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The Exact Determination of Rectangle 
Discrepancy for Linear Congruential 

Pseudorandom Numbers 

By Lothar Afflerbach and Rainer Weilb'acher 

Abstract. Up to now, the rectangle discrepancy of linear congruential pseudorandom 
number generators could be exactly calculated only in some simple cases for a small 
number of generated points. Here an algorithm for the exact determination of the two- 
dimensional rectangle discrepancy is presented which is practicable for large generators 
and requires less computation time. The algorithm is based on special properties of 
linear congruential generators. 

1. Introduction. For a set G(') containing exactly k points of [0, 1)' the 
n-dimensional (rectangle) discrepancy is defined by 

(1) = ln s lN(R)-V(R) 
RW[0,1) 

where 

[0) {[Si til] x ...x [Sntn]: O < Si < ti < 1, i = 1, ... n} 

is the set of all closed n-dimensional rectangles with sides parallel to the axes lying 
in [0, 1)n. N(R) and V(R) denote the number of points of G(n) lying in R and 

the volume of R, respectively. We always have 0 < D(n) < 1. The discrepancy 
of a sequence of random numbers used in Monte-Carlo-Integrations is of interest 
because it appears in upper error bounds (see [6]). In practice, usually pseudoran- 
dom numbers generated by linear congruential generators are employed. Such a 
generator produces a sequence {xi } of m different integers with an integral initial 
value xo by the recurrence 

(2) Xi=a xi-, + b (modm), 0 < xi < m-1,i=1,2,3,... 

if the three integers m (modulus), a (multiplier) and b (increment) are properly 
chosen, which is assumed in the following (see [7, Chapter 3.2, Theorem A]). The 
fractions yi = xi/m are used as random numbers uniformly distributed on [0,1). 

Up to now, the discrepancy of those generators could be exactly calculated only 
in some simple cases for a small number of points in G(n). This was done by the 

examination of all open and closed rectangles with points of G(n) on the borders. 

Taking the set GM) of all generated pairs (Y7+1) from a generator (2), U. Dieter 

determined the deviation I LN(R) - V(R)I for the two-dimensional rectangles R 
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using Dedekind sums (see [4], [5]). In this way, the search for the rectangle with 
maximal deviation is expensive, so that estimates for the discrepancy were given 
instead of the exact value. H. Niederreiter calculated estimates for the discrep- 
ancy for n > 2 as well as estimates for the discrepancy of subsequences of linear 
congruential generators (see [10], [11]). 

Here, an algorithm for the exact determination of the two-dimensional rectangle 
discrepancy is presented. We examine the set G(2) of all generated pairs of a linear 
congruential generator with period length m. As is well known, this set has a 
lattice structure (see [2], [5], [8], [9] and [1], [12] for the sublattice structure). A 
change of the increment b of the generator yields only a shift of the lattice (that 
is the periodic continuation of the generated pairs). The assessment of the lattice 
structure with the help of reduced bases or the spectral test (see [3], [7]) thereby 
does not change. The bounds of discrepancy are independent of the increment, too. 
But the discrepancy may depend on the increment as the following example shows. 

Example 1. The linear congruential generator with m = 16, a = 9 and b = 1 has 
discrepancy 48 which is obtained for the rectangle R shown below. If we change 
the increment b to 3, the lattice is shifted by the vector (2/s6) So that the rectangle 
R lies at the border of [0,1)2. Therefore, we have a smaller discrepancy, namely 
47 in this case. 

