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Noninterpolatory Integration Rules for 
Cauchy Principal Value Integrals 

By P. Rabinowitz*and D. S. Lubinsky** 
Dedicated to the memory of Peter Henrici 

Abstract. Let w(x) be an admissible weight on [-1, 1] and let {pn(x)}O be its associ- 
ated sequence of orthonormal polynomials. We study the convergence of noninterpola- 
tory integration rules for approximating Cauchy principal value integrals 

I(f;) : fiw(x) X( dx, A E (-1, 1)- 

This requires investigation of the convergence of the expansion 

00 

I(f;A) - ,(f,Pk)qk(X), A E (-1,1), 

k=O 

in terms of the functions of the second kind {qk(X)}O associated with w, where 

(f,Pk) w(X)f (X)Pk(x) dx and qk(A) w(x) P dx, 

k = 0,1,2,...,A E (-1,1). 

1. Introduction. In the third volume of his monumental work, Applied and 
Computational Complex Analysis, Henrici [8, pp. 139-142] gave an algorithm for 
the numerical evaluation of Cauchy principal value (CPV) integrals. This algorithm 
was presented in a more explicit form in a recent paper, by one of the authors [15]. 
In neither case were convergence questions considered. In this paper, we shall 
analyze the convergence questions arising from the use of this algorithm. 

Consider the CPV integral of the form 
1 f (x) (1) I(f; A) f w(x) _ A dx, -1 < A < 1, 

where w is an admissible weight function, w E 5V, that is, w(x) is nonnegative and 
integrable in [-1, 1] and 

(2) MO : w(x) dx > 0. 
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For such w, there exist sequences of orthonormal polynomials 

(3) {pn (x) := pn (w x) :=kn x + * ** kn > O} 
with respect to the inner product 

(4) (f, g) w(x) f (x)g(x) dx, 

satisfying a three-term recurrence relation 

(5) XPn(X) = an+lPn+l(X) + ,3n+lPn(x) + anPn-l(x), n = 0, 1 ,1... 

where 
atn := kn-1kn, n > 1; /3n+l := (XPn,Pn), n > 0, 

p_1(x) _ 0 and po(x) _ ko = m" 1/2. 

If we define qn(A), the function of the second kind, by 

(6) qn(A) :=qn(w, A) :=I(Pn;A) w(x) dx, -1< A <1 

then the qn(A) satisfy the same recurrence relation as the {Pn(x)}, namely 

(7) Aqn(A) = an+lqn+l(A) +j3n+lqn(A) + anqn-1(A), n = 0, 1, 2, ..., 

with starting values q_1 (A) -1, qo (A) I (po; A) and a0 mo2 . If we denote 
by 

(8) ak =(fPk) 

the Fourier coefficient of pk(X) in the formal expansion of f (x), 
00 

(9) f (x) E akpk(X), 

k=O 

then we can write a formal expansion for I(f; A) in terms of the qn (A), 
00 

(10) I( f; A) - akqk (A). 
k=O 

Hence, an approximation to I(f; A) will be given by the truncated sum 

N 

(ll) ~~~~~SN (f; A) :=E akqk(A). 
k=O 

If we now have a sequence of integration rules 
m 

(12) Qm (g) = Wim 9(xim), 
i=l 

which converges to 
p1 

(13) I(g) ]_ w(x)g(x) dx 

for all g E C[-1,1] or all g E R[-1, 1], the space of bounded Riemann integrable 
functions on [-1, 1], and if we approximate the Fourier coefficients ak by 

(14) akm := Qm (fPk), 
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then, in general, we obtain a noninterpolatory integration rule for I(f; A), namely 

N 

(15) QN(f;A) = Eakmqk(A). 
k=O 

The approximations QN (f; A) can be evaluated in a stable manner using backward 
recursion by the algorithm given in [15], provided that we have the value of qo(A). 
We can also express QN (f;A) in a Lagrangian form that is more useful in the 
numerical solution of integral equations: 

m 

(16) QN (f; A) w E 'N (A) f xm), 
t=1 

where the weights 

N 

(17) wtN (A) := wimF pk(xim)qk(A), i = 1,2, ... ,ml 
k=O 

can also be evaluated in a stable manner by the backward recursion algorithm [15]. 
As indicated above, this general approach to the numerical evaluation of CPV 

integrals appears in Henrici [8, pp. 139-142]. However, there is no discussion there 
of convergence or of the integration rules Qm(g). In fact, it is precisely the freedom 
in the choice of these rules, subject only to the condition that they converge to 
I(g) for all g E C[-1, 1] or all g E R[-i, 1], that affords this method for evaluating 
CPV integrals considerable interest. Thus, if f is well behaved in most of the 
interval [-1, 1], but is irregular over a small subinterval [a, b] C [-1, 1], then we can 
concentrate most of our integration points xim in [a, b]. 

