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Incomplete Hyperelliptic Integrals 
and Hypergeometric Series 

By J. F. Loiseau, J. P. Codaccioni, and R. Caboz 

Abstract. We consider the incomplete hyperelliptic integral 

x d 
H(a,X)= f da 

J o a- 2X2 2- Ann 

with a > 0, A2 > 0, n > 2, where X belongs to the connected component of {X1A2X2 + 
AnXn < a} containing the origin. 

Continuing previous work on the complete hyperelliptic integral, we express in this 
paper H(a, X) as a convergent series of hypergeometric type. A brief survey of some 
applications to algebraic equations and mechanics is then given. 

1. Introduction. In a previous paper [8], we considered the complete hyperel- 
liptic integral 

(1) J(a) = L d- 

where 

(i) a > 0, 
(ii) Pn(X) = Ekn2 AkXk, n > 2, A2 > 0, 

(iii) [ca(a), B(a)] is the connected component of {xlPn(x) < a} containing the 
origin (see Figure 1). 

In the present paper, we deal with the incomplete integral 

(2) H(a,X)= a-P( X) 

with conditions (i), (ii) and (iii) and X E (a(a), /B(a)). 
Since, for x E [0, X], Pn is monotone in x, we consider the inverse function x+ 

(resp. x_) to the function Pn for X> 0 (resp. X < 0). 
Changing variables in Eq. (2), we find 

tPn (X) Xi U (3) H?(a,X) = P ?X (u)? du. 

Computation of x?, the inverse function of Pn, reduces to the problem of solving 
the algebraic equation 

(4) Anxn + An-1xn-1 + * * + A2X2 _ u = O 
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FIGURE 1 

Typical graph of Pn: x -+ Pn (x). 

or, more precisely, to determine as functions of u the two solutions of (4) belonging 
to the interval [a(a),/#(a)]. 

For n = 2 we have the trivial case x?(u) = A u/T7 , and the H?(a, X) reduce 
to inverse trigonometric functions. For n > 2 the only algebraically solvable cases 
are n = 3 and n = 4, but the expressions of the solutions of (4) are complicated 
enough to be of no help for computing H? (a, X). If we try to find x by inversion 
of series, the lack of the linear term A1x allows us only to develop in powers of 
1/fu. In that case we have first to express /P~(x) as an infinite power series and 
then to invert it to get finally x(f/u). Unfortunately, the algorithm does not give 
the general term of the series and none of the ways we tried to express x as a 
convergent series succeeded, except for one particular case: when Pn(x) contains 
only one superquadratic term: 

(5) Pn(x) = A2x2 + AnxnI n > 2. 

In this case, the computation is developed in Section 2 and used in Section 3 to 
compute the corresponding integral H? (a, X). A few consequences of these results 
are then studied in the subsequent two sections. 

2. Computation of x?(u). We now limit ourselves to the case of Eq. (5). 
Setting x? = ?/E, we derive 

(6) z = _ - (?l)n An zn/2. 
A2 A2 

The Lagrange-Biirmann theorem ([12, p. 133]) states: 
Let 0 be a function of z analytic on and inside a contour (F) surrounding a point 

A, and let t be such that the inequality 

(a) ItO(z)l < Iz -Al 

is satisfied at all points z on the perimeter of (F). Then the equation 

(b) z = A + tO(z) 
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has one solution in the interior of (r), and further, any function f of z, analytic 
on and inside (r) can be expanded as a power series in t by the Lagrange formula 

?? tn dn-1 

(c) f(z) = f (A) + E n! /A- f(A)O(A)n ] 
n=1 

This theorem will be applied in the case 

0(Z) zn/2 

(7) j A(Z=u/ , A = u/A2, 

t= =-(l)n An/A2 i 

for which Eq. (b) of the Lagrange-Biirmann theorem is exactly Eq. (6). 
First, we emphasize that here f and 0 are real-valued functions defined on 

[0, +oo) and for which a domain is an interval of R and the corresponding contour 
(r) a set containing only two elements: the endpoints of this interval. Condition 
(a) is then satisfied when it is proved to be true for the two endpoints of an interval 
containing A. 

o A nA z 
n-2 

FIGURE 2 
Graph of p: z -* p(z) of Eq. (9). 

We have u E [0, a], i.e., A E [0, a/A2], and condition (a) of the Lagrange-Biirmann 
theorem reduces to 

zn/2 
(8) lAnl A < IZ -Al. 

