, incom- 
pressible flow in two dimensions. Let the velocity field be u(x, t), where x is a point 
in the plane, and t > 0 denotes the time. We shall always use the notation 

(1) x = (X, y) 

for points in the plane. Similarly, we shall write 

(2) u = (u, v). 

The vorticity w is defined by 
av au (3) w:= Tx d 
a9x ay, 

A line 6-distribution of vorticity is called a vortex sheet. In general, a line 6- 
distribution in the plane can be described by its support, which is a curve in the 
plane, and a strength function, which is a scalar function defined on the curve. In 
the case of a vortex sheet, we shall call this strength function the vorticity density. 

We assume that the flow is periodic in the x-direction with period 1. Each of 
the sheets is connected and extends from x = -oo to x = +oo. On any given sheet, 
the vorticity density is finite, nonzero, and of the same sign everywhere. Let ai = 1 
if the ith sheet is positive, and ai = -1 if the ith sheet is negative. The total 
circulation per period on the ith sheet, i.e., the integral of the vorticity density 
over one period, is airi, with >t o. 

The commonly used mathematical formulation of the problem is due to Birkhoff 
[3]. The vortex sheets are described by moving curves in the plane. The parame- 
trization is such that the total amount of circulation between two points on a sheet 
is the difference between the corresponding curve parameters. 

This results in the following initial value problem. Given curves 

(4) x(?) (-/) I E RI 
with 

(5) x(0) (-, + ri) =- x(?)(-y) + (1, 0) 
and 

(6) t (-I) :A 0 for all -y, 

find 

(7) xi (-/, t), t E R, t >0, 

with 

(8) x(-y + ri, t) _ x(y, t) + (1,0), 

(9) x i (-1, t) : 0 for all ry and t, 

(10) aXi ('y t) - 
a K(xi(Qy, t) - x(, t)) dy, 
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and 

(11) xiqO-x?() 

Here 

(12) K(x, y) : (-sinh(2iry), sin(27rx)) 
2 cosh(2iry) -2 cos(27rx) 

is the velocity field generated by an array of point vortices of unit strength located 
at the points (k,O), k integer, and the integrals in Eq. (10) are Cauchy principal 
values if i = j. These principal values exist because of the conditions (6) and (9), 
which express the finiteness of the sheet densities. 

Krasny [10], [11] proposed replacing the kernel K by 

(13) Kb (x, y) := ~(-sinh(2iry), sin(2irx)) 
( 13 ) K5 ( x X Y ) = 2 cosh (27ry) - 2 cos (27rx) + 262' 

The vorticity associated with this field is a regularization of the array of point 
vortices of unit strength at the locations (k, O), k integer. Numerical methods for 
the incompressible Euler or Navier-Stokes equations using regularizations of point 
vortices are called vortex blob methods; cf. [7]. We shall call K6 a periodic vortex 
blob. 

The regularized equations are 

(14) at Yt j| K6 (xi(-I, t) - xj(a, t)) d7. 

This regularization has no known physical interpretation, but it drastically sim- 
plifies the problem, both mathematically and numerically. The reason lies in the 
following observation. 

LEMMA 1. For any 6 > 0 and any multi-index a E N2, there is a constant 
C(a,6) with 

(15) ID'Ks(x)j < C(a,6) for allx. 

Proof. K6 is periodic in the x-direction, 

(16) K6 -(? ,0) as y -+ ?oo, 

and 

(17) IDaKb(x,y)l < Ce'2Jy 

for all multi-indices a $ 0, with C independent of (x, y). O 
From this, it is easy to conclude the existence, uniqueness and smoothness of 

solutions of the regularized initial value problem: 

THEOREM 1. Assume that the initial curves (0) are ,u times continuously dif- 
ferentiable, ,s > 0. Then (8), (11), and (14) have a unique solution (xl,...,xm), 
and all derivatives 

(18) 0> a xre (cY, t) 

with O < v < ,u and r > O exist and are continuous. 
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Proof. Integrating Eq. (14) with respect to t, we obtain the fixed point equation 
m tr 