This was also done by Gerasoulis [7] using a different approach, and the results he 
achieved were a considerable improvement over those achieved using a conventional 
spacing of integration points. There have been many approaches to noninterpola- 
tory integration of CPV integrals [4], [14], [17], but these two are the only ones that 
cater to the situation indicated above. 

In Section 2, we state and prove Theorems 1 to 5, which deal with convergence 
of SN(f ;A) to I(f ;A). In Section 3, we state and prove Theorems 6 to 8, which 
deal with the convergence of QN (f; A) to I(f; A) as m and N -+ oo. It turns out 
that in the general case we shall be able to prove convergence only for the iterated 
limit 

(18) lim lim QN (f; A). 
N--+oo m-oo 

In fact, we shall show that we cannot in general expect convergence of the double 
limit. However, in certain cases where we can convert the double limit to a single 
limit in which m depends on N in some specific manner, we shall again be able to 
prove convergence. A similar approach was used by Dagnino [3] in studying the 
convergence of noninterpolatory product integration rules. 

2. Convergence Results for SN(f; A). Before we can study the convergence 
of QN (f; A) to I(f; A), we must establish the convergence of SN(f; A) to I(f; A). 
To this end, we shall use the methods presented in Natanson [ill and Freud [5] for 
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proving convergence of orthonormal expansions. Since the proofs in [11] depend on 
the Christoffel-Darboux formula 

N 
9 Pk()k()=N+ PN+ 1 (X)PN (Y) -PN (X)PN+ 1 (Y) 

(19) E Pk(X)P(Y)= aN+1 

we shall first establish an analogous formula for the sum 
N 

(20) KN (X, A) E Pk (X)qk (A). 
k=O 

Throughout, C, Cl, C2,..., and B, B1, B2,... denote positive constants indepen- 
dent of N, m, x and A. 

LEMMA 1. Let {pn}o' be a sequence of orthonormal polynomials on [-1,1], 
with respect to w E a, and let q (A) := I(p,,; A), n = 1, 2,3,..., exist for a given 
A E (-1, 1). Then, for N = 1, 2,3, .... 

(21) KN (x A)= aN+ {PN+1 (x)qN (A) - PN (x)qN+1 (A)} + 1 

Proof. We have from (5) and (7) that for k = 0,1, 2, ... . 

(22) XPk(X) = ak+lpk+1(X) + 3k+lpk(X) + akpk-l(X), 

and 

(23) Aqk(A) = ak+lqk+l (A) + 8k+lqk(A) + akqk-1(A). 

Multiply (22) by qk(A) and multiply (23) by pk(X); then subtract the two and sum 
from k = 0 to N. This yields 

(24) (x - A)KN (X, A) = aN+1 {PN+1 (x)qN (A) - PN (x)qN+1 (A)} 

- ao{po(x)q.1 (A) -p-1 (x)qo(A)}. 

Since pI1(x) 0, q.1(A) -1 and a0 = m1/2 = l/po, (21) follows. O 

COROLLARY 1. The sum KN (x, A) can also be written as 

KN(X, A) 

f PN+1(x)(qN(A) - qN(X)) - PN(x)(qN+1 (A) - qN+1 (X)) 

(25) xaN+1 X-A } 

f qN+1 (A) (PN (A) - PN (X)) - qN (A) (PN+1 (A) - PN+1 (X)) =X+1 x -A} 

Proof. If we set x = A in (24), we find that 

aN+1 {PN+1 (x)qN (X) - PN (X)qN+1 (X)} 

= -1 = aN+1 {PN+1 (A)qN (A) -PN (A)qN+l (A)} 

Substituting into (21) yields (25). 0 
Before proving some convergence theorems for SN (f ;A), we recall some defini- 

tions and results connected with the existence of I(f; A) [1]. We say that a function 
f is of Dini type on an interval I of length l(I), and write f E DT(I), if 

l(I) 

(26) WI(f; t)t-1 dt < oo, 
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where wj (f; t) is the ordinary modulus of continuity of f on I, defined by 

(27) wI(f;t):= sup If(x)-f(y)j, t>0. 
xI-yl<t 
x,yEI 

Obviously, if f E DT(I), then f E C(I). Furthermore, it can easily be shown that 
if f E DT(I), then f satisfies the Dini-Lipschitz condition on I, that is 

(28) lim WI (f ; t) log t = 0. 

