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On the Computation of Unit Groups and Class 
Groups of Totally Real Quartic Fields 

By J. Buchmann, M. Pohst, and J. v. Schmettow* 

Abstract. In this paper we describe the computation of a system of fundamental units 
and of the class group for each totally real quartic field Y of discriminant less than 
106. Generating equations, integral bases, and the Galois groups for all those fields were 
recently given by Buchmann and Ford. 

1. Introduction. In this paper we describe the computation of a system of 
fundamental units and of the class groups for all the 13073 totally real quartic 
fields of discriminant less than 106. Generating equations, integral bases and the 
Galois groups for all those fields were presented in Buchmann and Ford [3]. 

The theory for the algorithms used here has been previously presented in Buch- 
mann [1], [2] and in Pohst and Zassenhaus [9], [10]. One motive for doing this work 
was our interest in the practical performance of those methods. It is our experience 
that they are, in fact, very efficient. This paper describes the implementation of 
the algorithms on a computer and the main results of the computations. 

The subject of the second section is the computation of subgroups of the unit 
group of finite index by means of the reduction theory described in [1]. The third 
section shows how to compute a basis for the full unit group using a new method 
for computing a lower bound for the regulator (see [10]). In Section 4 the imple- 
mentation of the class group algorithm [9] is presented together with statistical 
information about the distribution of the class numbers. The comparison of our 
results with the predictions of Cohen and Martinet [4] do not show great agree- 
ment. We remark, however, that, given the range of discriminants we considered, 
this could not be expected. 

2. Computation of Maximal Systems of Independent Units. In order 
to compute a maximal system of independent units in the maximal order a of the 
totally real quartic field Y, we applied the following method which is a modification 
of the algorithm presented in Buchmann [1]. 

A number ,u from a fractional ideal a of 9 is called a minimum of a if there is 
no 0 5$ a E a such that I a(t)I < I,u(t)I for 1 < i < 4. (By ((i) we denote the ith 
conjugate of a number ( E S.) The norm of such a minimum is bounded: 

IN(1u)I < VN(a). 
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Here, . denotes the discriminant of Y and N(a) is the norm of the ideal a. Each 
minimum p of a has precisely four principal neighbors which are defined as follows. 
The ith principal neighbor of ,u is the minimum v of a which is uniquely determined 
by the following conditions: 

glv(j) I < lp(j) I for 1 < j < 4, j :A i, 

{a E a: la(i)j < max{Jv(j)j, IIt()jA } for 1 < j < 4} = {0}. 

The minima of a together with those neighbor relations form a graph G. The unit 
group W'r of & acts on G and G/lg' is finite. More precisely, it was shown in 
Buchmann [2] that 

IG/&I4 = O(R), 
where R is the regulator of S. A fractional ideal a of M is called reduced if 1 is a 
minimum of a. If a is a reduced ideal and if -yl,.... 4 are the principal neighbors 
of 1 in a, then the ideals 

ai = -a 
'-Ii 

are reduced and those reduced ideals are called the principal neighbors of a. Hence 
the reduced ideals together with those neighbor relations form again a graph which 
is isomorphic to G/I-. Each reduced principal ideal a of 69 can be written in the 
form 

a= - 

with a minimum ,u of 6. Two reduced ideals -69 and 1 & are equal if and only if 
//lv is a unit in 6. It is, however, not advisable to store a reduced ideal a in terms 
of the corresponding minimum ,p since those numbers become extremely large. We 
rather use the fact that there is precisely one positive integer d and one integer 
matrix (ai,j) which is in Hermite normal form [10] such that the greatest common 
divisor of d and all matrix entries ai,j is one and that the numbers 

14 
aj= ZEaj,kWk (1<1j4) 

k=1 

form a -T-basis of a. d is called the denominator of a and (a,j) is called the 
HNF-matrix of a. Reduced ideals are stored and easily compared in terms of their 
denominators and their HNF-matrices. 

Before computing a unit e explicitly, we compute its logarithm vector 

Log E = (log le(1) l, log lj(2) 1, log 5e(3)1). 

Only if we know that the unit e is neither a root of unity nor dependent on the 
units which we have found previously, do we compute this unit explicitly. 