(19) x(yt) aj K (xi (, t) )) di + ) 
j=1 

Eqs. (14) and (19) are equivalent. Let T > 0. Let BT denote the Banach space 
of all m-tuples (xi(-Q,t))<i<m with -y e R and t E [0,T] which satisfy Eq. (8) 
and are continuous in ^I and t and ,u times continuously differentiable with respect 
to -y. The right-hand side of Eq. (19) is a continuous operator BT -+ BT. From 
Lemma 1 it follows that this operator is contracting as long as T is smaller than 
some Tma, independent of the initial data x). The Banach fixed point theorem 
then implies the existence of a unique solution defined for, say, t E [O0Tmax/2], 
which is ,u times continuously differentiable with respect to -Y. Since Tmax does not 
depend on (x(0))O<i<m, repeated application of this argument shows the existence 
of a unique solution defined for all time which is , times continuously differentiable 
with respect to -y. From Eq. (14) it now follows that 

(20) 
x 

t) 

is ,u times continuously differentiable with respect to -y. Through repeated differ- 
entiation of Eq. (14), one finds by induction that all time derivatives of xi are p 
times continuously differentiable with respect to -y. 0 

It is natural to ask whether the solution is analytic if the initial curves are 
analytic. Although this question is of little importance for the main issue which 
we want to study, namely the numerical solution of the regularized equations, we 
note that the answer is yes. This result was proved independently by Caflisch and 
Lowengrub (Theorem 1 in [5]). 

THEOREM 2. Assume that the initial curves x) are real analytic. Then the 
unique solution (x, ... , ,Xm) of (8), (11), and (14) is real analytic in ^I for all t > 0. 

Outline of Proof. Let t > 0 be arbitrary, but fixed. Consider Euler's method for 
the solution of Eq. (14) up to time t, leaving the integrals in Eq. (14) undiscretized, 
with a time step size At = t/k, k integer: 

Xi,At(-Y, (v + 1)zt) = xi,At(y, VAt) 

(21) + A\t Eaj| K6(xi,At(y, vAt) - xj,At(, v?t)) da 
j= ? 

for v = 0,..., k-1. 
The usual proof of convergence for Euler's method [8, p. 11] is applicable and 

shows 

(22) xi, At bt, t) -+xi (^/, t) 

uniformly in 'y. The approximations xi,At(-y, t) obtained by Euler's method are 
easily seen to be real analytic in -y, since K6 (x, y) is an analytic function of the two 
complex variables x and y. Thus, the xi,At (-v, t) have analytic extensions into open 
neighborhoods Ui of [0, ri] in the complex plane. Ui might depend on At, because 
K6(x,y) is not defined for all complex x, y. However, differentiating Eq. (21) 
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with respect to the complex argument -y, a straightforward estimate shows that the 
complex derivatives of xi,t (-v, t) are bounded independently of At. This implies 
that the neighborhoods Ui can be chosen independently of At. Again applying the 
proof of convergence for Euler's method, now with complex -y E Ui, we find that 
for A\t -- 0, i.e., k -- oo, 

(23) xi,At (Qy, t) -+x (y, t) 

uniformly in -y E Ui. This proves the assertion, since uniform limits of holomorphic 
functions are holomorphic. 0 

In summary, the initial value problem for the regularized equations has a unique 
solution which is as smooth as the initial data. 

3. The Space Discretized Equations. We discretize the integrals in Eq. 
(14) using the trapezoidal rule. We call the resulting system of ordinary differential 
equations the space discretized problem. The mesh for the ith sheet has Ni points 
per period. The mesh points in (O, ri] are 

(24) 0 < -&() < -y( ) < ..< y()=ri. 
We set 

(25) 0. 

The space discretized equations then are 

(aih ( Njt(_Ij) _ ( I ? ( E )[K6 (x- (I, t)ih) ) ) 

(26) at ('y,t Eo j 2 u-i 
b 0 

j=1 V=1 

+ K6 (x4 (I, t) - (a4i), t)()]. 