Finally, it is well known that if A E (-1,1) and if for some small enough e > 0, 
f E DT(A - elA + E) n R[-1, 1] and w E DT(A -e, A + e) nd, then I(f; A) exists. 
Hence, to ensure the existence of I(f; A) for all A E (-1, 1), it is sufficient to require 
that f E R[-1, 1] and w E v belong to DT(-l, 1). 

We are now ready to prove some convergence results about SN (f; A) correspond- 
ing to the convergence theorems for orthonormal expansions in [11]. As usual, for 
wEd andO<p<oo,welet 

(29) LPW {g: [-1,1] -* Rig is measurable and f w(x)lg(x)lPdx < oo}. 

THEOREM 1. Assume that for some A E (-1, 1), I(f ; A) exists, that 

(30) Sup jqk(A)j < B < oo, 
k 

and that 

(31) Wp(x) (f (x) - f (A))/(x - A), x E [-1, 1], 

belongs to L2,W. Then 

(32) lim SN(f;A) = I(f; A). 
N-+oo 

Proof. Multiply (21) by w(x) (f(x) - f(A)) and integrate between -1 and 1. We 
obtain 
(33) SN (f; A) - f(A)qo(A)/po 

= aN+ {cN+lqN(A) - CNqN+1 (A)} + I(f; A) - f(A)qo(A)/po, 

where Ck ('P, Pk) is the kth Fourier coefficient of pa with respect to Pk. Since 
'p, E L2,W, Ck -+ 0 as k -+ oo. Hence, since aN+1 < 1 [5, p. 41], while (30) holds, 
we obtain (32). 0 

An important special case of this theorem is that of the generalized smooth Jacobi 
weight (we write w E GSJ), studied by Nevai [13, p. 673], among others. It is defined 
by 

m+1 

(34) w(x) := V)(x) II Ix - tjl-fi, x E [-i, il, 
j=O 

wherem >0, -1 =to < ti < ..<etm <tm+l =lfj > -l,j =0,1,12, ...,m+1, 
0 E DT(-1, 1) and ?,(x) > 0 in [-1,1]. Clearly, if 

(35) 0 := [-1, l]\f to, t1, I .. *, m+l} 

then w Ed n DT(O), so that if A E 0 and f E DT(A - e, A+ e) n R[-1, 1] for 
some e > 0, then I(f; A) exists. Furthermore, Criscuolo and Mastroianni [2] have 
shown that if w E GSJ, then (30) holds for A E Q, and uniformly in any closed 
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subset of 0. Hence, we have the following corollary: 

COROLLARY 2. If w E GSJ and f E DT(A - e, A + ) n R[-1, 1] for some 
A E 0 and some small enough E > 0, while pW, E L2,w, then (32) holds. 

In the sequel, we use the norm ljf jj := max[-1,,] If (x)l for any f E C[-1, 1]. 

THEOREM 2. If (30) holds for some A E (-1, 1), if 

(36) sup IIPk(X)II < 00, 
k 

and if pa E Ll,w, then (32) holds. 

Proof. By Theorem 3 in [11, p. 69], the Fourier coefficients Ck of px, (defined by 
(31)) converge to 0 as k -- oo under the hypotheses of the theorem. Furthermore, 
since p E Li,w, I(f; A) exists, as shown by the identity 

(37) I(f; A) = f w(x)pA(x) dx + f (A)qo(A)/po. 

Hence (32) follows from (33). 0 

COROLLARY 3. Assume that w E GSJ, where 1o, a1m+1 < -1/2 and yj < 0, 
j = 1, 2, ... , m. Further assume that A E ., and that pa E Ll,w. Then (32) holds. 

Proof. By Nevai [13, p. 674, (16)], there exists C > 0 such that for x E [-1, 1] 
and k=1, 2,3, ... 

(38) IPk(X)l < C{[w(x)(1 - X2)1/211/2 + 1}. 

Hence, under the hypotheses of the corollary, (36) is true. Furthermore, as above, 
(30) is true for all A E 0. Hence, by Theorem 2, (32) holds. 0 

Theorems 1 and 2 are of a local nature, since they depend on the behavior of 
the Fourier coefficients Ck of p,(x). The following is a global theorem, and its 
proof requires much more delicate analysis. The proof is modelled on the proof of 
Theorem 2 in [11, p. 95]. 