0 0 
0 

1 - _ _ - - n1 

0~~~~ o - _0 

0 

0~~~~1 
0 

0 ~ ~ ~~~ 

. * ~~~I 

0 

* R * 0o 

In order to avoid these difficulties at the borders of [0, 1)2, we first examine the 
"lattice discrepancy" Dm , that is, the maximal discrepancy which appears among 
all discrepancies of the lattice points which lie in [0, 1)2 when the lattice is shifted 
by integral multiples of (l/?m) It is convenient to transform the coordinates by the 
factor m so that we get m integral lattice points in [0, m)2. We will then examine 

(3) m2Y2 : sup jmN(R) - V(R)j 
[Qm) REM[0,m ) 

with 

[0m) ={[s1,ti] x [s2,t2]: 0 < s1 < t1 < m, -m < 2 < t2 < m, t2 - s2 < m}, 

where the lattice is fixed in such a way that a lattice point lies at the origin. In 
Section 4 the algorithms developed in Sections 2 and 3 are modified to calculate 
Dm2) of a given linear congruential generator. 
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2. A Theorem About m2) The special lattice structure of a linear congru- 
ential generator allows us to replace a shift of the lattice in vertical direction by a 
shift in horizontal direction. So we can replace (2) in Eq. (3) by 

~(2) 
(-mm) = {[sj, tl] x [82, t2]: -m < si < tl < m, 0 < s2 < t2 < m, t1-s1 < m}. 

Then we follow U. Dieter and J. H. Ahrens [5], replacing the supremum taken over 

_((2)m) by a maximum taken over all open and all closed rectangles with lattice 
points on their borders. Furthermore, we can suppose that the lattice points on 
opposite borders lie symmetrically to the midpoint of the rectangle. Otherwise, 
corresponding rectangles could be found with greater deviations. If we shift any 
rectangle by a linear combination of lattice vectors, the deviation ImN() -V(.) I has 
the same value. Thus we examine rectangles [-1, r] x [0, h] and (-1, r) x (0, h), where 
1, r, h are integers with 1, r > 0, 1 + r < m and 0 < h < m. Special cases, as the case 
of open rectangles R with 1 + r = m or h = m which yield ImN(R) - V(R)I < 2m, 
are negligible. Setting 11 = I and r1 = r, we can calculate the lattice points (712) 
and (2r) on the left and right boundary by 

(4) 12 -all (modm) and r2 ar1 (mod m), 

respectively (note that the lattice is shifted by ( ?b) so that a lattice point lies at 
the origin). Because of the supposed symmetry we have the lattice point (2h) on 
the upper border of the rectangle with 

h1 =r1-11 and h2=12+r2. 

This determines the height h2 of the rectangle. We can get h2 > m, but we will 
show in the proof of Theorem 1 that this does not lead to any falsification. With 
relationship (4) we examine the sets 

v := {[-11, ri] x [0,12 + r2], 1 < 11,r < mr-1, 11 + r1 < m} 

of all closed rectangles with four lattice points (these are (?), (11'), (r) and (ri-li)) 
on their borders, 

W := {[0,ri] x [0,r2], [-lI,0] x [0,12], 1 < l1,rl < m -1} 

of all closed rectangles with two lattice points lying on two opposite edges, and the 
set 

F := { (-11, r) x (0, 12 + r2), 1 < 1I ,ri < m- 1, 11 + ri < ml 
of all open rectangles with four lattice points on their borders. If we have a rectangle 
R in v (or ~W) for which mN(R) -V(R) is negative, we examine the corresponding 
rectangle (or a somewhat bigger one) in ' and get a greater deviation. On the 
other hand, for R E &' with mN(R) - V(R) > 0 we examine the corresponding 
rectangle in v to get a greater deviation. Because of this, we are interested in 

(5) max max (mN(R) - V(R)), max(V(R) - mN(R))) 
RE-VU,50 ~ REC? /, 

In the following we determine the number P(11, r1) of lattice points in a rectangle 
R = [-ll, ri] x [0, 12 + r2] as a function of 11 and rl. Because of the lattice structure 
of the linear congruential generator the lattice points lie on the "lines" 