In a practical computation, x4 (^v, t) is determined only for ^I = ^IV , v -1 N. 
However, Eq. (26) defines xh(v, t) for all ^I E R. 

THEOREM 3. Assume that the initial curves x() are ,u times continuously dif- 
ferentiable, ,u > 0. Then (8), (11), and (26) have a unique solution (xh, ... .xh 

and all derivatives 

(27) )~_ v 4 ,x(-I, t) 

with 0 < v < ,u and r > 0 exist and are continuous. 

Proof. Analogous to the proof of Theorem 1. 0J 

4. Convergence, Not Including the Time Discretization. When the trape- 
zoidal rule is applied to a periodic integrand, the order of convergence only depends 
on the smoothness of the integrand. From this, we shall now derive corresponding 
estimates for the convergence of the curves x4 to xi. 

We set 

(28) hj = max(-(i,)- 1 ) 

and 

(29) h := max h . 
3W 

We use the notation llxii for the Euclidean norm of a vector x. 
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THEOREM 4. Assume that the initial curves x() are ,u times continuously dif- 
ferentiable, ,u > 1. Set 

(30) Plo :- 

if the meshes are equidistant, i.e., if 

(31) -i) _ (i)_ = hj for all v; 

otherwise, 

(32) /lo min(,u, 2). 

For t > 0, let 

(33) e(h, t) := maxmax llixt(-I, t) - x4(-, t)jj. i -1 

Let T > 0. Then there are constants C = C(T, ,u, 6, m) and L = L(b, m) such that 

(34) e(h, t) < C(eLt -1)h 

for all t E [0, T]. 

Proof. Using obvious notational conventions, we abbreviate Eq. (14) by 

m 

(35) at3 = I I(xi, x; ), 
j=1 

and Eq. (26) by 

(36) iX Ih_ (X41 4jh 

j=1 

We set 

(37) e, (-I, t) :=xi (-I, t)- x, (-I, t) . 

Then 

(3) eh m m 
(38) ,t= (I (X,, xj)-_Ih_j (xi, xj)) + E(Ih_ (xi, xj)-Ihj (Xih, 4j)). 

Integrating this from 0 to t, using the convergence estimate for the trapezoidal 
rule for periodic integrands for the first sum in (38), and using the global Lipschitz 
continuity of K6 for the second sum in (38), we find 

rt 
(39) e(h, t) < Cth"0 + L f e(h, T) dr 

for some L = L(6, m). Using Gronwall's lemma (that is, integrating Eq. (39)), we 
obtain 

(40) e(h, t) < C(eLt - )hO 

for all t E [0, T]. O 
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THEOREM 5. Assume that the initial curves x. are real analytic, and that 
the meshes are equidistant. Then there are constants C = C(T, ,u, 6, m) and L = 

L(6, m) such that 

(41) e(h, t) < -(eLt -1)e-Ch 

for all t E [O, T]. 

Proof. Analogous to the proof of Theorem 4, using Theorem 2. 0 

5. Self-Intersections and Intersections of Vortex Sheets with Each 
Other. In this section we explain why the vortex sheets cannot self-intersect or 
intersect each other unless they do so for all t. 

THEOREM 6. Assume that there are no intersections in the initial sheets, i.e., 

(42) x(?) (y) = x(?)(() =} i = j and ty = 

Then for all t > 0, 

(43) xi(-), t) = xj', t) ? i = j and ty = 

Proof. Suppose that for some T > 0, 

(44) xi (-y*, T) = xj (y*, T), 

i $ j or y* :A y*. We consider a sequence of m-tuples of meshes covering [0, rFl],..., 
[O, rm] such that h -- 0, and such that 'y* is always a point in the ith mesh, and 
y is always a point in the jth mesh. 

Consider the space discretized equations (26), with -y now restricted to the mesh 

{1) I ... X^/') }. (26) is then a system of ordinary differential equations describing 
the motion of N points Gk, k = 1, . .. , N, in the plane, with 

(45) N :=Ni + +Nm. 