Now we can present the algorithm: 

ALGORITHM 2.1 

* Input: An integral basis of S. 
* Output: A system e1, 62, 63 of independent units of 69. 
1. (Initialization) 

p 1-, k +- 1, a1 6, v+ 0, r - 0. 
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2. (Computation of the principal neighbors) 
Compute the principal neighbors 1,... ,- ?4 of 1 in the reduced ideal ak 

and the principal neighbors bi = 1i ak (1 < i < 4) of ak. 

3. (Comparison of the new reduced ideals with the old ones) 
For 1 < i < 4 execute the following steps: 
Compare bi with all reduced ideals a,, 1 < I < p, which have already been 
computed. 
If bi = al for some I then compute the logarithm vector vi of the corre- 
sponding unit: v = vk + Logqj - Vj. 

* If r = 0, i.e., if we did not find a nontrivial unit so far, and if vi # O, 
then put r +- 1, e +- v, and compute a unit e1 with Loge1 = e' by 
means of Algorithm 2.2. 

* If r > 0 and if e',... , v, i are linearly independent, then put 
r- r + 1, er +- and compute a unit er with Loger = er by 
means of Algorithm 2.2. For r = 3 terminate. 

But if bi is distinct from all the previously computed reduced ideals, then 

put p - p+ 1, ap - Bi, yp - ij, vp - v, Np +- k. (The numbers Np will 
be needed in Algorithm 2.2 for the computation of the units.) 

4. Set k- k + 1 and go to 2. 

As we have already pointed out, each reduced ideal aj computed in Algorithm 
2.1 is of the form 

Aj=- 
Aj 

with a minimum ,ij of 9. The unit er needed in step 3 of Algorithm 2.1 can be 
computed via 

Cr = /kli//l 

In order to calculate this unit we must be able to compute the minima ,qj (and 
their inverses). This can easily be done by using 

ALGORITHM 2.2 

* Input: The index j and the numbers -yi, Ni (1 < i < j) computed in 

Algorithm 2.1. 
* Output: The number j. 
1. (Initialization) Set ,aj +- 1, i +- j. 
2. (Multiplication) Set qj +-j-y 
3. (Change i) Set i - Ni. For i = 1 terminate, else go to 2. 

Clearly, a slight modification of this algorithm also yields the inverse of ,qj. 
Finally, we have to explain how the ith principal neighbor ni of 1 in a reduced 

ideal a of a and the corresponding principal neighbor - a is computed. For this 
7/i 

purpose we compute a basis a1,... , a4 of the Minkowski lattice L(a) which corre- 
sponds to the ideal a: 
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where a1,... , a4 is a Z-basis of a. Now we apply 

ALGORITHM 2.3 

* Input: A basis a1, ... , a4 of the lattice L(a) and the index i. 
* Output: A lattice vector b = 4 Ajaj in L(a) which corresponds to the 

ith principal neighbor nj = E4= Ajaj of 1 in a. 
1. (Initialization) Set f - 2, g - 0, Cj - 1 for j :$ i, Ci - 100. 
2. Search for a lattice point 0 : b = (b1..., b4) with IbjI < Cj for 1 < j < 4. 
3. If the search was successful then set Ci bi/f. Then go to 2. In case of 

an unsuccessful search and g = 0 set Ci - 2Cj and go to 2. In case of an 
unsuccessful search and g = f = 1 terminate. Else set f +- 1, Ci + 2C 
and go to 2. 

Next we explain how to search for the lattice point b in step 2 of Algorithm 2.3. 

ALGORITHM 2.4 

* Input: A basis a1,. . . ,a4 of the lattice L(a) (aj = (ai,j... ,a4j) 
1 < j < 4), constants Ci, 1 < i < 4. 

* Output: A lattice vector b = (b1,..., b4) :$ Lo E L(a) with IbiI < Ci for 
1 < i < 4 or the information that no such lattice vector exists. 

1. (Rescaling of basis) Set ai,3 +- ai,j/Ci for 1 < i, j < 4. 
2. (Reduction) Apply LLL-reduction to the basis a', ... , a4. 
3. (One basis vector admissible?) If all the coordinates of one of the basis 

vectors are in absolute value less than 1, then return the corresponding 
vector b in the original lattice and terminate. 