90= {p = A(i) )- ( A integer} I uinteger. 
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The smallest and the largest parameter ,u1 and u2 of the lines g,9 which cut the 
rectangle [-11, rl] x [0, 12 + r2] are given by 

alll ar,l 
Y1 = L--g and M2 = I 

respectively, where [x] denotes the greatest integer less than or equal to x. For 
fixed , (M1 < ,u < ,U2) the bounds Al(ps) and A2(p) for which all lattice points 
p = A(1) -,u() with Al(,u) < A < A2(9U) lie in the rectangle are given by 

l 
-11 for u1=,uM,, >1(8)= 8 

l for Ml < 9 < 92 

and 

A2(M)=rl -1l-Al(M1l+,u2-u) forp1 < 1<92, 

where [xl denotes the smallest integer which is greater than or equal to x. For 
11 < / < ?2 we have A2 (e) - A1 (e) + 1 lattice points lying in the intersection of 
g,9 and the rectangle. Summation yields 

jA2 

P(ll, ri) = E (A2 (,U) - A (U) + 1) 

IA2 

= (Y2 - Y + 1)(r - 11 + 1) - 
E: (Al(Ml + M2 - I) + \1 (M)) 

~~~S~~~~SiH= 

A2 

= (Y2 - l + 1)(r - 11 + 1) + 21 - 2 E 
pm 

S=S1 +1 

= (12 - IL, + 1)(r, - 11 + 1) + 21, - 2 E a + 1) + 2, 
=SI1 +1 

because [] - [] + 1 for ,u $ 0 and 1/11 < a, since a and m are relatively prime. 
Using (4), we calculate the area A(11, rl) of the rectangle by 

A(ll, ri) = (r, + 11)(12 + r2) 

= a(rl- 1 - m(ri + 1') + - 

Now we define the "deviation function" D by 

(6) D(11, rl) := mP(11, rl) - A(11, ri). 

Using the representation of P(11, ri) and A(11, ri) and selecting the terms depending 
on 11 and r1, respectively, we get 

(7) D(1, ri) = F(11) + G(ri) 

with F(O) = 0 and 

(8) F (l- =m ([]1+ 1 m + a] al m 

(8) F(l) = m -1-+ 1- 21 +2Z -J: +a12, 1 1 . m1 
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and 

[ar] 

G(r) = m (2r [-] + r + 1 - [] 2 ar 2 
] r = , . .,m - 1. 

LEMMA 1. The following equations hold: 

(a) F(l) = F(m -1), 1 = 1, ..., m- 1, 
(/3) G(r) =G(m-r), r =1,... ,m-1, 

(-y) F(l) + G(l) = 2m, 1= 1,.. .,m-1. 

Proof. According to (8) we have 

F(m-1) = m ([m -m + + 1-2(m-1) [m ]) 

am-al 

+ a(M-_1)2 + 2m S 
ys=1 

Because of [ain-a1] = a-[] - 1 the sum (without the factor 2m) can be written 
as 

a [Um a 

____ al ,u= 1 IA=a-[ 

Here, ,um (mod a) runs through all residues modulo a when ,u runs from 1 to a, 
because a and m are relatively prime. Therefore, 

a 1a 

E [a] a!Z(im 
- (,um mod a)) 

jA=1 
a a 

sA=1 

m(a +) a-1i ( 

2 
ja=1 

2 2 

and 

a 8 [ 8 s ] (m m a al al 

al js=O 1s=1 
1A=a- ml 

(note that [-] = -[Am]-1 for 1 < - <in Equation (-y) can easily be shown. 

(,3) follows from (a) and (-y). O] 

With the help of Lemma 1 we will prove the following theorem. 

THEOREM 1. The discrepancy Dm2) is given by 

(9) m 2b$2) = 2m + max F(l)- min F(l), 

where F is defined in (8). 

Proof. We have N(R) = P(1, rl) for closed rectangles R E V UR and 
N(R) = P(11,rr) - 4 for open rectangles R E SF and always V(R) = A(11,rl). 
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In order to determine the maximal deviation jmN(R) - V(R)l for all rectangles 
R E v U q U &', we have to calculate 

Dmax max (D(l, r), 4m-D(l, r), D(O, r), D(l, 0)). 

We can ignore the restriction I + r < m because of formula (7) and the symmetry 
of the functions F and G (Lemma 1). Thus Dmax is equal to the expression in (5). 
Using Lemma 1 (,v), we get 

max D(l, r) = max F(l) + max G(r) 