The system is of the form 

(46) d = ZwlK6(Gk -() 

We note that 
N m 

(47) Zjwvl = ,rj. 
a>=l j=j 

Let L > 0 with 

(48) IIKs6(()-Kb(t)J ?< L/jj-Jj for all ,. 

There is such a constant L by Lemma 1. From (46), it follows that 

(49Ikdt 11 (t) _1(t)11 _2L ( wvl JIG(t) (t) 12. 

Integrating and applying Gronwall's lemma, we find for all t > 0: 

(50) II4k(t) - Ei(t)jj < e (Z=, I_z')tIIek(0) - t1(0)Ij 
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The analogous estimate holds for the backward equation, which implies that also 

(51) IIUk(t) - (1(t)jj > e-L(Z=1 wL'1)tIItk(0) - ( 

thus, using Eq. (47), 

(52) jjtk(t) - &1(t)II > e L(>=j rjtIjek(0) - td(0)11 

Thus, the two points which, by our assumption, collide at time T in the continuous 

case, stay bounded away from each other by their initial separation times 

(53) e-~~~~~L(Em , rj)T 
(53) e- jm=) 

in the discrete case. This contradicts Theorem 4. 0 

6. Convergence, Including the Time Discretization. Suppose that the 
equations (26) are solved with the classical fourth-order Runge-Kutta method with 
a fixed step size At > 0, as in [101, [111. We denote the resulting approximation by 
x4 (Q, t, At), defined for all -y, but only for t = 0, At, 2At .... From the convergence 
estimate for the Runge-Kutta method it follows that for 0 < t < T, 

(54) llxi(-y, t) -xi( t, At) 11 < Ch"0 + DAt4, 

with 

(55) C =C(T,1, 6, m) 

and 

(56) D = D(T, 6, h). 

THEOREM 7. D can be chosen independently of h. 

Proof. This is a consequence of the following estimate: 

(57) ||e xh (^y,It) ||< C 
ot'r 

for a constant C which depends on T, 6, r, but not on h, ^I and t E [0, T]. 
For r = 0, (57) follows from the uniform convergence xh - x. For r > 0, it 

follows by induction on T, using the space discretized equations (26) and their time 
derivatives. Ol 

The bound C in (57) tends to oo as 6 -O 0. Therefore, we expect that small 
values of 6 will require small time steps. This can be confirmed through numerical 
experiments. 

7. The Regularized Equations for a Shifted Symmetric Jet. We now 
consider the case of two vortex sheets of opposite signs. The sheets are now denoted 
by 

(58) X+a [n,r], 

and 
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x+ has the vorticity r > 0 per period, and x_ has the vorticity-r per period. If 
the curves (58), (59) solve the regularized equations, and if for t = 0, 

(60) x+ (Y, t)- x (/, t) + 2 

and 

(61) y+(rn,t) - (^,t), 

then (60) and (61) hold for all t > 0. This follows from the uniqueness of the 
solution of the initial value problem for the regularized Birkhoff equations. If (60) 
and (61) hold, we say that x+ and x_ describe a shifted symmetric jet. We use the 
notation 

(62) x:= x+, 

and, as before, 

(63) x = (x, y). 

From the general regularized Birkhoff equations (14), together with the shifted 
symmetry conditions (60) and (61), we obtain 

9x _ 1 fr sinh(27r(y - 

(64) at 2 JO cosh(27r(y - y)) - cos(2ir(x - j)) + 62 

+ 14fr sinh(27r(y + y)) 

2 JO cosh(27r(y + y)) + cos(27r(x - i)) + 62 

and 

a9 1 J r sin(2ir(x - x)) 

(65) At 2 O cosh(2wx(y - ))-cos(2ir(x -:i)) + 62 

+ fr c sin(27r(x-x)) d) 

J2 cosh(27r(y + y)) + cos(2ir(x -)) + 62 
d 

where x, y stand for x(y, t), y(-), t), and x, y stand for x(y, t), y(Q, t). Equations 
(64) and (65), together with an initial condition 

(66) x(-y, t) x() (y), 

determine x(-I, t) for all -y E R and t > 0. For all t, x(-y, t) is as smooth as x(?) (y). 

