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Elliptic Pseudoprimes 

By Ian Miyamoto and M. Ram Murty* 

Abstract. Let E be an elliptic curve over Q with complex multiplication by an order 
in an imaginary quadratic field. Let 'On denote the nth division polynomial, and let 
P be a rational point of E of infinite order. A natural number n is called an elliptic 
pseudoprime if nl'bn+1(P) and n is composite. Let N(x) denote the number of elliptic 
pseudoprimes up to x. We show that N(x) ?< x(loglogx)7/2/(logx)3/2. More generally, 
if P1, .. ., Pr are r independent rational points of E which have infinite order, and r is the 
subgroup generated by them, denote by Nr (x) the number of composite n < x satisfying 

nln+i(Pi), 1 < i < r. For r > 2, we prove Nr(x) < xexp(-c\/(logx)(loglogx)) for 
some positive constant c. 

1. Introduction. The problem of determining whether a given integer is prime 
or not is very basic to mathematics. Fermat's 'little theorem' provides us with a 
criterlon: 

(0.1) for any odd prime p, 2P-1- 1 (mod p). 

One may thus test a given n by computing 2n-1 (mod n). If the congruence 

(0.2) 2n-1 = 1 (mod n) 

fails, then n is definitely composite. If, however (0.2) is satisfied, all that can 
be said is that n is probably prime. Indeed, there are infinitely many composite 
numbers that satisfy (0.2). These are called false witnesses or pseudoprimes (to 
the base 2) and will be denoted PSP2 for short. (More generally, for any odd prime 
p, (a, p) = 1, one has aP-1 _ 1 (mod p), so we may likewise define PSPa.) Though 
there are infinitely many such numbers, their cardinality up to x is substantially 
smaller than the number of primes up to x. This therefore gives a probabilistic 
primality test. This test and modifications of it have been studied extensively. 
(The reader may refer to [5] or [12].) 

Indeed, let P2(x) denote the number of PSP2 up to x. Erd6s [3] established that 
for some positive constants c1, c2, 

(1.1) c1 logx < P2(x) ?< xR(x)c2, 

where 

(1.2) R(x) = exp( ogx log logx). 

Pomerance [12] had subsequently improved these bounds to 

(1.3) exp(log5/14 x) < P2(x) < xL(x)-1/2, 
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where 

(1.4) L(x) = exp (log x log log log x/ log log x), 

and has conjectured that this is nearly best possible: the correct order is guessed 
to be 

xL(x)-1+o(1). 

Recently, elliptic curves have been applied to this problem of distinguishing 
primes from composites, again, using only the basic theory. Gordon [7], for ex- 
ample, considers such a test which uses curves (with what is known as complex 
multiplication), that is analogous to the Fermat test described above. 

In order to describe the test quickly, we consider a special case. Let E be an 
elliptic curve with complex multiplication by the ring of Gaussian integers, Z[i]. 
If E has good reduction at p and p _ 3 (mod 4), then E(Fp) has size p + 1. If 
P is a rational point of E of infinite order, then (p + 1)P = 0 in E(Fp), provided 
P has good reduction at p. This is analogous to Fermat's little theorem, and we 
can utilize this as a primality test for primes -3 (mod 4). More precisely, we can 
utilize the division polynomials to give an equivalent formulation of this criterion. 
Let On denote the nth division polynomial (as defined in Section 2). The equation 
(p + 1)P = 0 in E(Fp) can be rephrased as p I bp+1(P). We therefore say that 
a composite number n is an elliptic pseudoprime if n I bn+1(P). Gordon [7] has 
recently shown that there are infinitely many such pseudoprimes. Assuming a 
generalized Riemann hypothesis (GRH), he proved [6] that the number of elliptic 
pseudoprimes up to x is less than 

x log log x 
(log x)2 

This therefore gave a probabilistic primality test using elliptic curves, but only 
conditionally. 