1<1,r<m-1 1<<m-1 1<r<m-1 

= 2m + max F(l)- min F(l) 
lU<1m-1 lU<1m-1 

and 
4m - min D(l, r) = 2m + max F(l) - min F(l). 

l<l,r<m-1 1 <I<m-1 l<l<m-1 

Since F(O) = 0, F(1) = a and maxl<l<m-j F(1) > F(1) > 0, we get 

(10) max D(O, r) < 2m + max F(l) - min F(l) 
1<r<m-1 l<l<m-1 l<l<m-1 

and 

(11) max D(l, 0) < 2m + max F(l)- mim__ F(l), 

since minj<I<m-1 F(l) < F(1) = a < m. Using the symmetry of F once more, we 
can restrict 1 by 1 < I < [m!] instead of 1 < 1 < m - 1. The formulas (10) and 
(11) show that the maximal deviation Dmax is achieved for rectangles R lying in 
v or W'. To finish the proof we have to show that the rectangles R E .W U F' with 
height h2 = 12 + r2 > m do not falsify the calculation (the trivial case 12 + r2 = m 
was examined earlier). For the rectangle R = [-I1, r] x [0, 12 + r2] E vY with 

12 + r2 > m we have the rectangle R' := (-rl, 11) x (0, 2m - (12 + r2)) E F' with 
height 2m - (12 + r2) < m, and the deviation ImN(R') - V(R')I is equal to 

4m - D(rj, 11) = 4m - F(ri) - G(11) 

= F(l) + G(ri) = D(1i, ri), 

which is the same deviation as for the rectangle R. Analogously we examine for 
a rectangle R = (-l1,rl) x (0, 12 + r2) E F' with 12 + r2 > m the corresponding 
rectangle R' [-r1, 1i] x [0, 2m - (12 + r2)] E -v with 2m - (12 + r2) < m, which 
yields the same deviation as R. This proves the theorem. Ol 

3. Algorithms for Calculating Dm2) On the basis of Theorem 1 we could 
formulate an algorithm to compute the discrepancy Dm2). We would calculate F(l) 
for 1 = 1,... , [m ] according to formula (8) and determine the maximal and minimal 

value of F. Using formula (9), we would get Dm2. In order to get a faster algorithm, 
we examine the differences Z(l) := F(l + 1) - F(l). 

LEMMA 2. For Z(l) = F(l + 1) - F(l) with F defined in (8), the following 
equation holds: 

J 2(almodm)-(mi-a) if almodm <im-a, 

(12) Z(l)= 2m-a if almodm = m-a, 

1 2(al mod m)-(2m-a) if almodm > m-a. 
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Proof. Using (8), we have 

Z(() = m ([ 1 [?] 1- 2(1 + 1) [a(l+ 1) + 21 [al) 

+2m ~~A 
m /I 

( /t1 
a =l a 

The difference of the two sums is nonzero if and only if [a(l+)] = [a] + 1. Using 
d:= [a(1+1)] - [a{] we can write d- [([al] + 1) m ] for the difference of the sums 
and get 

Z(() = 2 al-rn [m ] ) +2md (-I+ [a+a[ m]])md-m+a 

= 2(almodm) + 2md [( )o ] - md- m+a. 

For d = 1 we have al mod m > m - a, which implies (-al) mod m < a, with equality 
if and only if I = m - 1. This completes the proof. 0 

With the help of Lemma 2 we can formulate the following algorithm for the 
determination of bm 

ALGORITHM 1. 

1. Input modulus m and multiplier a. 
2. Calculate F(l) for I = 1,..., [m!] by F(1) = a and F(l) -F(1-1)+Z(1-1) 

with Z(l - 1) calculated by formula (12). 
3. Output discrepancy Dm 4-(2m+max1<,<m , F(l)-min1<1<[M ] F(l))/m2. 

The following figures show in two examples F(l) for I = 1,... , [m] (linearly 
interpolated). 

80 150 

0 

-30 0 
32 

FIGURE 1 FIGURE 2 
F(l) for m = 64, a =17 F(l) for m = 64, a =53 

The examples show that the increases Z(l) often have the same sign for many 
successive values of 1. Therefore we search for those values where the sign of the 
function Z is changed. At these points we have local extremes of the function 
