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Newton Interpolation in Fejer and Chebyshev Points 

By Bernd Fischer* and Lothar Reichel** 

Abstract. Let r be a Jordan curve in the complex plane, and let Q be the compact set 
bounded by r. Let f denote a function analytic on Q. We consider the approximation 
of f on Q by a polynomial p of degree less than n that interpolates f in n points on r. A 
convenient way to compute such a polynomial is provided by the Newton interpolation 
formula. This formula allows the addition of one interpolation point at a time until 
an interpolation polynomial p is obtained which approximates f sufficiently accurately. 
We choose the sets of interpolation points to be subsets of sets of Fej6r points. The 
interpolation points are ordered using van der Corput's sequence, which ensures that p 
converges uniformly and maximally to f on Q as n increases. We show that p is fairly 
insensitive to perturbations of f if r is smooth and is scaled to have capacity one. If r 
is an interval, then the Fej6r points become Chebyshev points. This special case is also 
considered. A further application of the interpolation scheme is the computation of an 
analytic continuation of f in the exterior of r. 

1. Introduction. Let Q be a compact set in the complex plane C, and assume 
that the boundary r of Q is a Jordan curve. Let p be the analytic function which 
maps {w: lwl > 1} conformally onto fl := C\Q so that p(oo) = oo and p'(oo) > 0. 
We assume that p is defined so as to be continuous and univalent for 1 < Iwl < 00. 

The mapping p then has the Laurent expansion 

(1.1) ep(w) = cw + do + dlw-1 + d2W-2 +*, lwl > 1, 

where c is the capacity of Q, see Gaier [5], Walsh [12]. For future reference we note 
that the capacity depends on the scaling of Q. Any set of n points {Zk,n}k-io C r 
such that for some constant a E R, and i := 

(1.2) Zk,n = 0(exp(27rik + ia)), 0 < k < n, 

is called a set of Feje'r points [5]. 
Example 1.1. Let fl be the ellipse E(a, b) {z = x + iy: (x/a)2 + (y/b)2 < 1} 

for some positive constants a, b. Then 

p(w) = 1(a + b)w + 1(a -b)w-, 

and the capacity of Q is c = 2 (a + b). In particular, equidistant points on a circle 
are Fejer points. 0 

Let f be a function analytic on Q2, and introduce the family of curves in fl 

(1.3) rp := {f (W): lwl = PI, p, > 
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Then there is a largest constant p(f) > 1 such that f is analytic in the interior 
of Ip(f). Let Pn-1 denote the polynomial of degree less than n that interpolates f 
in some set of n Fejer points. It is well known, see [5], [12], that 

(1.4) lim | If -Pn-1 | n = 1/p(f) n-*oor 

where for g E C(I) we have 

(1.5) IIglIr :=maxl9(z)j. 
zEr 

Let P*i be the polynomial of degree less than n of best approximation to f on Q, 
i.e., 

Ilf -Pn- lllr < Ilf -Pn-11jr 
for all polynomials Pn-1 of degree less than n. Then, see [5], [12], 

(1.6) n~~~lim Ilf -Pn*-11r = l/p(f). n-+oo 

Formulas (1.4) and (1.6) express in the terminology of Walsh [12, Chapter 4] that 

Pn-1 converges maximally to f as n increases, i.e., the geometric rate of convergence 
is the best possible. In view of this and the fact that Pn-1 is much simpler to 
compute than Pn-i X it is often attractive to compute Pn- 1 instead of P*-i when a 
polynomial approximation of f on Q is desired. 

