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Algorithms for Piecewise Polynomials 
and Splines with Free Knots 

By G. Meinardus, G. Niurnberger, M. Sommer, and H. Strauss 

Abstract. We describe an algorithm for computing points a = xo < xi < ...< 

Xk < Xk+1 = b which solve certain nonlinear systems d(xi-l, x) = d(xi, xi+), i = 
1,.. ., k. In contrast to Newton-type methods, the algorithm converges when starting 
with arbitrary points. The method is applied to compute best piecewise polynomial 
approximations with free knots. The advantage is that in the starting phase only simple 
expressions have to be evaluated instead of computing best polynomial approximations. 
We finally discuss the relation to the computation of good spline approximations with 
free knots. 

0. Introduction. Let [a, b] be an interval of the real line and k be a natural 
number. Moreover, let D = {(x,y) E R2: a < X < y < b} and d: D -R be a 
function with the following properties: 

(0.1) d is continuous, 

(0.2) d(x, x) = 0 for all (x, x) E D, 

(0.3) d(x,y) < d(x,j) if [x,y] C [x c [a,b]. 

A partition a = xo < X1 < ... < Xk < Xk+1 = b is called a leveled set if 

(0.4) d(xi_1,xi) = d(xi,xi+1), i = 1*...,k, 

and it is called an optimal set if 

(0.5) max d(xi, xi+,) < max d(yi, yill) 
O<i<k O<i<k 

for all knots a = yo < y < ...< Yk < Yk+1 = b. It is easy to verify that every 

leveled set is optimal. Using the idea of an algorithm for segment approximation 

in [10], in Section 1 we give an algorithm to compute a sequence of knot sets con- 

verging to a leveled (and therefore to an optimal) set. Simultaneously, a sequence 

converging to the optimal value 

mk = min max d(yi,yi+i) 
{Y1i.-Yk} O<i<k 

is determined. In contrast to Newton-type methods, the algorithm converges for 

arbitrarily chosen (e.g., equidistant) knots. 

In Section 2 we apply the above algorithm to best uniform approximation of a 

given function f E C[a, b] by piecewise polynomials with free knots. This approxi- 

mation problem will be solved in two phases. 
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In phase one we choose a suitable function d which is derived from results on the 
minimal deviation in best polynomial approximation and compute a leveled set of 
knots for d. Starting with this set of knots, in phase two we apply our algorithm 
developed in [10] to the function 

d(x, y) = mInf - Pll[x,y]l 
PEflm 

where H,m is the space of polynomials of degree at most m and jj jj denotes the 
supremum norm. We obtain an optimal set of knots for best piecewise polynomial 
approximation of f. 

The advantage of the two-phase method is that in phase one, only a simple 
expression d(xi,xi+i) has to be evaluated, while in phase two we have to apply 
the Remez algorithm to compute the value d(xi,xi+1). Moreover, our numerical 
results show that in most cases the set of knots obtained in phase one is already 
nearly optimal. 

We finally use these optimal knots as fixed knots and compute a corresponding 
best spline approximation which in general yields a good or nearly best spline 
approximation for free knots. 

1. The Algorithm. In this section we describe the algorithm for computing a 
leveled set of knots {x1, . * *, Xk}. 

We first state an obvious analogue of a well-known result on segment approxi- 
mation given in Lawson [6] and Meinardus [7]. 

THEOREM 1. 1. For a function d satisfying (0.1)-(0.3) the following statements 
hold: 

(i) For every set of knots a = xo < x1 < ... < Xk+1 = b we have 

(1.1) min d(xi,xi+1) < mk < max d(xi,xi+,). 
O<i<k O<i<k 

(ii) Every leveled set of knots is optimal. 
(iii) There exists a leveled set of knots. 
(iv) If 

(1.2) d(x, y) < d(xi,y) for all [x, y] c [x, c [a, b], 

then there exists a unique optimal set of knots. This set has k distinct knots. 

Description of the Algorithm. Let d be a function satisfying (0.1)-(0.3). In 
the nth step (n > 0) of the algorithm we will compute a set of knots {xl,n, ... * Xk,n 
such that 

a = X0,n < X1,n < < Xk,n < Xk+l,n = b, 

and we set 

di,n = d(xin xi+1,n) i = O, ... , k. 