4. (Enumeration) Using the search strategy of Fincke and Pohst [6], search 
for all the lattice vectors whose length is less than 4. For each of those 
vectors check whether all of its coordinates are in absolute value less than 
1. If such a vector is found, then return the corresponding vector b in 
the original lattice and terminate. Otherwise, no admissible lattice vector 
exists and the algorithm returns this information and terminates. 

A basis of a' = 1 a is obtained by dividing all the basis elements of a by ni. 
The denominator d' of a' can then easily be computed and the Hermite reduction 
algorithm [5] yields the HNF-matrix of a'. 

We conclude this section with some remarks. The algorithm described above 
can easily be generalized to arbitrary number fields. We will prove in a subsequent 
paper that the algorithm always succeeds to find a maximal system of independent 
units of &. 

The practical performance of the algorithm is quite impressive. On the one hand, 
the index I of the subgroup generated by the units found by the algorithm is mostly 
1, i.e., most of the time the algorithm actually yields a system of fundamental units. 
In the rest of the cases, I was either 2 or 3 except for very few cases with small 
discriminants where indices up to 8 were observed. On the other hand, the number 
p of reduced ideals needed in Algorithm 2.1 in order to compute the units is quite 
small (< 100). 

Table 1 gives an indication of the characteristic behavior of the algorithm. 
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3. Computation of Fundamental Units. To determine generators for the 
full unit group W/r from the units El, E2, 63 computed in Algorithm 2.1, we proceed 
as follows. 

In a first step we compute an upper bound for the index (-: Z) for , = 

(-1) x (61) x (e2) x (E3). Since this index equals the quotient of the regulator of 
'/, say R(?4), and the regulator R of J, and since R(Z/) can be numerically 
calculated, it remains to compute a lower bound for R. 

Generalizing an idea of Remak [11], [10], we determine lower bounds M1, .. ,j 
for the first j successive minima of the positive definite quadratic form 

4 

E(log jI(j) 1)2 (e E 4) 
j=1 

of determinant 4R2. Then Minkowski's theorem on successive minima yields 

R> (M1 ... M- 1M-1)1/2 [10]. 

The lower bounds M1,.. ., Mj are determined in the following way. In M we com- 
pute a set 

S= laE \ :Tr(a2) ?C} 

for a suitably chosen constant C > 6. The choice of C depends on how much 
computation time is needed to enumerate the corresponding ellipsoid (see Fincke 
and Pohst [6]). For example, C = max{Tr(E?): 1 < i < 3} would be optimal but is 
usually too large for exhaustive search. In our computations we chose C = Tr(w 2), 

where the basis w 1, . ,W4 corresponds to an LLL-reduced basis of the lattice L(g). 
Let i, .. ., 5k be a maximal set of independent units contained in S subject to 

4 4 

E g(j) 12 = min I E1(j) 12: E E Z/,a n s, 61 e. . .,Eil E 
j=l t ~~j=l 

independent for 1 < i < k. 

We set 

Mi* = 'IY(e,2 f or 1 < i < k, 

Mi* =C for k+1<i<3. 

Then the solution of an extremal value problem with side conditions (see Pohst and 
Zassenhaus [10]) yields 

Mi > (log (M4 + (()16) -1)/)) for 1 < i < 3. 

In this way we obtain very good lower regulator bounds and, correspondingly, very 
good upper bounds for (Z/y-: ZE). Table 1 shows some typical data. 

The extension of ZE to D's is now routine. Since the upper bounds for (W{ - 

are quite small, and since the rank of the unit group is small, too, we proceed in a 
straightforward manner by trying to find a unit E E &- wi/th 
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for 1 < i < 3, 0 < mi < p and for each prime number p below (i/y: S). It suffices 
to compute the right-hand side of (1) numerically with adequate accuracy to find 
a solution ? E Z/{- via the dual basis (if such a solution exists). In the worst case 
which occurred during our computation, namely for p = 23, this requires 553 tests. 
For larger values of p and larger ranks of the unit group, one should use the more 
ingenious methods described in Pohst and Zassenhaus [10]. 