A disadvantage with interpolation in sets of Fejer points is that a polynomial Pn 
of degree < n that interpolates f in a set of n + 1 Fejer points cannot generally be 
computed as a simple modification of Pn- . The purpose of the present paper is to 
describe a selection of interpolation points (j so that the interpolation polynomial 
can be written in Newton form, i.e., we define the interpolation polynomial 

n-1 j-1 

(1.7a) qn-1-(Z) := [6o]f + ([fox 1 * * .. X (jjf) 11(Z 
- k)i 

j=1 k=O 

where [(j]f := f(sj), 0 < j < n, and 

(1 .7b) [(?01 *1 .. I X Uf := Q[(? 411 .. I (j-i]f -[64 6i .. X (jjf)1(6 - (j) 

for 1 <j < n. 
From (1.7) we can in a simple manner quickly compute qn if qn-, is known. 

Moreover, our scheme avoids the computation of sets of Fejer points (1.2) for many 
consecutive values of n. 

We define the interpolation points lj by using the van der Corput sequence 

{Ck}l?=, see Hlawka [10, pp. 93-94]. Let the integer k, 0 < k < oo, have the 
binary representation 

00 

k =Z kj2j, kj E {O, 1}. 
j=0 

Then the Ck E [0,1) are given by 

00 

(1.8) Ck :kj2-j-1, 
j=0 
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and the interpolation points (k are defined by 

(1.9) Ok := 2rCk, 

(1.10) (k = p(exp(iOk)). 

Example 1.2. The Ck for 0 < k < 21 can be determined by bit reversal of k with 
respect to 21. Let b(k, 1) be the value of the integer obtained by bit reversal of 
0 < k < 21 with respect to 21, i.e., 

1-1 

b(k, I) := 21-1 E: kj2-j. 
j=O 

Then Ck - 2-lb(k, 1). 0 

TABLE 1.1 

Bit reversal and the van der Corput sequence. 

binary repr. of k 
k binary repr. bit-reversed b(k, 3) Ck Ok 

of k w.r.t. 8 

0 00 0 00 0 0 0 0 
1 0 0 1 1 0 0 4 1/2 7r 
2 0 1 0 0 1 0 2 1/4 ir/2 
3 0 1 1 1 1 0 6 3/4 3ir/2 
4 1 0 0 0 0 1 1 1/8 ir/4 
5 1 0 1 1 0 1 5 5/8 5r/4 
6 1 1 0 0 1 1 3 3/8 3ir/4 
7 1 1 1 1 1 1 7 7/8 7ir/4 

Example 1.3. For any integer I > 0 the set k is a set of Fejer points. 

This follows from {b(k,l)}j2-1 = {k}2-l . Therefore, {exp(iOk)} j2j is a set of 
equidistant points on the unit circle. This is illustrated in Table 1.1 for I = 3. 0 

Example 1.3 suggests that the nodes (k can be thought of as being determined 
by a suitable enumeration of the points in some set of Fejer points. Properties of 
the (j are discussed in Section 2. There, we also consider the case r = [-2, 2], and 
the interpolation points 

(1. 11) xo :-2, 
( xk :=2cos(wck-1), k = 1, 2,3,.... 

where the choice of [-2, 2] rather than [-1, 1] is for stability reasons. 
Example 1.4. For any integer I > 2, the set {Xk}k_O is the set of extreme points 

of the Chebyshev polynomial T2t (x) := cos(21 arccos(x/2)) defined on the interval 
[-2, 2]. This follows from 

{Xk}k-O = {-2} U {2cos 7rCk}k 
2 = {-2} U {2cos(7r2-1b(l, k))}k2-O 

{f~ U ik 21-1 { k 21 

2cos k= O21 Jk=0 

Example 1.4 suggests that the nodes xk can be thought of as being determined 
by a suitable enumeration of the Chebyshev points {2 cos(7rk/21)}120. 
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In Section 2 we use well-known results on sets of equidistributed points to show 
that qn-, converges maximally to f as n increases. There, we also show that if the 
capacity c of Q is one, then qn i is not very sensitive to perturbations of f. 

Computed examples are presented in Section 3. The examples include compar- 
isons with another enumeration of Fejer points, as well as comparisons of poly- 
nomials in Newton form with polynomials in Lagrange and barycentric forms. In 
Section 3 we also comment on the computation of Fejer points. 