To start the algorithm, we choose a set of knots {x1,o,.. ., Xk,O} (e.g., equidistant) 
such that 

a = xo,o < xi,o < < Xk,O < Xk+1,o =- b 
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and compute these values. We set 

ao =min{di,o: i = 0, ..., k} 
and 

bo =max{di,o: i = 0,..., k}. 

We proceed by induction as follows. For n > 1 we set 

dn = (an-ibn-1)112 

Then we compute a set of knots {X1,n, ... , Xk,n} such that 

a = XO,n < X1,n < .. < X <in,n<Xn,l = 'n Xk+l,n = b 

and 
di,n=dn, i=0,...-Jn 1. 

(Note that djn,n < dn if jn < k.) We set Cn = dk,n, 

an =max{ani1,min{Cn,dn}} and bn =min{bn-1,max{cn,dn}}X 
In the nth step (n > 1) we compute for ,u = 1, ..., in each knot x/,n by induction 
as follows: Having obtained 

a =XO,n < X1,n < ... < Xi,n 

for some index i > 0, we get the knot Xi+l,n as the limit of a sequence (xp) which 
is defined as follows. Choose points x1 and x2 such that 

d(Xi,n,:X1) < dn < d(xi,n,:x2). 

Then apply the regula falsi method for the exponents n1, Sn, 62 by setting 

xi3 = xil + (X2 - l)(bn - &)/(A2-&)i 

where 
dn = lOnf d(xi,n, U) = 1061 and d(xi,n,i2) = 1062. 

Then either 

d(xi,n i:i ) < dn < d(xi,n i 3) 
or 

d(xi,n i x3) < dn < d(x,n, X 2) 

In the first (respectively second) case, analogously as above we compute X4 by regula 
falsi for the exponents 61, 6n,, 63 (respectively 63, bn, 62), where d(xi,n, x3) = 1063, 
and proceed by induction. (For another possibility of computing the set of knots 

{Xl,n. * *, Xj,n,n} see [10].) 
The following convergence result can be proved analogously as Theorem 3.1 in 

[101. 

THEOREM 1.2. If mk = 106, dn = 10nI an = lO0n and bn = 103n for all n, 
then 

16 -6-nl < 1lan-1 A'n-1I < < 2 lao-Aol 

for all n and 
lim dn = Mk. 

n-oo 

In general, condition (1.2) is satisfied and therefore, since limn..O dn = Mk, it 
is easily verified that the sequence {Xl,n, .. ., Xk,n} converges to the unique optimal 
set of knots {X1, . . ., Xk}. For a more general convergence result, which also holds 

for our algorithm, see [10]. 
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2. Application to Piecewise Polynomials with Free Knots. In this sec- 
tion we describe a two-phase method for computing best piecewise polynomial ap- 
proximations with free knots and introduce several functions d which can be used 
in place of the minimal deviation in phase one of the method. 

Let C[a, b], the space of all continuous real-valued functions on an interval [a, b], 
be endowed with the supremum norm 

Ilfil = sup{fl(t)j: t E [a,b]}. 

Moreover, for r > 1 we denote by Cr [a, b] the subspace of functions in C[a, b] which 
are r-times continuously differentiable. 

The set of piecewise polynomials of degree m > 1 with k > 1 free knots is defined 
by 

PPm,k = {s: [a, b] -? R: there exist knots 

a = x k+l = b such that 

sI[x,,x,+l) E 1lm, i = O0 ... ,k - 1, and SI[xk,xk+,] E Im}. 

A function pf E PPm,k is called a best approximation of a given function f E C[a, b], 
if 

Ilf - Pf II = inf{llf - pll: p E PPm,k}. 

The problem of best approximation is equivalent to determining knots 

a=xo <x1 < < xk < xk+1 = b 

which satisfy (0.5) for 

(2.1) d(xi, xi+i) = d(f, HIm, [xi, Xi+) i0 = ... I k, 

where 
d(f, Hm, [xi,xi+,]) = min lIf-PII[xi,xi+1] i0 O,...,k. 

To solve this problem, we compute a leveled set of knots which by Theorem 1.1 
is optimal. This could be done by applying our algorithm directly to the function 
d as in (2.1). Then in each step of the algorithm we have to compute minimal 
deviations as in (2.1) by using the classical Remez algorithm (see [7]). 