TABLE 1 

Lower regulator bounds and period length. 

___ p R R> (W : We/) 
948609 11 67.4120 21.9628 1 
948717 2 39.0451 19.3235 2 
948777 13 163.2968 16.4482 1 
948800 3 22.2365 13.5956 1 
948896 10 169.0664 18.6861 1 
949009 18 119.5694 17.5574 1 
949085 5 50.5139 23.6635 3 
949248 18 81.6801 14.5766 1 
949464 5 108.0004 15.6859 1 
949464 19 104.5055 15.7258 1 
949464 43 313.7682 23.9639 1 
949469 6 108.0651 17.9186 1 
949504 8 99.5800 26.3687 1 
949525 15 51.0950 7.9975 1 
949528 10 165.7839 22.9010 1 
949644 14 156.3588 19.6653 1 

4. Computation of Class Groups. For the computation of the class group 
Cly- we implemented the algorithm of Pohst and Zassenhaus [9], [12]. 

The main idea is to determine the prime ideal decomposition of all prime numbers 
below the Minkowski bound 

My- = 0.09375Vq < 93.75 

and to find sufficiently many relations between those prime ideals. (We note that it 
suffices to choose My- = r/ =500 = 0.04472vl [8].) The relations are stored in 
a so-called class group matrix CGM = (ci,j). The class group structure is derived 
from the Hermite normal form of the class group matrix. In this way the number 
of necessary principal ideal tests is kept to a minimum. 

ALGORITHM 4.1 

* Input: An integral basis 1 = w1,.. , W4 of Y and a system of fundamental 
units. 

* Output: The class group structure. 
1. Compute the Minkowski bound My-. 
2. Decompose all prime numbers Pi,...,Pw below My- into prime ideals 

Pi, ... I Pv viz. 

Pj& = fPJp 'j. 

The exponent vectors (ci,j, ... , cv,j) form the first w coluums of the class 
group matrix CGM. 
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3. Determine (at least v - w) additional elements fjl satisfying 3j6 = 

Hl pc' (j = v + 1,...) and insert the exponent vectors into the corre- 
sponding columns of CGM. 

4. Replace CGM by its Hermite normal form and set w to the rank of CGM. 
In case w < v go to 3. 

5. Derive the class group structure by the methods explained below and ter- 
minate. 

In the sequel we explain the steps of Algorithm 4.1 in greater detail. 
In step 2 the prime ideal decomposition of the principal ideal pY generated by 

the prime number p < MF- is obtained as follows. Assume that 7 = d(p) for a 
zero p of a monic irreducible polynomial f E Y[t]. In case of p t (&: Y[p]) we 
factorize the generating polynomial f modulo pY[t] by Berlekamp's method ([7]): 

m 

(2) f(t)-17 fi(t)et mod pY[t] 
i=l 

implying 

m 
(3) P JJ Pei 

i=l 

with prime ideals 

(4) Pi= pa+ fi(p)9 of norm N(pj) = pdegf 

The case p 2 Y:[p]) is more difficult to deal with, since the factorization (2) 
does not necessarily yield prime ideals in (4). Here we applied a more general (but 
more "expensive") algorithm explained in [10]. 

We remark that for totally real quartic fields of discriminant less than 106, 
the number of rows of CGM is a priori at most 96. It did not exceed 47 in our 
computations. 

In order to determine principal ideals 3& which can be completely factorized 
over the factor base P := {Pi,... ,Pv} in step 3 of Algorithm 4.1, we compute 
vectors of Euclidean length below C (C appropriately chosen, in our case C = 30) 
in the Minkowski lattice L(a). By the inequality between geometric and arithmetic 
means, the norms of the corresponding algebraic integers f = biwi + + b4W4 
satisfy 

02 
IN(,3)1 < 

C2 

If N(fl) is a product of prime numbers p < Mg-, then 3& can be completely 
factorized over P. In order to find the maximum exponent k such that pk 3& 

for some prime ideal p = pY + ca E P, we must check whether pk I fl, i.e., 
f E pk = pk + ak6. We first compute the HNF-matrix of pk. For this purpose, 
we note that pkWi, ... , pkW4, Cakwl, ... I, ekW4 is a system of generators for pk over 
Y. The HNF-matrix H of pk is therefore obtained by applying Hermite reduction 
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modulo pk [5] to the matrix 