By the maximal convergence of q,-i to f on Q as n increases, and by results on 
overconvergence of Walsh [12, Theorem 6, p. 78], it follows that the qn-, converge 
to an analytic continuation of f in the exterior of r as n increases. Hence, the qn.1 
can be used to compute analytic continuations. A different method for analytic 
continuation based on summability theory has been described by Eiermann and 
Niethammer [3]. It would appear that the nodes defined by (1.10) and (1.11) would 
also be applicable in the method of [3]. 

2. Convergence and Stability. We formulate the convergence properties of 
the qi- as a lemma. 

LEMMA 2.1. Let Q be a compact set bounded by a Jordan curve r, or let 
Q = F := [-2,2]. Assume that f is analytic on Q1 and let p(f) > 1 be the largest 
constant such that f is analytic in the interior of the curve rp(f). Let qn-I be 
defined by (1.7), where the interpolation points (1.10) are used if r is a Jordan curve, 
and the interpolation points (1.11) are used if r = [-2, 2]. Then qn-, converges 
maximally to f, i.e., 

lim If -qn- ll = 1/p(f). 

Proof. The van der Corput sequence {Ck}k=O is uniformly distributed, in the 
sense of Weyl, on the interval [0, 1], see [10, Chapter 1], [12, Chapter 7.5]. Therefore, 
the nodes defined by (1.10) or (1.11) satisfy the conditions of [5, Satz 2, p. 67]. 
This shows maximal convergence. O 

The property that a sequence is uniformly distributed says nothing about how 
its first n elements are distributed. The next lemma indicates that the points 
(k, 0 < k < n, are spread fairly uniformly over F also for small values of n. We 
therefore can expect qn-1 to yield a good approximation of f already for modest 
values of n. 

LEMMA 2.2. Let a and 3 be nonnegative integers with ,3 > a. Then the set 

{Wk}k1, defined by (1.10), can be written as the union of not more than Y pairwise 
disjoint sets of Fejer points, with 

(2.1) -y < [2 1092 (1 W - a) + 1) J, 

where [sJ denotes the integer part of s. 

Proof. From [4, Theorem 2.1] it follows that the set {exp(iOk)}'= can be 
written as the union of not more than -y pairwise disjoint sets of equidistant points 
on the unit circle, with -y bounded by (2.1). The lemma now follows from the 
definition of Fejer points (1.2). 0 

We turn to the sensitivity of qn-1 to perturbations in f. We wish to bound 
the propagated error in the divided differences (1.7b) due to perturbations in the 
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function values f(Wk). The divided difference (1 .7b) can be written as, see Davis 
[2, p. 40], 

(2.2) [,01 - E, .. I Ui= 
k=O H3I=0;10k((k - 1) 

A lower bound for the products in (2.2) is obtained in two steps. We first consider 
the case when Q7 is the unit disk. Results for the disk are then generalized to sets 
Q with a smooth boundary by applying a theorem of Curtiss [1]. 

LEMMA 2.3. Let Wk := exp(ik), k = 0,1,2,..., where the Ok are defined by 
(1.9). Then, for any n > 1 we have 

n-1 

7I lWk-w jl > n-, 0 < k < n. 
j=O 
j$k 

Proof. Let I > 0 be an integer such that n < 21 < 2n. Then 

(2.3) JI Wkk-wjtl = HjOi:Ak IWk-W I 21 

i=? Hlj= IIWk -Wj I H IWk-Wj 
j#k 

We obtain by Lemma 2.2 that the set {Wj }12'- can be subdivided into -Y < 

L21log2(I (21- n) + 1)J pairwise disjoint subsets {wj,m} _-0I 1 < m < -y, of equidis- 
tant points. Hence, 