The purpose of this paper is to establish this probabilistic primality test without 
the use of the generalized Riemann hypothesis. We do this by showing that the 
number of elliptic pseudoprimes up to x is 

< x(log log x)7/2 

(log x)3/2 

In Section 2 we will provide the needed background of elliptic curves in order 
to describe Gordon's test. In Section 3 we will describe the test and a suitable 
generalization of the test to elliptic curves of rank > 2. The idea is to consider 
r independent rational points Pl, ..., Pr on the curve E and let r be the group 
generated by them. Denote by Nr (x) the number of composite n < x satisfying 
n I bn+l (Pi), 1 < i < r. The case of elliptic pseudoprimes can be viewed as the 
case r = 1. If r > 2, we are able to obtain a substantially better estimate for 
Nr (x). In Sections 4-6 we will prove our main theorems on the number of elliptic 
pseudoprimes. In case r > 2, we obtain 

Nr(x) < xR(x)-c, 

where 
R(x) = exp( log x log log x), 
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and c is some positive constant. This upper bound is the same as established for 

PSP2 by Erd6s [3]. 
The key tool in the derivation is a lemma established by Gupta and Ram Murty 

[8] and the methods of that paper. This lemma does generalize to elliptic curves 
over arbitrary number fields, and more generally to abelian varieties. However, the 
error terms grow large as the degree of the base field increases and therefore the 
results of this paper do not generalize easily to other number fields. 

2. Elliptic Curves. We briefly review the salient features of elliptic curves. 
For a quick survey, the reader should consult Tate [14] and for a detailed treatment, 
Silverman [13] is ideal. 

Let k be a field. An elliptic curve E defined over k may be thought of as the 
zero set of a plane algebraic curve given in affine coordinates by 

(2.1) E: y2 +alxy+a3y = x3 +a2x2 +a4x+a6, 

where the ai E k. (In projective space, E is defined by a nonsingular homogeneous 
cubic polynomial.) If the characteristic of k is not 2 or 3, E has a simpler model 
of the form 

(2.2) E: y2=x3+ax+ b. 

A simple calculation shows that the nonsingularity of E is equivalent to the fact 
that 

A = -16(4a3 + 27b2) $A 0. 

This number is called the discriminant of E and is -16 times the discriminant of 
the polynomial 

x3 + ax + b. 

It is well known that multiplication by m is a map of degree m2. One may see 
this in many ways. One method is by using explicit formulas. Indeed, using the 
addition law, one can define division polynomials, 

(2.3) On}n=l 

Each n (x,,y) is in k[x, y] and has zeros exactly at the n-division points of E(k). 
(Here k is the algebraic closure of k.) These polynomials may be defined by [1]: 

(2-4)~ 
02 = 2y, 

(2.4) ~ 0 = ,-3x 4+ 6ax 2 + 12bx- a2, 

04 = 4y(x 6+ 5ax4 + 20bx3 - 5a2x2 - 4abx - 8b2 - a3) 

and the recursive relation, 

(2.5) Obm-nV)m+n = m- )m+ 1 n-1n+ M 

By setting m = n + 1 in (2.5) we find that 

4'2n+l = ?Pn3 n+2 - On+1 3 n-l, 

and by setting m = n + 2, 

2Yb2n =On (-)n+2 n n-2 n+1 ). 
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Further, we define 

(2.6) Om= XPm- P-lXm+i, 
4Ywm = Om+2 0m-1 - m-20m+ 

3 

It follows that for m odd, Om$I y- 1 Wmin Om, and for m even, (2y)Omp, 02 , wm are 
all polynomials in k[a, b, x]. Moreover, Om is monic, and Om and 42 are relatively 
prime of degree m2 and m2 - 1, respectively, and 

(2.7) [m]P O'm Wm}) 

For m odd, 02 has zeros exactly at the m-division points of E and, being of degree 
m - 1, we see that the degree of [m] is m2. (Do not forget that [m]6 =) 

Let Endk E denote the ring of endomorphisms of E defined over k. If k denotes 
the algebraic closure of k, the above considerations show that Endk E D Z. If k 
has characteristic zero, it is known that Endk E = Z or is an order in an imaginary 
quadratic field K = Q(v/Wd). If Endk E :$ Z, then E is said to have complex 
multiplication (CM) by an order in K (or more briefly, by K). 