THEOREM 3. If f E DT[-1, 1] and w E GSJ, then (32) holds uniformly for A 
in each compact subset of 0. 

Proof. We first remark that I(f; A) exists for all A E 0 and that f satisfies the 
Dini-Lipschitz condition (28) on J [-1, 1]. We shall start by proving that 

(39) LN(A) = f w(x)IKN(x, A)I dx, 

is O(log N), uniformly in a given compact subset X of .. We first establish this 
bound for the case m = 0 in (34), that is when w(x) has no zeros or infinities in 
(-1, 1). To this end, we write LN(A) as the sum of five integrals 

r-l+h/2 +_11N ++11N 1-h/2 I 

LN(A) = + j 
J-1 J-l+h/2 A-1/N JA+1/N J1-h/2 

=I + I2 + I3 + I4 + I5 
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and choose N sufficiently large so that [A - 1/N, A + 1/N] C 0 for all A E X and 
choose h > 0 so small that X c [-1 + h, 1 - h]. We consider first I, and use (21) 
for KN (X, A). Now, for x E [-1, -1 + h/2] and A E X, Ix - A > h/2. Further, 
since (30) holds uniformly for A E X, since aN+1 < 1, and since 

w(X)lPk (x)Idx ? {f w(x)dz} {f w(X)p2(x)d } 

r 1 A ~1/2 
={f| w(x)dx} 

it follows that I, = 0(1). Similarly, I5 = 0(1). For x E [A + 1/N, 1 - h/2], it 
follows from (38) and the fact that (30) holds uniformly for A E X, that 

IKN(x, A)I ' C/lx - Al, 

where C is independent of N, x and A. Hence, 

I4 ? 0 L / dx 
A+11N X- A 

w_x__-_w_A_ dx 

< w(x)-A) dx + w(A) A O(log N). 

Similarly, I2 = O(log N). Finally, since 

IKN(x, A)| < (N + 1) sup lpk(x)j sup Iqk(A)j, 
k k 

we obtain I3 = 0(1). Combining these estimates, we obtain 

(40) sup ILN (A) I < Ci log N, 

for some C, independent of N. For the general case, we let h be the distance of 
X from the set T := {to, t1,... , tm+i } and denote by U the subset of [-1, 1] such 
that the distance of T to U is at most h/2. As before, we can show that 

w(x)IKN(x, A)I dx = 0(1), 

and that 

' w(x)IKN (x, A)I dx = 0(log N), 

where VN := [-1, 1]\([A - 1/N, A + 1/N] U U). If we choose N large enough so that 
1/N < h, we obtain (40). 

Next, let Pk be the polynomial of best approximation to f in the uniform norm, 
let rN := f - Pk, and let EN(f) := lurNIl. Since f satisfies (28) on J, it follows 
from Jackson's Theorems that 

(41) lim EN(f)logN= 0. 
N-+oo 

Now, for any g E C[-1, 1], we have 

ISN(g;A)l = 1(g,KN(x,A))I < Ig|IlLNv(A). 
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Hence, uniformly for A E X, we have from (40) and (41), 

lim ISN(rN; A) = 0. 
N-+oo 

Since 

I(PN; A) = SN(PN; A), 
we have 

I(f; A) - SN(f; A) = I(rN; A) - SN(rN; A), 

and it thus remains to show that 

lim |I(rN; A)I = 0. 
N-+oo 

Now 

I(rN; A) | w (x) x _ , + N( )qO(A /PO 

=fw(x) rN (X)-rN (A) 

Furthermore, as in [1], 

rN(x) - rN(A) d A-1/N fA+1/N 1 

Jw(x) x -A dx= + IA N+ J+/ -1 X > -~~~1 -11N A+11N 
J1 + J2 + J3. 

Here 

IJ11 ? 2EN(f)fI (x) dx = EN(f)O(log ) = o(1) as N )o 

Similarly, J3 = o(1) as N -- oo. Finally, 
|w+1/N rN (x) - rN (A) dx 

A-1/N x-A 

= 
+1 f 

w (z() -ft () dz 
1 

_ 
P* 

W (x)PNZ-Pk(A)d 
I-1/N W(Xj _ 

d 
IA-i/1N 

W (X) Nx -A dx. 