In order to obtain a faster algorithm, in phase one of our method we replace 
the function in (2.1) by a suitable function d which can be easily evaluated, and 
we compute by our algorithm a leveled set of knots for this function. (The choice 
of such type of suitable functions will be described subsequently.) Our numerical 
results show that by this approach, in most cases, we already obtain a nearly best 
piecewise polynomial (which sometimes may suffice for practical purposes). 

Then in phase two we apply our algorithm to the function d in (2.1) by using 
the knots computed in phase one as starting points. 

In the following we describe various functions d which can be used in phase 
one. In particular, these functions satisfy (0.1)-(0.3). The choice of d depends on 
properties of the functions to be approximated and therefore we distinguish certain 
function classes. 

2.1. Holomorphic Functions. Let A[a,,,3] be the space of all functions f which 
are holomorphic in a region G of the complex plane, where [a, ,] C int G and f(t) 
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is real for all t E [a, p3]. If f E A[a,,,8], we denote by Er an ellipse with foci a and 
,B such that f is holomorphic in int Er, where r = p + q is the sum of the half axes 
p and q of Er. Moreover, let r(f) be the supremum of all such numbers r, with 
corresponding half axes p(f) and q(f). Then Er() is called the regularity ellipse 
of f. 

We will use the following theorem of S. N. Bernstein (see [7]): For all f E 
A[-1, 1], 

limsupd(f, Ilm, [-1 1])l/m = l/(p(f) + q(f)). 
m_~oo 

This result shows that we can take the value (l/(p(f)+q(f)))m as an approximation 
of d(f, Ilm I [-1 1]). 

Now, let a function f E A[a, b] be given which we want to approximate by PPm,k 
Moreover, assume that z = (u, v) E Er(f) such that f is not holomorphic at z. 
For some partition a = xo < xi < < Xk < Xk+l = b and i E {0,.. ., k} we 
define Ei as the ellipse with foci xi and xi+I such that z E 9Ei and assume that f 
is holomorphic on int Ei, i = O,.. ., k. Let an integer i E {0, ... , k} be given. By 
applying a suitable linear transformation to Ei we obtain an ellipse Ei with foci -1 
and 1. We now use the above result of Bernstein. Instead of computing directly 
a leveled set of knots for d(f, Ilm, [xi, xi+ li), we first compute in phase one of our 
method a leveled set of knots for the approximate value 

d(xi, xi+1) = (l/(pi(f) + qi(f)))m, 

where pi (f) and qi (f) are the half axes of Ei. Since the small half axis qi (f) is 
uniquely determined by the big half axis pi (f), it suffices to compute a leveled set 
of knots for 

(2.2) d(xi, xi+1) = llpi(f), 
where 

Pi(f) = [((u - X,)2 + v2)1/2 + ((U - X,+1)2 + V2)1/2]/(X,+i _ xi). 

2.2. Differentiable Functions. We use the following result of de Boor [1], [2] 
for differentiable functions: If f E C[a, ,3] n Cm+1 (a, ,3] and If(m+1) I is monotone 
decreasing on [a,,B], then 

1~~f3 ) ~m+1 
d(f,HmI['al,])< (1 II If(m+1)(t)I1/(m+1)dt (m + 1)!kJ 

In view of this result we compute a leveled set of knots for 
rsi+1 

(2.3) d(xi,xi+1) = L If(m+l)(t)Il/(m+l) dt, i =0,..., k. 

A further possibility is to use theorems of D. Jackson (see [11, p. 23]) and 
S. N. Bernstein (see [7, p. 78]) which can be summarized as follows: There exists 
a constant K such that for every integer j E { 1,... , m + 1 } and every function 
f E Ci [ce,f], 

d(f, HmI [a, p3]) < K(f - c)jI If(i) I I 
In this case we compute a leveled set of knots for 

(2.4) d(xi, xi+,) = (xi+, - xi)jf(j) II[x,x,+i], -i = 0, *- * * k 

(where j E {1, ... , m + 1} is independent of i). 
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2.3. Continuous Functions. In this case we use a well-known lower bound for 
the minimal deviation. 