F. The search for these points leads to a distinction into many cases with many 
complex formulas which are not very useful for an algorithm. In the following 
theorem some simple formulas are given to describe all candidates for the values 
(< [am]) where the sign of the function Z changes. 
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THEOREM 2. Let 

(13) lk [m+a+2mk] k O k th k [a-[1 

and 

(14) k [m(k+ )] k=O,...,k, withk:= [2]. 

Then for I = 1,.*.*, [m] we have to expect a local minimum of F(l) only at the 
points lk defined in (13) and a local maximum of F(l) only at the points Ik or 'k + 
with lk defined in (14). 

Proof. The case almodm = m - a, which means l = m - 1, can be excluded 
in the following because the search for extremes is restricted to I < [m]. 

For almodm < m - a we have by (12) that 

(15) Z(l) < 0 if 0 < almodm < m a 

and 

(16) Z(l) > 0 if 2 < almodm < m - a. 
2 

For al mod m > m - a we have by (12) that 

(17) Z(l) < O if m-a<almodm < m _-2 

and 

(18) Z(l) > 0 if m - - < almodm < m. 
2 

The formulas (15) and (18) show that the function Z has a periodic behavior with 
"period m". Therefore, the function F increases and decreases with period m. 
Now let us study such a period. If we write al mod m = al - km with k = [al'], all 
values of I which belong to the same period have the same value of k. 

(i) In order to find candidates for a minimum of F we suppose Z(l) > 0. In the 
case of formula (16) we examine Z(l - 1), and if we are also in the case (16), we 
will take I - 1 instead of I and so on. In this way we search for the value ik with 
the property 

a(lk-1)-km? 2 <alk-km, 

which leads to 
[m+a+2mk] 

Ik = 2a . 

In the case (18) we have Z(l - 1) > 0 (case (16)) or Z(l - 1) < 0 (case (15)) but 
never case (17) for I-1. Therefore, the candidates for a minimum are always given 
by Ik defined in the above formula. The condition Ik < m leads to k < a-1 

(ii) In order to find candidates for a maximum of F, we suppose Z(l) < 0. In 
the case (17) we determine ik by 

a(lk-1)-km < m-a <alk-km, 

which leads to 
rml 
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If we are in the case (15) with Z(l) < Obut Z(l-1) > Owitha(l-1) mod m > m- 
(that is case (18)), we determine Ik-1 according to the above formula and add 1. 
The condition 'k < m leads to k < a. 

This completes the proof. 0 

In view of Theorem 2 we have to search the absolute minimum and the absolute 
maximum of the function F only at the points Ik and 1k, or lk + 1, respectively. 
The number of these points is about 3 - a. Let 2 

zo-1 

SO0: F(to) -F(1) = E Z(l) 
1=1 

and 
'k-1 

Sk := F(Lk)-F(lk-1 +1) = Z(l), k= 1 k, 
1=lk-1 +1 

the sum of all negative increases between a candidate for a local maximum and the 
next candidate for a local minimum, and let 

1 k-i 

Tk := F(lk) -F(Lk) = E Z(1), k = 0, ..., k, 

the sum of all positive increases between a candidate for a local minimum and the 
next candidate for a local maximum. Using (12), we get by easy calculations 

(19) So = (Lo - 1)(a(Lo + 1) - m), 

(20) Sk = (Lk -Ik-1 - 1)(a(lk + Ik-1 + 1) -m(2k + 1)) for k = 1, ... I k, 

(21) Tk = (lk-Ik)(a(lk + lk)-m(2k + 1)) for k = 0,.. ., k 
and 

(22) Z(lk) = a(2lk + 1) - 2m(k + 1). 