2l_ 1 ly SM-1 

rj lWk-Wil= 1 rj Wk-wi,m ) 
j=n m=1 j=O 

fy SM-1 

= II ( IIW UWO mWj,mn o, ml 
m=1 j=O 

= JI |(wkwo m)8m -11 < 2- 
m=1 

where we have used that {wj,mw-1 }I ' are roots of unity. Therefore, 

jy wk-WIl < I (21 
- n) + 1? < (n + 1)2 

j=n 

and substitution into (2.3) yields 

n-1 14 

j=O k-wi' It 
+1)2 - (n + 1)2 

- 

j$k 

for 0 < k < n. 0 

LEMMA 2.4 (Curtiss [1, Theorem 2]). Let r be such that the derivative P'(w) of 

the conformal mapping (1.1) is nonvanishing and of bounded variation for lwl = 1. 
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Then 
lim flUid ((P(w) - ((exp(2irij/n))) 1 

noo cn(wn-1) 

uniformly for lwl > 1, where c denotes the capacity of Q. O 

LEMMA 2.5. Let r be such that p'(w) is nonvanishing and of bounded variation 

for jwl = 1. Let the capacity of Ql be one. Then there are positive constants ,3 and 

6, independent of n and k, such that 

n-1 

I I&k- j I > 3n3, 
j=O 
j$k 

for 0 < k < n, where the (k are defined by (1.8)-(1.10). 

Proof. Let Wk := exp(iOk), 0 < k < n, where Ok is defined by (1.9). Then 

= p(Wk). Let I > 0 be an integer such that n < 21 < 2n. Then 

(2.4) 1I'k -iI = 171I p(Wk) - i(Wj) = j=0$k ko(wk) -(Wj)| __ jO fJ~~~~~~~211 ko(wk~) - ~P(Wj)l 
j$k j$k 

We use the notation of the proof of Lemma 2.3 and obtain by Lemnna 2.2, 

similarly as in the proof of Lemma 2.3, 

21-1 . sm-1 

(2.5) 2' iWk (p W) Wk-Wj,m I 
j=n m=i j=o 

where the sets {wj,mJ};m-1 C {Wj}32 1 < m < ry, are disjoint sets of equidistant 
points on the unit circle, and -y < 2 10g2( (21 - n) + 1). Hence, 

2 - 1 lY sm-1 

(2.6) k| |p(Wk) - '(Wj)I = II (fm Ik'(Wk) - (wj,m) I 
j=n m=i j=O 

where {o(wj,m)}Im-1 C { P(wj)}2='-, 1 < m < -y, are disjoint sets of Fejer points. 
By Lemma 2.4 there are constants ko, 0 < 0o < 61 < oo, independent of k, but 
where 60 depends on ko, such that, for k > ko, 

k-1 k-1 

(2.7) J7 Iko(w) - p(exp(2-rij/k + ia))I > 6o 11 1w - exp(2irij/k + ia)1, 
j=O j=O 

and, for k > 1, 

k-1 k-1 

(2.8) J7 I j(w) - p(exp(2wij/k + ia))I < 61 fJ w - exp(2irij/k + ica) 
_=O j=0 

uniformly for jwl = 1. The real constant a in (2.7) and (2.8) is arbitrary but fixed. 
From (2.6) and (2.8) we obtain, for 0 < k < n, 

21- 1 y Ism- 1 
(2.9) 7 I4(Wk)- >(w)I < 6171 (UIw k-wj,m) < (261)Y, 

j=n m=1 j=0 
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where 

(2.10) a < 21og2 ((2 - ( n) + ) < 21og2 n + < 21og2 n. 