2 

Setting 

(9) p(z) = I2' zAIl 

condition (8) reads 
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The graph of p, represented in Figure 2, admits a local maximum 

(11) ~~~~M(A) = 2A2(nt - 2)(n-2)/2 
(l l) M(A) = ~~A(n-2)/2nn/2 

for the value z = nA/(n - 2). The condition (10) must be verified for two points 
surrounding A and for every A E [0, a/A2], so that we require 

(12) M(A) > |Anj 

for every A E [0, a/A2]. As M is a decreasing positive function of A, condition (12) 
will be verified for every A E [0, a/A2] as soon as M(a/A2) > jAn ,j i.e., 

(13) ^7(a) _I1AnI (n )n/2 (a (n-2)/2 

Condition (13) has been encountered previously in the study of the complete 
hyperelliptic integral J(a), in the particular case of a single superquadratic term 
[8]: it is the condition required for the hypergeometric series representing J(a) to 
converge. 

Now Eq. (c) of the Lagrange-Biirmann theorem allows us to write x? (u) as the 
Lagrange series 

(14) 0(u) = + (1)k(+) (+)/2 r( kn+1 

(14)Xk=Q k(n - 2) +1 F k(n-2)+) 

kl A2J 

with n? standing for 2n in x+ and n in x. 
Some tedious algebraic manipulations [4] finally yield 

x+ (u) =-x_ (u) 

-1 3 n-l 
(15) F nn n 

(5= ( n ) n/2F -21 [ 3 5 n_- 1 7(u)] 

Ln -2' n- 2' n '-2 J 
if n is even, and 

(16a) x?(u) = ?x1(u) + Anx2(u), 

with 
6 1 3 2n-1 

~n+1 n+3 3n-1 

(16b2 x~~F 12 2n ' 2n n~" 22rU 

(16b,) xlEu) | n+F r1+3 n3r-5 3; k7U)1 

ifn- is 2 )' od d 2(n-) - 2 2 
if~ ~ ~ ~ ~~~+ nn is odd. 
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Since 0 < u < a, condition (13) ensures the convergence of the generalized 
hypergeometric series [11] occurring in (15), (16). 

3. Computation of H?(a,X). The inverse function x?(u) being expressed 
as a convergent power series in 71(u), it can be differentiated term by term in Eq. 
(3) to obtain for the integrand a uniformly convergent series of functions which, 
consequently, may be integrated term by term. The integrals to be computed are 
of the type 

fu k(n-2/2 
(17) _ du, 

and no difficulty arises except for the length of the calculation. Finally, the result 
may be written in the form of a convergent series as follows: 

= 1 [~~1fl (( ) (n-2)/2 ] 2VX~~~~~~~~~ H? (a, X)= + k 

(18) x r(O/c - k) Bp1(X)]a 'aki 2' 
r(O/k) 27/c 

where 

(19) ak = (n-2)k+1 
2 

and where 

(20) Be[a,3 = 2F [,1-,3+l;a] a< 1, 

is the incomplete Beta function [6]. 
When Pn(X) = a, Eq. (18) still holds, the incomplete Beta function being 

replaced by the complete Beta function [6] 

(21) Bl[a/ck, 2 r(a/k)F( 

We then obtain the complete hyperelliptic integral J(a) given in reference [8]. 
From a computational point of view, Eq. (18) is particularly interesting when 

An is small, so that only a few terms are needed to get a good approximation of 
H? (a, X). 

4. Application to Algebraic Equations. The link between solutions of 
algebraic equations and generalized hypergeometric series and functions has been 
widely studied more than sixty years ago by Mellin [10], Birkeland [3], Bellardinelli 
[2], Appell and Kampe de Feriet [1]. Our formulae are somewhat different from 
theirs, and we have not tried to prove the exact equivalence. By comparison of 
the two results, one may obtain some new transformation formulae on generalized 
hypergeometric functions (see Appendix). 

From (13), (15) and (16) we obtain the following proposition: 
Among the real solutions of the algebraic equation 

xn +pX2+ a=0, n>2, 
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the two smallest ones in absolute value can be expressed as hypergeometric series 
provided that 

Q=-- >O andR 
P 2a n-2 

These two solutions x_ and x+ are 

-1 3 n- 1 

x+ = -x = QI/2 Fn/2-F n 3 5 n-1; R 

Ln-2' n-2' n - 2 J - 

if n is even, and 
1 1 

X+ = X1--pX2, X_ =-X1--pX2 

with w 
1 3 2n-1 

xi= Q1/2 nnl 2n'2n''' 2n R , 

3 5 2n - 3 R 
2(n-2)' 2(n-2)' ...' 2(n-2)' 2 

[n+1 n+3 3n-1 

Q(n-l)/22n '2n '"' 2 x2 =Q( n-F)/2Fn-1 n+1 n+3 3n-5 3; R 

L2(n -2)' 2(n -2)' *.*.*. 2(n -2)' 2 J 
if n is odd. 