Using these formulas, we get an algorithm which is much faster than the previous 
algorithm if a is small relative to m (see also Remark 1). 

ALGORITHM 2. 

1. Input modulus m and multiplier a. 
2. Fmax +- a, Fmin +- a, F a- a, k <- [ 2], k [2j. 

3. Fork=Otok 
calculate lk, Ik according to the formulas (13), (14) 
calculate Sk, Tk, Z(lk) according to the formulas (19)-(22) 
F*- F + Sk; if F < Fmin then Fmin - F 
F+- F + Tk; if F > Fmax then Fmax - F 
F F + Z(lk); if F > Fmax then Fmax *-F. 

4. Output discrepancy D() +- (2m + Fmax - Fmin)/m2 

Remark 1. It is well known that the two generators xi _ a - xi- +b (mod m) and 
xi-a' a xi-1 + b (mod m) with a * a' -1 (mod m) have the same lattice structure 
(similarly for a a" --1 (mod m)). The "inverse multiplier" a' can be calculated 
quickly (for example by the Euclidean Algorithm). If we choose the smallest value 
of a, a' (or a") instead of a, the second algorithm will be faster than the first in 
almost all cases. 
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4. Exact Determination of DM . As it can be seen below, the lattice dis- 
crepancy Dm calculated in Algorithm 2 (or Algorithm 1) is equal to DM in almost 
all cases. But in order to include cases as presented in Example 1, we now want to 
modify the algorithms presented above. 

First we have to record in the algorithm all values 11 and r1 for which the function 
F has the maximal and minimal value, respectively. Based on the relationship 
between rectangles of v and F (see proof of Theorem 1), and using the symmetry 
of the functions F and G (see Lemma 1), we get the following rectangles for each 
pair of 11 and rl: 

(23) R { [-11, ri]X[0,12 +r2] if 12 +r2 < m, 
(-rl, 11) x (0, 2m-(12 + r2)) if 12 + r2 > m 

and 

[11 -rm,ri] x [0,m-12+r2] if 11 >r1 and 12 >r2, 

(24) R | [-I,, m-ri] x [0, m + 12-r2] if 11 < r1 and 12 < r2, 

(-rl,rm-11) x (0,nM+12 -r2) if 11 >r1 and 12 <r2, 

(r-rm, 11) x (0, m-12 + r2) if 11 < r1 and 12 > r2, 

which lead to the maximal deviation m2Dmb). The values 12 and r2 are determined 
by 11 and r1 according to (4). Now we have to check whether one of these rectangles 
can be moved into [0, M)2 in such a way that the lattice point (0) at the bottom of 
the rectangle fits in a lattice point of the original lattice generated by xi _ axi-1 + b 
(mod m). The rectangles R1 and R2 can be moved in that way if and only if there 
exists a lattice point of the original lattice in the "control rectangles" 

(25) C = I [1i,mr-rl) x [0,mr-(12+r2)) if 12+r2 <im, 

( [ri,rm-1l]x[0,(12+r2)-M] ifl2+r2>rm 

and 

Im[-l1, m - ri) x [0,12 - r2) if 11 > r1 and 12 > r2, 

(26) C2 = [1i,rl) x [0,r2 -12) if 11 < r1 and 12 < r2, 

[rl, l] x [0,r2 -12] if 11 > r1 and 12 < r2, 

[ [m-r1,m-1l]x[0,12-r2] if 11 < ri and 12 > r2, 

respectively. Therefore, we define the function check(., ) by 

(27) check(li, ri) { 
true if there is a lattice point in 

C0 
or C2, 

false if there is no lattice point in Ci and C2. 

If check(li, rl) = true for at least one pair 11, r1, then the descrepancy Dm2) is equal 
to Dm as calculated by the algorithms of Section 3. Otherwise, we have to proceed 
as in the following general algorithm. 

ALGORITHM 3. 

1. Input modulus m and multiplier a. 