Hence, we have obtained an upper bound for the denominator of (2.4). We now 
derive a lower bound for the numerator. From the conditions on 'p it follows that 
there is a constant 62 > 0 such that 

(2.11) PM(w) - P(zV) I < 621W - iV 

for all w, w7v on the unit circle. By (2.7) and (2.11) it follows that 

TI Ip(w)- (wj)l > S I |wwI) (wj)l> 6o I JJ j, 
j=O 62W-Wlj=O 
jAk j#k 

for all jwl = 1 and 21 > ko. In particular, 

2_-1 21-1 

(2.12) 17 ko(wk) - 'p(Wj)j > 6o6' 1.71|Wk-wjl = 2'6o6' ? n6-82 

j=O j=O 
j#k j#k 

Combining (2.4), (2.9), (2.10) and (2.12) yields, for n > ko, 

IJ~k - ~j - 6 2 0?<k <n, 
?. i fln2(1+1o926l) - fl+210g2361 

j=O 
j#k 

where we have assumed that 61 > 1/2. This shows the lemma. 0 
Combining Lemma 2.5 with (2.2) shows that perturbations in the function values 

f((k), 0 < k < n, are amplified at most polynomially in the divided differences 
(1.7b). 

We are now in a position to bound the rate of growth with n of the condition 
number of the mapping from the function values f ((k) to qn- Related investi- 
gations for other polynomial bases have been carried out by Gautschi, see [6] and 
references therein. 

Let 1n-, denote the set of polynomials of degree less than n, and define the 
vectors 

f (f (to)f ( ), * (n)) 

C =([t0]f, [40, ti1]fj* *I* [40, 411 .. I *n, (-]f)TX 

where we presently only assume that the (j are distinct points on r and that the 
function f is continuous on r. Introduce the mappings 

Tl: Cn , Cn Tlf := c; 

T2: Cn I-In- 1H , (T2c) (z) :=qn (Z); 

T: Cn Inl =T 1 

Equip the domains of T1, T2 and T, and the range of T1, with the norm 

||v|| := max jvjv, V=(vov ... ,vn1) EC n, 
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and let the range of T2 and T have the norm (1.5). Let T-1 denote the inverse of 
T, and let the norms I IT, I 1, I IT2 I1I 1I ITI I and T- 111 be the induced operator norms. 
The condition number of T is defined by 

cond(T) := 1ITI1 JIT-111. 
THEOREM 2.6. Let r be such that p'(w) is nonvanishing and of bounded vari- 

ation on lwl = 1. Assume that Q is scaled to have capacity one, and let the inter- 
polation points {Jk}j'- be given by (1.10). Then 

lim cond(T)1/' = 1. 
n-_oo 

Proof . We first bound II Ti II 1 /n and l IT2 Ill/n. This yields the bound IITIll/n < 

IIT, II1/nIIT2II1/n. By (2.2) we obtain 
1/n 

IITT111/n = max <max k=0 1-0 

l$k 

i l~~~/n 
< (n max IJVk-611 ) \ <k<j/ 

O<-j<nl- 

and Lemma 2.5 now yields 

(2.13) lim lT 1Il1/n < 1. 
n--+oo 

Further, 

n-1 j-1 1/n i- /n 

glT21Z1/n = max cjH (z- k) < nl/n max fJ(Z- k) 

lIT2 11/n 
11=1 

j= k=0 r <j<n k=O r 
Similarly as in the proof of Lemma 2.1, we obtain from [5, Chapter 2] that 

n-1 i/n 

k=0 r 
where we have used that the capacity of Q is one. Hence, 

(2.14) lim IT2Ill/n < 1. 
n--+oo 

We turn to a bound for T-1, and note that since qn -((,) = f(j), 0 < j < n, it 
follows that Iqn- 1 lr > I If I 1. Therefore, 

(2.15) 1T-111 = max Ifil < 1. 

From (2.13)-(2.15) it follows that 

(2.16) lim cond(T)l/n < 1. 
n--+o* 

The theorem now follows from (2.16) and from cond(T) = 11TI 1T-111 > 1. 0 
We note that Theorem 2.6 can be shown independent of the scaling of r, but if F 

is scaled to have capacity different from one, then the proof has to be modified. In 
particular, I IT, II and I IT2 II will increase or decrease exponentially with n, and this 
can give rise to numerical difficulties, such as overflow or large propagated errors 
due to underflow. In the numerical examples of the next section we therefore have 
scaled Q to have capacity one. 
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3. Numerical Examples. In order to demonstrate that our interpolation 
scheme is quite insensitive to perturbations, we have carried out all computations 
in single-precision arithmetic, i.e., with only six significant decimal digits, on an 
IBM 3090 computer. 