Since f E DT[-1, 1], the first integral on the right-hand side is o(1). As for the 
second integral, we have from [9] that 

Pk(x) - Pk (A) < max{jPj(t)j: t E [A- 1/N, A + 1/N]} 

< CNw(f; 1/N). 
Hence 

f W+1/N P (x) -Pk (A) d 

I-1/N w(x) x -A 
d 

< 2Cw(f; 1/N) max{w(x): x E [A - 1/N, A + 1/N]} 

0 asN--oo, 

since w(x) is uniformly bounded above for A E X and N large enough. This 
completes our proof. 0 

Remark. Theorem 3 is similar to Theorem 2.2 in [1]. By following the proof of 
Theorem 3, we can prove a result similar to Theorem 2.1 in [1], namely, that if f 
satisfies (28) on J, if w E GSJ, and if for some A E ., I(f; A) exists, then (32) 
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holds. The proof of Theorem 3 holds in this case too, except that we must show 
that 

JN :=f w(x) f()-f (A) dx = o(l), N -oo. 

Since 

JO:f w(x) x f(A dx = I(f; A) - f(A)I(1; A), 

and both I(f; A) and I(1; A) exist, it follows that JO exists. Hence JN = o(1), and 
the proof is complete. 0 

We now give some additional conditions for (32) to hold, which impose less 
restrictions on the weight function w E X, but require more smoothness of f. To 
this end, we first prove a lemma: 

LEMMA 2. Let w E X, and assume that for some A E (-1,1), 

(42) r(A) 1 -A )dx<oo 

while for some positive e, B1 and B2 

(43) B, < w(x) < B2 for Ix-Al < 2e. 

Then there exists a constant B3 > 0 such that 

n-1 

(44) Tn- (A) := q2(A) < B3n, n = 1,2,3 .... 
k=O 

If r(A) is uniformly bounded and (43) holds uniformly for A E [a-e, b+e] c [-1,11], 
then (44) holds uniformly for A E [a, b]. 

Proof. We first establish the following analogue of the Christoffel function ex- 
tremum problem, noting that in essence, it is contained in [6]: Defining 

(45) Pn(W; A) = inf { (p{?)2: P E 9n-j I(P; A) 54 O 

where 9'm denotes the set of all polynomials of degree < m, we have 

(46) pn(w;A) = 1/Tn-1(A). 

To see this, we note that for any P E 9n-l a we can write 

n-1 

P(x) = Zakpk(x), where ak := (P,Pk), k = 0, 1, 2,.. n-1. 
k=O 

Hence 
n-1 n-1 1/2 

|II(P; A) 1= E: akqk (A) < Eak I Tn- 1 (A) }/ 
k=O k=O 

=j(p2)}1/2{Tn_1(A)}1/2 

so that 
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On the other hand, 
n-1 

P(X) = Pk(x)qk (A) E _1n-11 

k=O 

and satisfies 
I(P;A) = Tn- (A) = J(P2) 

Then (46) follows. 
We now use (46) to prove (44). Choose e such that [A - 2e, A + 2e] C [-1,1]. 

Now for any P E ?9n-l, 

JI(P; A) = I P(x) w(x)-w(A) d + w(A) P(x) dx 
JIx-AI<e X - A xixA< X -A 

(47) + W(x)P(x) dx 

r 7(A) max IP (x)I + w(A) ? P(x dx + &11(IPI) 

Next, let X be the characteristic function of [A - e, A + e], that is, x(x) := 1 in 
[A - e, A + e] and x(x) := 0 elsewhere. We have from (45), 

2 

(48) A P(x) dx < Pn(xX;A)V1J 
- P2(x)dx 

x-Xj<6 -A lx-Xj<6 

< B1 Pn(X; A)-1 p2 (x)w(x) dx < B1 Pn(X; A)-1'(P2). 

Furthermore, by standard estimates for Christoffel functions for the Legendre weight 

(cf. [12]), 
X+2e 

(49) max (p(X))2 < CnI P2(t)dt < CnBT I(p2). 
Ix-AI<e -2c 

Combining (47), (48) and (49), and using the Cauchy-Schwarz inequality, we obtain 

II(P; A)I < B4{nl/2r(A) + p- 1/2(x; A) + 1}I(p2)1/2 

But 
n-1 

Pn(X; A)-1 = q2(X; A) < B5n, 
k=O 

since qk (X; A) is the function of the second kind associated with the Legendre weight 
shifted to [A - e, A + e], so that qk(x; A) = 0(1). Hence 

II(P; A) ? < B6n1/2j(p2)1/2, 

so that 

1/Tn_j(A) = pn(w; A) > B7/n. 