Given a function f E C[a, a,], we define for all i E {0, ... ,m + 1} 

(2.5) t(m)= ~ _ a cos(m + -i)r + ce 
2 m +1 2 

and 
m 

(2.6) Lm(f, [ce ,B]) = f(t(m)) + 2 (-1)if(t(m)) + (_1)m+1f(tt (m) ) 
i=l 

Then we have 

(2.7) 2m 1 + 2Im(m f,[aL ])I < d(f, IHm, [I 0 ]) 

and 

(2.8) Lm(p,[at,])=O forallpEllm. 

The points defined in (2.5) are the extreme points of the Chebyshev polynomial of 
degree m + 1 (see [7]). 

We give an interpretation of the lower bound (2.7). If we choose in the first step 
of the classical Remez algorithm the points in (2.5), then we have to compute a 
polynomial p E Ilm and a real number A such that 

( 1)i (f (4(m)) - p(tm) )) =A i =,.. .,m +1. 

Then it can be shown that 

JAI= 2 J Lm(fj [cej,])J. 2l 2 
In general, the polynomial p is a good approximation for f on [a,,,B] and the value 
Al is a good approximation of d(f, Hm, [a,B]). (For details see [7].) 

In view of these results we compute a leveled set of knots for the approximate 
value 

(2.9) d(xi ,xi+,) = 1 (f [xi, xi+ I i = 0,..., k. 

In contrast to the functions d in Subsections 2.1 and 2.2, the function d in (2.9) 
does not satisfy (0.3), in general. However, in some cases our algorithm worked, 
although (0.3) was not satisfied (see, e.g., Example 1 in Section 3). 

Moreover, we are able to prove that for a special class of functions, (2.9) satisfies 

(0.1)-(0.3). 

THEOREM 2. 1. For a function f E C[a, ,3] n cm+, (a, ,3) the following state- 
ments are equivalent: 

(i) The function d: D = {(x,y) E R2: a! < x < y <3} -,B} R, defined by 

d(x, Y) = 1 ILm(f, [X y]) , (x, y) E D, 

satisfies (0.1)-(0.3) and (1.2). 
(ii) The function f satisfies 

6f(m+l)(t) > 0, t E (a,3), 6 E {-1,1}, 

and f(m+1) does not vanish identically on a subinterval of [a, p3]. 
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Proof. We first derive some formulae for Lm (f, [xI y]) and for the derivative of 
Lm at y (respectively at x), where [x, y] c [a, ,8) (respectively [x, y] c (a, B]). Let 
an interval [x, y] C [a, ,3) be given. Let po E HIm satisfy 

Po(t(m)) = f(t(m)), i = o,... ,m 

where 

tm) = y - x (m + 1 - i)7r y + x i=O,...,m+1. 
2 m +1 2 

Now we use a well-known result on the error of interpolation for functions f E 
Cm+' [a,,3] (see [8, p. 69]). It can be easily seen that the result is also true, if 
f E C[a, 31 n Cm+' (a, 13). Then we obtain 

Lm (f, [XI y]) = Lm (f, [XI y]) - Lm (po, [X, y]) 

(2.10) = (-1)m+ (f(y) -P0(Y)) 

=(y-m) ) * .(y -t(m)) 
f (m+l) (to) =(~1)m1(y~t~)). 

(y-$~7))(m +1)! 

for some to E (x, y). 
Now let x be fixed. Since, by (2.8), for all p E IIm 

Lm(p, [x, Y]) = 0, y E (x, 3), 

it follows that 
d 

Lm(p, [xI y]) = 0, y E (x 13) 
Let ql E Hm-1 satisfy 

qj (&))=f'tm) ), i=1, ... ., ml 

and let P1 E Hm be such that p1 = ql. 
Analogously as above we obtain 

d Lm (f, [X, Y]) = +Lm (f, [X, y]) - d Lm (Pi XI y]) 

(2.11) - (1)m+l (fI(y) - q, (y)) 

- (-1)m+l (y - t(m))) ..M_)f___) 

for some t1 E (x, y). 
Repeated application of the above arguments yields 

(2.12) dr Lm (f, [x y]) = (- 1)m+l(y-t$m)). ( - t(m)) f (m+l) (tr) 
dyr 1)+( r y 

M (m + 1-r)! 

for sometr E (x,y), r=0,...,m. 
Analogous formulae hold for the derivatives of Lm at x, where [x, y] C (a,,/] 

and y is fixed. We first show that (ii) implies (i). If m = 0, then by hypothesis, f 
is strictly monotone on [a,,1] and statement (i) is easily verified. If m = 1, then 
obviously 

d Li(f,[Xy]) = f ( 2y dyu2 f()if y<3 
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Since by assumption f' is strictly monotone on (a,,,8), it follows that 

-Lj(f,[x,y])$0 ifa<x<y<fl. 
dy 

Hence, 

d(x,y)<d(x,y) if a<x<y<jy<,3. 