(a1,, al,2 al,3 al,4 pk o 0 O 
a2,1 a2,2 a2,3 a2,4 0 pk 0 0 

a3,1 a3,2 a3,3 a3,4 0 0 pk o X 

ka4,1 a4,2 a4,3 a4,4 0 0 0 p k 

where the ai,j are defined by 

4 

a k = Zai,jwi. 
i=l 

Then i3 E pk if and only if the system 

Hx1 

kb4J 

has a solution x E Y4. But that can be easily checked. 

In step 5 of Algorithm 4.1, CGM is a nonsingular v x v matrix in Hermite normal 
form. The columns represent exponent vectors with respect to the prime ideals pi 
whose power products are principal ideals. The determinant of CGM is a multiple 
of hg-. For det(CGM) = 1 the class number is 1 and we are done. This occurred 
in 11934 cases. Now let det(CGM) > 1. For ci,i = 1 we remove colunm i and row i 
of CGM without loss of information about the class group. The general treatment 
of the remaining matrix is contained in [9] and [12]; we only discuss those types 
of matrices which actually occurred in the 13073 cases we dealt with. In this last 
stage we applied the principal ideal test of [10]. 

1. CGM = (q), q E {2,3,5} (1014, 65, 4 cases), h,r E {1,q}. We only need 
to check whether p itself is principal. In that case the class number is 1, 
otherwise we obtain h = q and Cly _ Cq. 

2. CGM = (4) (51 cases), h_- E {1, 2,4}. The class number is 

1 p principal 
2 for p2principal, p not principal 
4 p not principal 

3. CGM = (6) (1 case; 9 = 861025), h_- E {1, 2,3,6}. Since neither p3 nor 
p2 are principal, the result is hy = 6, Cl- 06. 

4. CGM = (O o) (4 cases; E E {665856,738000,882000,946125}). We know 
that p2 E HF, p2 E HF. First we check P2 E HF. In all four cases the 
result is negative. Hence we check whether P1P2 or P1 are principal. In 
all cases both are not principal. Thus we have proved Cl_- C2 x C2, 

hy = 4. 

The multiplication of the prime ideals in the last case was done by using the ideal 
arithmetic developed in [9]. 
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We summarize the distribution of the class numbers in dependence on the struc- 
ture of the Galois groups r = Gal(P/e): 

r hr= 1 h9 = 2 h9 = 3 hr = 4 hy = 5 h=6 >_ 

D8 3822 582 45 34 2 1 4486 
C4 35 22 _ 2 _ _ 59 

V4 130 53 5 8 - - 196 

S4 7936 343 15 5 2 8301 
A4 22 9 - - - 31 

Z 11945 1009 65 49 4 1 13073 

r h, = 1 hs = 2 hs = 3 hs = 4 hs = 5 h = 6 6 

D8 85.20% 12.97% 1.00% 0.76% 0.04% 0.02% 34.32% 
C4 59.32% 37.29% - 3.39% - - 0.45% 

V4 66.33% 27.04% 2.55% 4.08% - - 1.50% 

S4 95.60% 4.13% 0.18% 0.06% 0.02% - 63.50% 
A4 70.97% 29.03% - - - _ 0.24% 

Z 91.37% 7.72% 0.50% 0.37% 0.03% 0.01% 100% 

The last tables present number fields of smallest discriminant for a given class 
group depending on the Galois group (h- = 4 denotes the cyclic group of order 4, 

hj = 2 .2 indicates the Klein four group). 

r h_ = 1 hs = 2 hr = 3 h = 4 hr = 2 2 hsr = 5 hr = 6 

D8 . 725 32625 97025 416000 738000 804005 861025 
C4 1125 51200 - - 882000 - - 

V4 1600 21025 485809 270400 665856 - _ 
S4 1957 56025 191769 556357 - 761428 
A4 L 26569 76729 - _ - I_ . 