If the assumptions on A hold uniformly in [a - e, b + e], it is not difficult to modify 
the proof to hold uniformly in [a, b]. D 

We now prove the analogue of Theorem IV.1.2 in Freud [5, p. 139]. 
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THEOREM 4. Let w E JV and assume that for some A E (-1, 1), (42) holds, 
while (43) holds for some positive e, B, and B2. Define for n = 1,2,3,..., 

(50) E (2)(f;w) inf (f - P f _ p)/2. n 
~~~PEJ10n 

Then, if 
00 

(51) ]E( 2) (f ;w)n- 1/2 < oo, 
n=1 

(32) holds. If r(A) is uniformly bounded for A E [a - e, b + e] C [-1,1], while (43) 
holds uniformly for A E [a - e, b + c], then (32) holds uniformly in [a, b]. 

Proof. First recall the notation (8). For any positive integer m, 

2m+1 f 2m+1 1 2m+1 1/2 

j akqk(A)l < ak 

2 
q2(A) 

k=2m+l 
I k=2m+l k=2m+1 f 

oo 1/2 2m+1 1/2 

< { ak} qk (A) 
k=2m+1 t k=O } 

{ 2m+1 1/2 

=E2m) (f; W) q 2 
k(A) 

k=O 

< CE 2) (f; w)2m/2, 

where the last inequality follows from (44). Since E(2) (f; w) is nonincreasing 
with k, 

2m/2E2m)(f; w) < 2m/2 2-m+ L E2 (f;w) 

k=2m-l+l 

2m 2 m 

21-m/2 Ek )(f;w) < 2 E Ek2)(f;W)k-1/2 
k=2m-1+1 k=2m-l+1 

Hence, 
00 00 2m Oo 

j jakqk(A)| = Z Z akqk(A)j < B E( )(2;w)k 1/2. 0 
k=2 m=1 k=2m-l+l k=1 

The next theorem is the analogue of Theorem IV.1.3 in Freud [5, p. 140]. 

THEOREM 5. Let w and A be as in Theorem 4. Let f E C[-1, 1] and for 
J = [-1, 11, suppose that wj(f; 6) satisfies for some q > 0, 

(52) lim wj (f; 6)6-1/21 log 61+f7 = -0 

Then (32) holds. If r (A) is uniformly bounded for A E [a - e, b + e] c [-1, 1], while 
(43) holds uniformly for A E [a - e, b + e], then (32) holds uniformly in [a, b]. 

Proof. By Jackson's Theorem, 
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3. Convergence Results for QN(f; A). We are now ready to prove our con- 
vergence theorems for QN (f; A). First a result on the iterated limit. 

THEOREM 6. Assume that f E R[-1, 11, that I(f; A) exists and that w E V and 
A E [-1, 1] are such that (32) holds. Let {Qm (.)}?m?1 be a sequence of integration 
rules such that for all g E R[-1, 1], 

lim Qm(g) = I(g). m-+oo 

Then 

(53) lim lim QN(f; A) = I(f; A). 
N-+oo m-+ooM 

Proof. It suffices to show that for each fixed N, 

lim QN (f; A) = SN(f; A), 

since 
00 

I(f; A) = SN(f; A) + E akqk(A) = SN(f; A) + o(1). 
k=N+l 

For fixed N, we choose m sufficiently large so that 

Iakm - akl?<k< max qk(A)I/(N + 1), k = 0,1, 2, N, 
0<k<N 

yielding the theorem. 0 
Even though we have convergence of the iterated limit (53), we cannot in gen- 

eral have convergence of the double limit (that is the limit with m and N oo 
simultaneously), as illustrated by the following simple example: 

Example 1. Let 

W(X) := (1 -X2)-1/2 and f(x) _ 1, xE (-1,1), 

and let Qm(.) be the Gauss-Chebyshev rule 

Qm(g): =-E 9 (COS 217r 

Then, with N = 2m, we have that 

2m 2m 

Qm (f;) = EQm (fpk)qk(A) = EQm (Pk)qk(A). 
k=O k=O 

Since Qm (g) is exact for all g E 6A2m- a 

Qm(Pk) =i(Pk) = w(X)Pk(x) dx, 0 < k < 2m-1, 

so that 

Q.n(po) = por and Qm(Pk) = 0, k = 1, 2,...,2m-1. 
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Furthernore, 
m 2 (7 1/2 2i -1 

Qmn(P2mn)= cOS 2m / 

m 

= (2ir) 1/2 m- 1 cos(2i - 1)7r = -(27r)1/2. 

i=l 

Hence 
Q2m(f; A) = r1 /2qo(A) - (2ir)1/2q2m(A). 