Analogously, it follows that 

d(xi,y) <d(x,y) ifav< x < x < y <0 

Then it is easily verified that d satisfies statement (i). Assume, therefore, that 
m > 2. Without loss of generality we may assume that m is odd and f(m+l) (t) > 0 
if t E (a, j3). Then (2.12) implies that 

(2.13) dyr Lm (f7 [x, y]) > 0, r = 0, ... ., m) 

for any interval [x, y] C [a, 8). Therefore, 

d(x,y)<d(x,y) ifa<x<y?j<y<. 

Analogously, it follows that 

d(x,y)<d(x,y) ifa<?e<x< y</,. 

This implies that 

d(x, y) < d(,y) if [x, y] C [ C [a,3]. 

This proves (0.3). Obviously, d also satisfies (0.1) and (0.2). Now we show that d 
satisfies (1.2). Assume that 

d(, y)=d(x, y) for some a < < < y< 8. 

Then by (0.3), 
d(x,y) = d(x,y) if yE (y,) 

Therefore, 

(2.14) dyLm(f, [, yj) = 0 if y E (W y). 

Since f(m+1) does not vanish identically on a subinterval of (a, /), there exists 
t e (y, ) such that f(m+l) (t) > 0, and therefore an interval [u, v] C (x, y) such 
that 

f(m+l)(t) >0 if t E [u,vI. 

Then it follows from (2.11) that 

(2.15) d Lm (f, [ul y]) Iy=v > ?. 

Now (2.13) implies that 

d(X,y)=+Lm(f,[X,y]) ifa<x<y<,3 

satisfies (0.3). 
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Then, by (2.14) and (2.15), 

O<d(u,v)<d(xi,y)=0 if yE(j,jj), 

a contradiction. This shows that 

d(x, y) < d(x,y if at < x < y < y<p 

Analogously, it follows that 

d(x~,y) <d(x, y) ifat< x < x< y <,8. 

Then we obtain 

d(x,y) < d(x,y) if [x,y] C [ C [a,/8] 
This proves that (ii) implies (i). 

Now we show that (i) implies (ii). Since d(x, x) = 0 and d satisfies (1.2), it 
follows that 

d(x,y)>O ifa<x<y<,8. 

Hence, 

(2.16) Lm(f, [x, y]) : 0 if a < x < y < B. 

Assume now that f(m+l)(t) = 0 if t E [x,y] for a < x < y < ,B. Then by (2.10), 

Lm (f, [x, y]) = 0 

a contradiction to (2.16). Finally, assume that there exist t, t E (a,:), t < t, such 
that 

f(m+l)(j-) <0, f(m+l)(t) > O. 

Then there exist intervals [x,y] c (a,,8), [x, y] C (ce,,/) with y < x and 

f(m+l)(t) < 0 if t E [x,y] 
f(m+1)(t) > 0 if t E [x,y 

Then by (2.10), Lm(f, [,]) < 0 and Lm(f, [z,y]) > 0. Let x be fixed. Since 
Lm(f, [z, y]) is continuous for y E [y, y], it follows that 

(2.17) Lm (f,I [x,j y]) < O, 

because otherwise there exists E E (y, y) such that Lm (f, [x, y]) = 0, a contradiction 
to (2.16). Analogously, it can be shown that Lm (f, [x, y]) > 0, which contradicts 
(2.17). This completes the proof of the theorem. o 

We now consider approximation of functions f E C(T) by PPm,k, where T = 

{t1,... , tN} is a finite subset of [a, b] consisting of "many" points. Such an ap- 
proximation problem arises frequently in practice. It was noted in [10] that the 
algorithm for C[a, b] can be applied to the above situation. 

Now, analogously as in (2.4), by replacing the second derivative f" by the second 
divided difference of f, one can use the function 

d(xi, xi+,) = (xi+, - xi)2 max {If(tj3-) - 2f(tj) + f(tj+1)I: 

{tjl, tj, tj+ I} C T C [xi, xi+1]}. 