8. The Discretized Equations for a Shifted Symmetric Jet. The integrals 
in Eqs. (64) and (65) are discretized using the trapezoidal rule with a fixed mesh size 
-, N integer. The resulting ordinary differential equations, the space discretized 
equations, are 

dxi r N sinh(27r(yi-yj)) 
dt 2N 1 cosh(27r(yi - yj)) - cos(2r(xi -xj)) + 62 

(67) N= rN sinh(2ir(yi + yj)) + -N cosh(2ir(y. + yj)) + cos(2r(x. - 

xj)) + 62 
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and 

dyi r sin(2ir(xi - xj)) 
dt 2NL3v cosh(2ir(yi - yj)) - cos(27r(xi-x3)) +62 

(68) N 

(8r E sin(27r(xi - xj)) + 2N j_1 cosh(2ir(yi + yj)) + cos(2ir(xi-x3)) + 32 

xi(t) and yi(t) are approximations for x(") and y(i). As before, Eqs. (67), (68) 
are solved using the classical fourth-order Runge-Kutta method with step size At. 

9. The Momentum thickness. Let 

(69) u(x, t) = (u(x, y, t), v(x, y, t)) 

be 'a two-dimensional velocity field, with 

(70) u(x + 1, y, t) _ u(x, y, t). 

The x-momentum thickness of u at time t is 

(71) O( ) u= 
fo [fui(y, t) - (oo, t)] dy 

ui(O, t) - fi(x', t) 

where ft denotes the x-average of u over one period. We assume that fu(-o, t) 
u(oo, t). 

To motivate this definition, let x = x* and t = t* be fixed. Assume that the 
time unit and coordinate system are such that u(x*, 0, t*) = 1 and u(x*, o, t*) = 
u(x*, -oo, t*) = 0. Assume that u is the velocity field of a fluid with density one. 
Then 

(72) f '[OOu(x*, y, t*) - u(x*, oo, t*)] dy u y_ * * 
u(x*,O, t*) - u(x*,co,t*) ju(x,y,t)dy 

is the amount of fluid crossing the line x- x* in unit time. If the flow under 
consideration is a jet, this amount of fluid is a measure of "thickness". Thus 0(t) 
can be regarded as the average thickness of the jet at time t. 

Let 
(73) ((-sinh(2ir(y - yo)), sin(2ir(x- xo))) 
(73)o 

u X Y * 2 cosh(2ir(y - yo)) -2 cos(2r(x -xo)) + 262 1 

i.e., u(x,,y.) is the velocity field generated by a periodic vortex blob located at xo = 

(xo, yo). The x-average of the x-component of u(x0,y.) can easily be determined by 
contour integration. It equals 

(74) 4(XO,yo) (Y) - 

1 
sinh(2ir(y-yo)) 2 /(cosh(2ir -yo)) + 62)2 - 1 

For yo > 0, s > yo, we have 

8s s-'+2yo 

(75) J U(xOyo) (y) dy = J U(OYO) (y) dy. 

Thus, 

(76) J U(xo,yo) (y) dy := llm / (xo,yo) (y) dy = yo 
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Similarly, one sees that (76) is true when yo < 0. If 
m 

(77) u(x) = wiu(xi,Yi) (X)i 
i=l 

we conclude that 

(78) f u(y, t)dy := lim f4uy, t) dy =,wiyi. 

Together with Eqs. (71) and (74), this shows: 

LEMMA 2. If 

(79) 0, 

then the velocity field defined by Eq. (77) has the x-momentum thickness 

(80) 0= Ei wiYi 
F,i wi H6(yi) 

with 

(81) H6(yi) = ( sinh(2iry ) -1 +) 

For 6 = 0, H6 is the Heaviside function, and Eq. (80) is then identical with 
Eq. (18) of [2]. We apply Lemma 2 to the space discretized equations (see Section 
3), which are ordinary differential equations for xi(t) = (xi(t), yi(t)), i = 1, . . . , N. 
xi (t) is a point on the positive vortex sheet x = x+. 