But (see, for example, [8, p. 148]) 

qo(A) = I(f; A) = 0, 

so 

Q2m(f; A) - I(f; A) =-(27r)1/2q2m(A), 

which does not go to zero for any nonzero A E (-1,1) as m -- oo, inasmuch as 
q2m(A) = (2/7r)1/2U2m+1 (A), where U2m+i(A) is the Chebyshev polynomial of the 
second kind of degree 2m + 1. 

Example 1 shows that at least in general, converting the iterated limit to a single 
limit does not lead to convergence. However, there are cases where this procedure 
will work. One simple example occurs when m = N + 1 and Qm(-) is the Gauss 
integration rule with respect to w. In this case, it turns out that 

(54) QN+1(f; A) = I(LN+1; A), 

where LN+1 is the Lagrange interpolation polynomial of degree < N interpolating 
f at the zeros of PN+1. This follows since 

N N 

I(LN+1; A) = j(LN+1,Pk)qk(A) = Z QN+1(LN+lpk)qk(A) 

(55) k=O k=O 
N 

= Z 
QN+1(fpk)qk(A) = QN+1(f; A) 

k=O 

(see, for example, [16, pp. 1250-1251]). Since it has been shown in [1] that for 
w E GSJ, 

lim I(LN+1,A) = I(f;A), 
N-+oo 

we have that for the sequence of Gauss rules {Qm (.)}00 associated with w E GSJ, 

lim QN+1 (f; A) = I(f; A). 

We can generalize this result to any sequence of integration rules {Qm ()}0M=1 
that is ultimately exact for all polynomials, that is Qm (g) = I(g) for all 9 E 9@n and 
all m > m(n). A particular instance of this, that allows points to be concentrated 
in regions where the behaviour of f is problematic, is rules exact for piecewise 
polynomials of increasing degree. 

In the general situation, if the weights Wim and the points xim in a sequence of 
rules {Qm(*)}0L0 are such that 

m 

(56) Iw (A) I = O(log N), 
i=l 
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if f E DT[-1, 1] and if w E GSJ, then we have that 

(57) lim QNM(2N) (f; A) = I(f; A). 

Here m(2N) denotes the least integer m such that Qm(g) = I(g) for all g E Y2N- 

The proof follows standard lines, namely 

(58) I(f; A) = I(Pk; A) + I(rN; A), 

where, as above, Pk E 9N is the polynomial of best approximation to f in the 
uniform norm and rN := f - PNk Since, by hypothesis, Qm(gPk) = I(gPk) for all 
k < N, all m > m(2N) and all g E ,9N it follows that 

(59) Qm(f; A) = I(Pk; A) + Qm(rN; A). 

Hence 
II(f; A) - QN(f; A) < II(rN; A)I + IQN(rN; A)I 

m 
< II(rN; A) I + j Iwtm (A) IlrN || I 

i=l 
As in the proof of Theorem 3 above, I(rN; A) = o(1), and since f satisfies (28), the 
second term is also o(1) from (56), proving (57). 

What about conditions on Wim and xim that ensure (56)? We shall prove 

LEMMA 3. With the above notation, if 

(60) him := xi+,m - xim < CI/N 

for some C1 > 0, uniformly for all i and m > m(2N), while 

(61) lwiml/w(xim) < C2(hi-,,m + him), 

then (56) holds whenever w E GSJ and A E 0. 

Proof. As in the proof of Theorem 3, we consider first the case m = 0 in (34), 

and we decompose the sum on the left-hand side of (56) into five sums: 

m 

E lwjxm(A)l = E + + 
i=l Xim<-1+6 A-xim>2Ci/N IXim-A?<2C1/N 

X,m>-1+6 

Xim-.>2Cj/N xim>l-6 
Xim <1-6 

El 1+E2 + 13 +E4 +E51 

where 6 is some sufficiently small positive number. Now by (17) and (21), and the 
uniform boundedness of {qk(A)}0 }0 

E < (1 -6 + A)'10(1) K Wim {I PN (Xim) I + IPN+1 (Xim) I } 

r-1+6+C1 /N 
O(1) W (X) {I PN (X) I + IPN+l (X) I} dx 