2. Calculate Dm according to Algorithm 2 (or Algorithm 1) and record all 

values Imax and rmin for which F is maximal and minimal, respectively, 
max *- Fmax, min - Fmin,DDis 

( bm2)$ Dis 2. 
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3. Calculate check(lmax, rmin) for each pair lmax, rmin by (27); 
if check(lmax, rmin) = true for at least one pair, then goto 7. 

4. Fmax *- min, Fmin max 
for I = 1 to [M ] 

calculate F(l) by F(1) = a and F(l) +- F(l - 1) + Z(l - 1) with 
Z(l - 1) calculated by formula (12); 

if F(l) > Fmax and F(l) < max 
then calculate check(l, rmin) for all rmin, 

if check(l, rmin) = true for at least one rmin then Fmax F(l) 
if F(l) <Fmin and F(l) > mm 

then calculate check(lmax, 1) for all Imax, 
if check(lmax, 1) = true for at least one Imax then Fmin + F(l) 

5. If Fmax > min then Dis1 - (2m + Fmax - min)/m2 else Dis1 - 0 
if Fmin < max then Dis2 +(2m + max-Fmin )/m2 else Dis2 
Diso ( max(Diso, Disl, Dis2) . 

6. For I = 1, ..., [m] calculate F(l), determine all values Imax and rmin with 

F(lmax) = max1<1<[m]{F(l): F(l) < max}, 

F(rmin) = min1<1<[m]{F(l): F(l) > min}, 
max *- F(lma), min +- F(rmin), Dis *- (2m + max -min)/m2 

if Dis < Diso then Dis = Diso, goto 7, else goto 3. 
7. Output discrepancy D(2) +- Dis 

Numerical tests show that for almost all increments b the discrepancy DM is 
already obtained by Algorithm 2 (and Algorithm 1). 

Example 2. For m = 2e, 3 < e < 12, we examine all generators (2) with period 
length m. The discrepancy DM) differs from the lattice discrepancy Dm only in 
the cases a = m2 + 1 and b = m + 1 or b = m - 1 and in addition for odd e 
inthecases a= 2m- 1 and b = 1(m2 -1) or b = m2 -1 aswellas a= m-3 
and b = m - 3 or b = m - 1. This is a very small number of exceptions, and 
the discrepancy is relatively large in these cases so that the exceptions are not 
interesting in applications. 

Example 3. We examine the generator (2) with modulus m = 232 and Marsaglia's 
multiplier a = 69069 and increment b = 1 (see [9]). The estimation mD$(2) > 15545 
given in [11] was sharpened to mD$(2) > 15546.9 in [1] by simple considerations of 
the special lattice structure of the generator. Using Algorithm 3, we get the exact 
value 

mD$2) = 66800785799847 2-32 = 15553.26995 

(usually mD$(2) is examined instead of D 2)). On a SIEMENS MX-2 computer (32- 
bit CPU) the algorithm required about 110 CPU-sec. The check of other increments 
b =3,5,...,69069 takes additional 80 CPU-sec. In all these cases we have Dm = 

(m2). 

Remark 2. The algorithms can be used also to calculate the discrepancy of 
multiplicative congruential generators (b = 0 in (2)). For example, in the case of 
modulus 2e we have to use m = 2e-2 in the algorithms and the control rectangles 
have to be modified. Similarly, the discrepancy of a sublattice can be determined. 
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Remark 3. The considerations for the calculation of the two-dimensional rectan- 
gle discrepancy presented here can be extended to the cases of higher dimensions. 
But in these cases there are great difficulties to give a simple form of the correspond- 
ing deviation function D so that effective algorithms cannot easily be developed. 
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