LEMMA 3. The x-momentum thickness at time t of the solution of the space 
discretized equations is 

(82) 0(N,6,t) =2 iL1 yi (t) _2 f1i= 0 (82) (N,b,) = ,N sinh(2-7rY,(tL)) EN sinh(2-7yi (t)) 
i=1 -,(cosh(27ryj(t))+62)2-1_1jcoh2y(t)6)- 

Proof. This follows from Lemma 2 because 

N 

(83)dt Y()- 
t= 1 

Equation (83) easily follows from Eq. (68). 0 

10. Numerical Experiments. The numerical experiments presented in this 
section were carried out on a SUN 3/60 workstation, using double-precision arith- 
metic, i.e., approximately 16 decimal digits. 

A change in r is equivalent with a scaling of the time. Therefore we take 

(84) r = 1 

without loss of generality. As a test example, we choose the problem of Figure 10 
of [1]: 

(85) x(?) (-Y) = - - 0.025 sin(2ry), 
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and 

(86) y(-) -0.12 + 0.025/ tanh(0.24ir) sin(2r-y). 

We have used 

(87) 6 = 0.1 

for the experiments of this paper. This choice is more or less arbitrary. For 6 = 

0.1, curves are obtained which we believe to be reasonable approximations of the 
solutions for 6 = 0; compare Figure 5 of [10]. 

We compute up to time T = 1.5. At this time, good resolution can still be 
obtained using a relatively small number of vortex blobs. Keeping the same numbers 
of vortex blobs as in the experiments described below, the errors would already be 
significantly larger at time T = 2.0. This deterioration of the spatial resolution as 
time progresses is not too surprising in view of the large increase in the arc lengths 
of the sheets. In [11], Krasny used an adaptive point insertion technique to continue 
his computations over a longer time interval. 

Let (xi(N, t), yi(N, t)), 1 < i < N, be the solution of the space discretized 
equations, and let (xi(N, t, At), yi(N, t, At)) be the numerical approximation to 
(xi (N, t), yi (N, t)) obtained using the classical Runge-Kutta method. We compare 
the approximations obtained on meshes of several different sizes with each other. 
More precisely, we define 

(88) E(N,T,At):= max lxix(N,T,At)-x2i(2N, T, At) 112 

and 

(89) E(N, T) max xi(N, T)-x2i(2N, T)II2. 

Numerically, we find: 

(90) E(N = 20, T = 1.5, At = 0.05) = 0.1325, 

(91) E(N = 20, T = 1.5, At = 0.025) = 0.1170, 

(92) E(N = 20, T = 1.5, At = 0.0125) = 0.1167. 

Thus we conclude 

(93) E(N = 20, T = 1.5) z 0.12. 

Table 1 shows approximate errors obtained in this way for various values of N. 

TABLE 1 

Errors in blob positions caused by space discretization. 

N 20 40 80 160 

E(N,T = 1.5) 1.2 x 10-1 1.1 x 10-1 5.4 x 10-2 4.4 x 10-3 

We also consider the error in the momentum thickness, 

(94) Em (N, T, At) := O(N, T, At) - 0(2N, T, At) 

and 

(95) Em(N, T) := O(N, T) - 0(2N, T), 
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where 0 is defined by Eq. (82), and 0(N, T, At) is the approximation for 

(96) 2 Yi (t) 
(N sinh(2iry, (t)) 

obtained with the time stepsize At. We find 

(97) Em(N = 20, T = 1.5, At = 0.05) = -6.589 x 10-3, 

(98) Em(N = 20, T = 1.5, At = 0.025) = -6.407 x 10-3, 

(99) Em(N = 20, T = 1.5, At = 0.0125) = -6.407 x 10-3. 