In all examples the approximation error is measured on a discrete point set on 
r. Let g E c(r). In case r is a Jordan curve we use the seminorm 

IlIIId max jg(cp(exp(2ixik/103)))|, 
0?k< 103 

and for r = [-2,2] we use 

llglld max lg(2cos(7rk/103))I. 
0<k< iO3 

In none of the examples does an increase in the number of points in the seminorms 
lead to different figures. 

Example 3.1. In this example we compute the interpolation polynomial qn-i in 
Newton form defined by (1.7) for increasing values of n and for four different choices 
of interpolation points. We approximate the function f(z) := (z - 1)-i on the set 
Q bounded by r {w - 1w-3: IW = 1}, see Figure 3.1. Here p(w)= w - 1W-3. 

FIGURE 3.1 
Boundary curve r. 

The continuous curve of Figure 3.2 shows the error loglo If - q"-1IId for 1 < 
n < 128, where the interpolation points (k defined by (1.10) are used. 

The (k are obtained by a particular enumeration of Fej6r points. A possibly more 
natural enumeration defines the following interpolation points ,. The enumeration 
is proposed in [3]. Introduce 

I 62- 2Xr(21 - 1)/2j+l, k > 1, 
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where j and I are the unique integers such that 2i < k < 2i+1 and k = 2i +1, 1 < 
I < 2i. Now let 

(k := (p(exp(iM')), k > O. 

The (, satisfy {1k}~m-1 = {(k} 2m1 for all integers m > 0. However, it is easily 
seen that the O' are not uniformly distributed, in the sense of Weyl, on [0, 2ir]. The 
dashed curve (on top) in Figure 3.2 shows log10 IIf-q -1IId where qn- is obtained 
by interpolation in { The curve shows that no convergence is achieved, and 
that the computations are sensitive to round-off errors. The dashed curve would 
in exact arithmetic touch the continuous one for n = 2m, m = 0, 1, 2, .. ., and in 
particular for n = 64. The value of IIf - q-1IId is very large for n > 70. For these 
n values the dashed curve is not shown. 

The dotted curve (on bottom) in Figure 3.2 shows logloI f - qn- lid where qn- 

for every n interpolates f in a set of Fejer points { Hence, for every n all 
terms in (1.7) have to be recomputed. The points ,j,n, 0 < j < n, are obtained by 
renumbering zj,X, 0 < j < n, defined by (1.2) with a = 0, using the bit reversal 
function b(j, 1) as follows. A renumbering of the zj,n iS necessary for reasons of 
numerical stability, see below. 

Algorithm 3.1 for renumbering Fejer points. 
definition of ,j,n, O < j < n: 

input n > 1, set of Fejer points {Zj,n}nJ=; 
: let I > 0 be the unique positive integer such that 21-1 < n < 21: 
k := 0; 
for j =0, 1, 2, ... , 21-1do 

begin 
if b(j, 1) < n then ,k,n := Zb(j,l),n; k := k + 1; 

end 

Figure 3.2 shows that the error obtained by interpolating in {(j,n} n-1 n = 

1,2,3, .. ., is not much smaller than when the nodes (1.10) are used. The compu- 
tational effort, however, is much larger. 

Finally, we determine the interpolation error when qn-, interpolates f in 
{ z,n}1n-f1, n = 1,2,3,.... The corresponding error curve is not shown in Fig- 

ure 3.2. The computational effort is comparable to using the nodes {Ij,n}jio I 
n = 1,2,3 .... However, the computations suffer from numerical instability. We 
obtain Ilf-q31IId > 1 and llf-q63lld > 108. The reason for this instability is that 
subsets {z3,n}ik-i, k = 1, 2, ... , n - 1, are unsuitably distributed on r. These latter 
computations motivated Algorithm 3.1. 