(by Theorem 5 in [10, p. 534]) 
10(1) {fA w() 1/2 

? OM1 w w(x) dx I 0(1). 
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Similarly, 5 = 0(1). Next, 

Z2 = 0(1) E IWimI/(A - Xim) 
{A-C1 /N 

< 0(1) dx/(A - x) = 0(log N), 

by uniform boundedness of PN, qN and w. Similarly, 4 = 0(log N). Finally, 

N 

Z3 = 0(1) E IWimIE lpk(xim)qN(A)I 
xim-Xj<2Cj/N k=O 

= 0(1)(N + 1) E lwiml 
Ixim-Xj<2Cj/N 

= 0(1), 

which proves the lemma for the case m = 0. For the general case, we enclose each 
of the interior singularities of w in a small interval avoiding A and treat the Wim 

associated with these intervals in the same manner as E. 0 

The assertion (57) is a special case of the following theorem: 

THEOREM 7. Suppose that for m = 1,2,3,..., the rule Qm(.) has precision 
lrm > Nm, that tm := min{Nm, rm - Nm} satisfies 

(62) lim tm = 00, 

and that 

m 
(63) EwAm (A)I < Clogtm, m = 1,2,3,. 

i=l 

Assume that f E C[-1, 1] satisfies (28) with I = [-1, 1], that I(f; A) exists, that 
qo(A) is finite and that w(x) is bounded above in a neighborhood of A. Then 

(64) lim QNm (f; A) = I(f; A). 
M-+oo 

Proof. If P E 9'tm, then 

Nm Nm 

Qm (P; A) = Qm (PPk)qk(A) = (P, Pk)qk(A) 
k=O k=O 
tm 

= (P,Pk)qk(A) = I(P;A), 
k=O 

since tm < Nm. Then, if Pm E 93tm is the polynomial of best approximation to f 
in the uniform norm, and if rm := f - Pm,, then as above, for m sufficiently large 
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so that [A - 1/tm, A + 1/tm] c [-1,1], 

IQfm (f; A) - I(f; A)I = IQmm (rm; A) - I(rm; A)I 

j lwt'm (A)I lirm Il + fa 
rm w(x) )ldx 

i=1- JIA X "XI1/tm lx-Al 

+ f w(x)rm (x) dx 
IA-XI?1/tm x -A d 

? Clog tmnw(f; t-1) + Ci|rrn||log tm 

+ f w(X)~f (x)-f (A)d +W (X) 
f X)f > dx| 

|F\-;|<l/tm A 

+I W(X) P (x) Pm(A) dx 
|\-XI<1/tm x- A 

+ Irm(A)l I?i W x) dx 
|\-Xl<,/tm X- A 

< o(1) + o(1) + o(1) + o(1) + o(1), 
by the arguments used in the proof of Theorem 3 and the fact that w is bounded 
above near A. o 

We conclude with an almost trivial theorem that gives necessary and sufficient 
conditions for the convergence of a sequence of approximations {QNm (f; A)}' 
It shows that we must choose Nm in such a way that Qm(fPk) is small for all k 
large enough with k < Nm: 

THEOREM 8. Assume that for all g E R[-1, 1], 
lim Qm (g) = I(g), 

that I(f; A) exists and that (32) holds. Then, given a sequence {(m, Nm}}?=i of 
pairs of positive integers with 

lim Nm = oo? 
m-oo 

we have that 
lim QNm (f; A) = I(f; A) 

m-0oo 
if and only if for every e > 0 we can find a positive integer K such that for all large 
enough m, 

Nm, 

(65) | Qm(fpk)qk(A) <e. 

Proof. For any fixed J and all m large enough, 
Nm 00 

Qm (f;A) - I(f; A) = Qm (fpk)qk(A) - (f, Pk)qk(A) 
k=O k=O 
K-i 

= E {Qm (fpk) - (f, Pk)}qk(A) 
k=O 

oo Nm 

(f,Pk)qk(A) + E Qm(fpk)qk(A) 
k=K k=K 
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Here, as in the proof of Theorem 6, the first term in this last right-hand side is o(1) 
as m -+ oo. Further, given E > 0, we can find a K such that the absolute value of 
the second term in this last right-hand side is bounded above by E. Hence for m 
large enough, 

Nm 

QNm (f; A) - I(f); A) 
j Qm(fpk)qk(A) < 2E, 

k=K 

which proves the theorem. 0 
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