We finally describe a further approach for functions f E C[a, b]. If we want to 
approximate f by piecewise polynomials from PPm,k for m > 1, then we can first 
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compute a leveled set of knots for PP1,k and then apply our algorithm to PPm,k 
by using the knots for PP1,k as starting points. 

2.4. Good Spline Approximations with Free Knots. We briefly discuss the com- 
putation of good or nearly best spline approximations with free knots in connection 
with the above algorithm for piecewise polynomials. 

Best uniform approximation by splines with free knots is a nonlinear approxima- 
tion problem. Therefore, if Newton-type methods are used, there arise two main 
difficulties. First, such algorithms only converge if one starts with nearly optimal 
knots. Therefore, since in general nearly optimal knots are not known, the conver- 
gence of Newton-type methods is not guaranteed. Secondly, even if the algorithms 
converge, in general they only yield local best approximations. 

In view of these difficulties we use a different method which yields a good or 
nearly best global approximation and which converges if we start with arbitrary 
(e.g., equidistant) knots. 

Let a function f E C[a, b] be given which we want to approximate by functions 
from Sm,k, the set of splines of degree m with k free knots. In step one of the 
method we approximate f by PPm,k and compute a corresponding leveled set of 
knots a = xo < xl < ... < Xk+1 = b. This leveled set of knots reflects the critical 
parts of f in the following sense. In those parts, where the intervals [xi, xi+,] are 
relatively large, f can be approximated efficiently by Hm. On the other hand, in 
those parts, where relatively small knot-intervals appear, the function behaves badly 
with respect to polynomial approximation. Therefore, since splines are piecewise 
polynomials satisfying certain differentiability properties at the knots, we take the 
above computed leveled set of knots {XI,... , xk} for PPm,k as fixed knots and 
compute a best uniform approximation of f from Sm (XI,... , Xk), the space of 
splines of degree m with k fixed knots, by applying the Remez-type algorithm in 
[9]. 

Our approach works for arbitrary continuous functions f E C[a, b]. Moreover, 
if f satisfies certain differentiability properties, then we can also take, instead of a 
leveled set of knots for PPm,k, the knots from phase one of our algorithm as fixed 
knots, which are easier to compute. 

Actually, in the special case of differentiable functions f, Dodson [5], de Boor 
[1], [2] and Burchard [4] suggested to take the leveled set of knots for the functions 
d from Subsection 2.2 as fixed knots for spline approximations. In the above papers 
the computation of such a leveled set of knots was only solved approximately, since 
no general algorithm was available (see also [3, p. 180]). 

Moreover, in our method we can control how efficient the resulting spline ap- 
proximation is, since 

d(f, PPm,k) < d(f, Sm,k) < d(f, Sm(Xi, ... * Xk))- 

In general, d(f, PPm,k) is strictly smaller than d(f, Sm,k), since no continuity is 
required for the functions from PPm,k. Therefore, the relevant error 

Id(f, Sm,k) d(f, Sm(xl,. Xk))I 

is strictly smaller than the value 

Id(f, PPm,k) d(f, Sm(Xl,... Xk))IX 
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which can be computed. Moreover, we have a further control, because we can also 
compare the value d(f, Sm(xi, .. . , Xk)) with d(f, Sm(yi,. X Yk)) for equidistant 
knots Yi,. . . ,Yk in [a,b]. 

Our numerical results show that in general we obtain a good or nearly best global 
spline approximation with respect to free knots. 

3. Numerical Results. We will give some numerical examples on best piece- 
wise polynomial approximations and on good spline approximations with free knots. 

We first consider piecewise polynomials with free knots and compare the minimal 
deviations for equidistant knots, for knots computed in phase one of the algorithm 
and for optimal knots. In all subsequent tables the first row in each box gives the 
minimal deviation for equidistant knots. The second and third rows give minimal 
deviations corresponding to knot partitions computed in phase one by using various 
functions d which will be specified in each example. The fourth row gives the 
minimal deviation for optimal knots. 

Example 1. f(t) = 1/(1+t2), [a,b] = [-5,5]. 
2nd row: d(xi, xi+,) = (xi+i - xi)/((' + x?)1/2 + (1 + Xt21)1/2) according to 

(2.2). 
3rd row: d(xi, xi+,) according to (2.9). (Note that our algorithm works, although 

the function d in (2.9) does not satisfy (0.3).) 