Note that when n is even and a > 0, the proposition is still valid by analytic 
continuation for R E (-oo, +1) [9]. 

When n is even, setting n = 2m, we have the following corollary: 
The smallest real solution, in absolute value, of the algebraic equation 

xm + px + a = 0, m > 2, 

is expressible as a squared generalized hypergeometric series, provided that 

Q p- Oand R=m1(mQ E)e(-l,+l). 

Its expression is 

1 3 2m-1 2 

2m'2m'~ 2m 
x=Q mm-l 2m'2m'3 5 2m-1; R 

2(m - 1) '2(m -1) '***'2(m -1) 

5. Application to Mechanics. From a mechanical point of view, the integral 
J(a) of Eq. (1) is nothing but the half-period of a one-dimensional oscillator with 
total energy E = a/2, moving in the potential U(x) = Pn(x)/2. 

The condition (13) required for the hypergeometric series to converge is merely 
the condition for the motion to be bounded [4], except for the case where Pn has 
no local maximum (n even and An > 0). In that case it can be proved [71 that the 
hypergeometric series representing J(a) may be analytically continued [9]. 
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The incomplete integral H(a, X) of Eq. (2) represents the time t to go from the 
origin to the current point on the X-axis [5]. For Pn given by Eq. (5), the time t 
is expressed by the series (18) and may be written in the form 

00 

(22) t = X E YPXP, 
p=o 

where the coefficients -yp are themselves convergent series depending on a, A2, and 

An. 

This means that we are able, at least in principle, to give the solution X(t) of 
the motion. But in fact, it is not so interesting to have the solution as a power 
series of t, especially when it is periodic (one would have to know too many terms 
of the series). Nevertheless, Eq. (22) may be useful for computation, because the 
position X at a given time t is not necessarily the most important thing we wish 
to know. It may be more interesting to know at which time t a given point X of 
the trajectory is reached. 

6. Conclusion. Incomplete hyperelliptic integrals are not so easy to handle as 
complete ones, and their applications are more limited. But their link with elapsed 
time in a mechanical anharmonic system gives them some computational impor- 
tance. Accessorily, they have led us to meet again with old studies on algebraic 
equations and generalized hypergeometric series. 

Appendix. Link with Appell's and Kampe de Feriet's Works. For the algebraic 
equation 

(A-1) zn+1 -z+a=O, 

the following results are given in [3] and [1]. 
Among the n + 1 solutions of Eq. (A-1), denoted by zj (j = 1, 2,.. ., n + 1), n 

are given by 

(A-2) eizi = Fo(an) + ejA1aF1 (an) + + en-'1Anlan-1F 1(an) 

with 

-k-1 1 k-1 2 k-1 n 

(A-3 Fk(n) nFnl 1n n + 1 'n n + 1 ''n n + 1. (n + 1)n+l n 
(A-3) Fk(a')=fnFn-1 +-ani( 

n n n n 

and 

(A-4) Ak 1 [n + 1,k-1] 

ej are the nth roots of unity. The hat on n indicates that the argument 1 must be 
ruled out and the brackets in (A-4) denote the Pochhammer symbol 

(A-5) [a, b] = a(a + 1) ...(a + b-1). 

The sum of the (n + 1) roots of (A-1) being zero, the last one is given by 
n 

(A-6) Zn+1 =- zj = -nAaF1(an) =aF1(an). 
j=1 
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The series (A-3) converge only for lal < n/(n + i)(n+1)/n, but transformation 
formulae for generalized hypergeometric functions allow the solutions of Eq. (A-i) 
to be expressed by hypergeometric series for every a [1]. 

Applying these results to the case n = 5, it may be proved that Eq. (A-i) has 
three real solutions, the smallest one in absolute value being 

-l 2 3 4 

(A-7) z5=a4F3 [2 3 5 5 44a 

4' 4' 4 
The propositions established in Section 4 allow us to express z5 as a squared gen- 
eralized hypergeometric series, 

r 1 3 57 9 12 

(AF) [ 10 X10 10 i0' 55 411 
(A-8) z1 

4 
3 57 94a 

L [L 88' 8 8 8 
It is not easy to prove directly the exact equivalence of (A-7) and (A-8). The 

convergence condition lal < 4/55/4 is the same in both cases and may be removed 
by analytic continuation. 
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