Thus we conclude 

(100) Em(N = 20, T = 1.5) -6.41 x 10-3. 

Table 2 shows approximate errors obtained in this way for various values of N. 

TABLE 2 

Errors in momentum thickness caused by space discretization. 

N 20 40 80 160 

Em(N,T = 1.5) -6.4 x 0-3 1.3 x 10-2 -4.2 x 10-3 -7.7 x 10-4 

This illustrates the accuracy with which the space discretized equations approx- 
imate the continuous regularized Birkhoff equations. We shall now consider the 
error caused by the time discretization. We define 

(101) F(N, T, At) :=max xi (N, T, At) - xi (N, T, 
At 

(101) ~~~'(N, T, At) i=1.N ~~~~2, 2 

and 

(102) 'm(N,T,At) 0 (N,T, At)-0 (N,T, 2 ) 

Tables 3 and 4 show ?(N,T = 1.5, At = 0.0125) and 'm(N,T = 1.5, At = 0.0125) 
for various values of N. The main conclusion here is that for At = 0.0125, the errors 
caused by the time discretization are negligible in comparison with the errors caused 
by the space discretization, for the values of N which we have used. 

TABLE 3 

Errors in blob positions caused by time discretization, At = 0.0125. 

N 20 40 80 160 

|'(N, T = 1.5, A\t = 0.0125) 5.7 x 10-5 7.8 x 10-5 2.8 x 10-5 1.6 x 10-5 

TABLE 4 

Errors in momentum thickness caused by time discretization, At = 0.0125. 

N 20 40 80 160 

| 'm(N,T = 1.5) 8.1 X 10-8 1.4 X 10-7 1.6 x 10-8 2.9 x 10-9 
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11. Figures. For illustration, we show pictures of a solution of the regularized 
Birkhoff equations with 6 = 0.1. Our figures show the evolution of sheets with the 
initial conditions (85), (86), computed using 

(103) N = 400 

and 

(104) At = 0.00625. 

The plotted curves interpolate the computed points piecewise cubically. The tan- 
gling of the curve at time t = 1.75 is an effect of the finiteness of N. 
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12. Concluding remarks. Our considerations can briefly be summarized as 
follows: Nothing goes wrong as long as the regularization parameter 6 is fixed. 
The continuous problem is harmless (Theorems 1, 2 and 6), the space discretized 
problem is harmless (Theorem 3), the errors caused by space discretization are of 
the expected order (Theorems 4 and 5), and the error caused by time discretization 
is small independently of the space mesh size (Theorem 7Y. 
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We shall conclude with a few remarks about the limit 6 -+ 0, which was studied, 
for small T, by Caflisch and Lowengrub [5]. First consider the constants C = 
C(T, u, 6, m) and L = L(6, m) of Theorems 4 and 5. As 6 -+ 0, these constants are 
expected to grow. The reason is that the solutions become more complicated as 6 
decreases, so that smaller values of h are required to achieve a prescribed accuracy. 
I do not know whether the factor in front of hP? in Eq. (34) tends to infinity as 
6 -+ 0. If ,o is replaced by 1, and if T is sufficiently small, then estimate (b) of 
Theorem 2 in [5] shows that the factor remains bounded as 6 -+ 0. 

Next consider the constant D = D(T, 6) in Eq. (54). From numerical experi- 
ments it appears that D grows rapidly as 6 -+ 0. Again, I do not know whether 
this growth is bounded as 6 -+ 0. For sufficiently small T, a closely related bound 
is given by estimate (c) of Theorem 2 in [5]. 

For small 6, roundoff errors become important. This was pointed out and studied 
in detail by Krasny [10]. Compare also Eq. (2.18) of [5], which suggests that for 
analytic initial data and short time, errors caused by roundoff roughly grow like 
max(eP/h, eP/l2) as 6 -+0, h -+0, with a constant p > O dependent on the initial 
data. However, Krasny [10] has proposed and tested a filtering technique which 
overcomes the problems related to rounding. 
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