No. of 
Nots kf Degree m 

knots k 
3 5 7 

2.950 E-2 1.880 E-3 7.010 E-4 
8.484 E-3 6.627 E-4 1.742 E-5 

3 5.877 E-3 3.134 E-4 1.406 E-5 
5.861 E-3 3.126E-4 1.256E-5 
1.320 E-2 9.040 E-4 7.541 E-5 
8.300 E-4 7.530 E-5 3.103 E-6 

5 5.455 E-4 4.462 E-5 9.083 E-7 
4.518 E-4 4.426 E-5 8.537 E-7 

Example 2. f(t) la,b] = [0.1,1]. 
2nd row: d(xi, xi+,) = (xi+, - xi)/(xi + xi+,) according to (2.2). 
3rd row: d(xi, xi+,) according to (2.9). 

No. De e 
of knots k D m 9 

_ _ _ _ ~~3 5 7 9 

2.43E+0 2.73E-1 2.85E-2 2.84E-3 
2.39 E-1 6.77 E-3 1.75 E-4 4.31 E-6 

3 5.48 E-2 1.45 E-3 3.66 E-5 8.79 E-7 
5.41 E-2 1.42E-3 3.60E-5 8.78E-7 
1.13 E + 0 7.93 E-2 5.13 E-3 3.17 E-4 
5.85 E-2 7.50 E-4 8.79 E-6 9.79 E-8 

5 1.09 E-2 1.27 E-4 1.44 E-6 1.56 E-8 
_0_E_21.06 E-2 1.26 E-4 1.44 E-6 1.56 E-8 
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Example 3. f (t) = t(ln t) - t, [a, b] = [0, 1]. 

2nd row: d(xi, xi+,) = x 1/(m+l) - x1/(m+l) according to (2.3). xj+1 acodn o(.) 

3rd row: d(xi, xi+,) according to (2.9). 

No. 
I 

of knots k Degree m 
3 5 7 

6.088 E-3 2.239 E-3 1.150 E-3 
6.514 E-4 1.562 E-4 8.374 E-5 

3 4.227 E-4 5.049 E-5 1.052 E-5 
3.485 E-4 3.720 E-5 7.229 E-6 
4.058 E-3 1.493 E-3 7.668 E-4 
1.250 E-4 1.454 E-5 4.248 E-6 

5 1.047 E-4 7.479 E-6 1.030 E-6 
8.276 E-5 5.183 E-6 6.440 E-7 

Example 4. f(t) = t1/2, [a, b] = [0, 1]. 

2nd row: d(xi, xi+,) = x1/(2m+2)_x1/(2m+2) according to (2.3). 
3rd row: d(xi, xi+,) according to (2.9). 

No. of 
knots k Degree m 

3 5 7 
2.300 E-2 1.390 E-2 9.990 E-3 
3.799 E-3 3.270 E-3 3.468 E-3 

3 1.870 E-3 5.668 E-4 2.443 E-4 
1.397 E-3 3.991 E-4 1.568 E-4 
1.875 E-2 1.138 E-2 8.158 E-3 
8.575 E-4 4.214 E-4 4.059 E-4 

5 5.735 E-4 1.211 E-4 3.960 E-5 
3.986 E-4 7.479 E-5 2.228 E-5 

We finally give some examples on good spline approximations with free knots. In 
the following tables the first row is d(f, Sm(y, .... yA)), where {Yl, * * , Yk} is the 
set of equidistant knots; the second row is d(f, Sm (X1, . * , Xk)), where .x. .... *, Xk 
is the leveled set of knots for PPm,k; and the third row is d(f, PPm,k). In all 
examples we consider the case when m = 3 and k = 5. 

f(t) = 1/(1 + t2) f(t) 
1 
l/t2 f(t) = t(ln t) - t f(t) 

t 1/2 

[a, b] = [-5,5] [a, b] = [0.1,1] [a, b] = [0, 1] [a, b] = [0, 1] 
5.971 E-2 2.027 E + 0 5.610 E-3 2.230 E-2 
2.585 E-3 4.202 E-2 3.017 E-4 1.252 E-3 
4.518 E-4 1.060 E-2 8.276 E-5 3.986 E-4 
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