The example shows that the nodes defined by (1.10) yield good accuracy and 
that the computations are quite insensitive to round-off errors. 0 

Example 3.2. In this example we use nodes (1.10) and compare different repre- 
sentations of the interpolation polynomial: the Newton form (1.7), the Lagrange 
form 

n-1 n-1 

n_1(z) S 
- f('jk) 

7 Z - 

k=0 =0 
j$k 
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N I I 

FIGURE 3.2 
Newton polynomial qn- defined by 
three choices of interpolation points. 

and the barycentric form 

b~1(z) nk-O f (Gk)(Z - k) 1 fln-1 (_ k -j)-1 

Ek=nO(Z - k)-1 j1r,:Ojk((k -j) 

The barycentric form is insensitive to perturbations, see Henrici [8, p. 237] and 
Werner [13]. However, due to perturbations, bn_l(z) may become rational, i.e., 
bn-1 (z) may have poles in the finite plane. The computations with bn-1 (z) can be 
arranged so that the computational effort required to form and evaluate bn_ 1 (z) is 
of the same order of magnitude as for the Newton form [13]. 

Figure 3.3 shows the graphs of logloIf - qn-llld, log10ollf - In-llld and 

log1o Ilf - bn_llld with f and r the same as in Example 3.1. The curves coalesce, 
which indicates that the Newton form is as stable as the two other forms. 0 

Example 3.3. In this example we approximate f(x) := (1 + 2x2)-l on the 
interval Q = r [= -2,2] by interpolation in the nodes (1.11). It follows from 
Example 1.1 that the capacity of Q is one. We compare the Newton form qn-1 
with the Lagrange form In-, and the barycentric form bn1. The latter forms are 
defined in Example 3.2. Figure 3.4 shows log1o If - 'qn-l lId (continuous curve), 
log10o If - In-l 1Id (dashed curve) and log1o 0If - bn-i lId (dotted curve). Again, the 
Newton form is seen to be quite insensitive to round-off errors. Indeed, we have 
evaluated loglo Ilf - qn- lld for n up to 256 without obtaining large propagated 
errors due to round-offs. 

Example 3.4. The principal branch of f(z) = z1/2 is approximated on = 

{z: Iz - II < 1} by qn-i defined by interpolation in the nodes (1.10). f(z) is not 
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FIGURE 3.3 
Newton, Lagrange and barycentric forms 

of the interpolation polynomial with nodes (1.10). 
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FIGURE 3.4 
Newton, Lagrange and barycentric forms of the 

interpolation polynomial with nodes (1.11). 

analytic on Q1. A bound for I If - q lId when the interpolation points are equidis- 
tant is given by Geddes and Mason [7]. Figure 3.5 shows the error lIf - qn1-llld. 
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The error is seen to be smallest when the set of interpolation points { 10 o can 
be written as the union of only few disjoint sets of equidistant nodes. The figure 
suggests that qn-i converges for a larger class of functions than considered in the 
present paper. 0 

Z- 0 

0 3Z 64 SG 12 

FIGURE 3.5 
Approximation error for f(z) z 

In our computed examples the conformal mappings (p are explicitly known. This 
makes it simple to compute the nodes ~j. In general, the restriction of 'p to F may 
have to be computed numerically. Recent surveys of numerical methods for this 
purpose are given by Henrici [9] and TIrefethen [11]. 

4. Conclusion. Let f be analytic on a compact simply connected set 0 in the 
complex plane. We consider the approximation of f on 0 by interpolation polyno- 
mials qn.1, where we describe a selection of interpolation points that allows us to 
represent qn-1 in Newton form and to show maximal convergence. The interpo- 
lation points are suitably ordered points in certain sets of Feje'r points. Maximal 
convergence is shown for sets ?Q bounded by a Jordan curve. Numerical examples 
indicate that the scheme proposed yields accurate polynomial approximation when 
?Q is an interval, too. The propagation of errors in f is also considered. 
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