We now present the above fields in greater detail: the first column contains 
the coefficients a1, a2, a3, a4 of the minimal polynomial f(t) = t4 + a,t3 + a2t2 + 
a3t + a4, the second column the field discriminant. In the third column we list an 
integral basis in terms of powers of a root p of f. The last two columns contain the 
coefficients of a full set of fundamental units in terms of the integral basis and the 
regulator. 
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f integral basis R 

- 1,-3,1,1 1 725 1, p, p2Ip3 ,- 1,0,0,-1 0.8251 
- 1,,0,01 
- 1,3,0,-i 

-1,-4,4,1 1125 1, p, p2, p3 1, -1,0,0 1.1655 
1,3,-1,-1 

1,0, -1,0 
0,-6,0,4 1600 1,p,p2/2,p3/2 1,-2,-i,i 1.5425 

1,2,0,-i 

0, -1,0,0 
0, -4,-1,1 1957 1, p, p2, p3 2, -3,-1,1 1.9184 

0, -2,-1,1 

-2,-23,24,-1i1 21025 l,p,(1 i-P2+ p2)/2, - 2,-3,24,-1 21 
(2 +p +3p2 +p3)/18 0,-i,0,i 5.0410 

- 6,5,2,-4 

- i,-1,0,0 
- 2, -7,3,8 26569 l,p,p 2, p3 9, -3, -7,2 15.7092 

- 11,-15,-2,2 

- 1,-24,29,31 32625 1i,p,(l++p2)/3, i,-i,i, (-1 + p3) /181 - 393-5 5.9428 
- i--i, i,l 

2 
1~~~~~ ,4,1,-2 

0,-24,-40,14 51200 i4P,p3,,,- .88 
(-2p +p2 +p3)/7 -,,,s 988 

- 3, -1,0,0 ___ 

5, -5, -2, 1 
0,-9,-5,9 56025 1, p, p2, p3 7,1,-1,0 15.2956 

10, -12, -3,2 

- 1, -16,3,1 476729 [(+2p+ .2p2 +p3)4 - 6,22,4,-5 12.7132 
_______________ ______ ~~~2, -5, -i,i 

- 1,-1,-1,3 

- 1, -37, -2,164 97025 (+13P I 5,22,-7 8.2606 
(26 +13p +35p2 +p3)/110 

1, -1, -2,5 

2,-1,0,0 
- 1,-11,18, -1 191769 1, p, p2, p3 0,-1,0,0 16.2576 

2,-6,2,1 

-1,5,,- 

0, -18,0,16 270400 1 I,P,p2/2, - 1 4,0,1 
____________ _p__3_4 - 17, -19,2,4 

8,16,2, -1 
0, -20, -40, -15 416000 1, p, p2, p3 7,15,2,-i 24.6795 

- 17,-39, -8,3 

- 3,4,0,-2 

0, -29,0,36 48S8091 i,p,(p + p2)/2, 0, -29,0,36 1485809 (6 P + p3)/12 17,10, -14,-16 97.1575 
1,0,-2,2 

1, -1,0,0 
- 1, -18,44, -25 556357 1, p, p2, p3 2,-1,0,0 13.0653 

- ~~~~~~~~~~~- ii, 16, -i, -1 
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f integral basis R 

-1,1,0,-1 
O, -52,0,625 665856 2 p +p3)/25 0,2,0, -3 21.5450 

26,5, -1, -5 

- 13, -4,1,2 
- 2, -91,152,1681 738000 (-13 + 8p - lip2 + p3)/31 - 12,1,0, -1 12.5293 

64,19, -5, -10 

9,21,3,-2 
- 2, -24, -30, -8 761428 1, p, p2, p3/2 - 7, -20, -3,2 33.9772 

3,1,0,0 

- 2, -20,21,10 804005 1 , p,p2, 6 1, -13 47.1464 
__________________ ~~~~~~2,6,1, -i _ _ _ 

,5,0, -1,0 
- 2, -93,94,2129 861025 l, p, (-3 - p + p2)/8, 50,7, -8, -1 15.1622 

__3p_-__________ 8 -63,-9,14,2 
3,1,0,-1 

- 2, -106,212,(1996 882000 -42+52p p2 +p3)/118 - 12, -1,1, -1 15.7995 
- 61, -31, -2,30 
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