If E is defined over Q, and has CM by K, then necessarily K has class number 
1, so is one of the nine fields, K = Q(jQd) with 

d = 1, 2,3, 7, 11, 19,43,67, 163. 

Up to isomorphism over Q, there are only thirteen elliptic curves with CM by an 
order in one of these fields. Nine of these isomorphism classes of curves have CM 
by the full ring of integers, and four others have 

K = Q( Q), Q(-VC), Q(-vC ) with EndE = Z + 20K, 

K = Q(V ) with EndE = Z + 30K. 

Each class, of course, contains infinitely many curves. For example, j = 1728 
gives all the curves E: y2 = x3 + Dx. 

3. The Test. Let E be an elliptic curve defined over Q given by the Weierstrass 
normal form 

E: y2 = x3 + ax + b, A =-16(4a3 + 27b2) :A O, 

with a, b E Z. Assume that E has CM by an order in K = Q(VW/=d), an imaginary 
quadratic extension of Q, and a rational point of infinite order. By making a suitable 
transformation of the curve, we can assume without loss that our point of infinite 
order has integral coordinates. This is not essential but makes the subsequent 
discussion free from the annoying exclusion of a finite set of primes that do not 
necessarily come from primes for which E has bad reduction. 

For any prime p and (p, 6A) = 1, it makes sense to consider E as an elliptic 
curve over Fp. If E(Fp) is the group of Fp-rational points, then 

#E(Fp) = p + 1 -ap, lap | < 2vlp. 

Also, as E is a CM curve, ap = 0 roughly half the time, specifically according to 

{ if p is inert in K, then ap =O, 
if p is split in K, then ap = tr(urp). 

Here 7r7r = p, and u is one of the finitely many units in K. 
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We would like to view the fact that jE(Fp) I = p + 1 whenever p is inert as 
analogous to the criterion used in the Fermat test that the order of the multiplicative 
subgroup of Fp is p - 1. Since Z/nZ is not a field for composite n, it is more 
convenient to use the division polynomials. Let p be an inert prime, (p, 6A) = 1. 
Then #E(Fp) =p+l, and 

(3.1) Op++1(P) _ 0 (mod p) for any P E E(Z). 

This calculation can be carried out for any n, prime or not. Accordingly, Gordon 
[6] fixes a point P E Z2 in E(Q) of infinite order and tests: 

Given n with (n, 6A) = 1 and (-d) =-1, check whether or not 

(3.2) O)n+1 (P) O (mod n). 

If so, and n is composite, we call n an elliptic pseudoprime (epsp). 
So, one has a primality test that is analogous to the Fermat test in classical 

number theory. An obvious generalization is to test a given n with more than one 
point. Let us fix PF, ... , Pr, independent points of infinite order, and test for a 

given n as in (3.2) with each of these points. As before, we may assume, without 
loss of generality, that the points are integral by passing to an isomorphic curve via 
a suitable transformation. False witnesses to this test may be called generalized 
elliptic pseudoprimes. 

One could generalize the test and define analogously strong elliptic pseudoprimes, 
or Euler elliptic pseudoprimes. The interested reader should look at Gordon [6] and 
some of the cited articles in his paper for tests involving non CM curves. 

4. Upper Bounds. We fix E, an elliptic curve with CM and positive rank. 
Also suppose we have an independent set {P1,. .. , Pr} with r < rank(E) = rE. Let 
r = (PF, ... , Pr) and rp be the subgroup of E(Fp) generated by {Pi, ... , Pr}. 

Applying our test with E, we would like to know if it is effective at distinguishing 
primes from composites. For this to be the case, the number of false witnesses must 
be small in comparison to the number of primes. Accordingly, denote N(x) to be 
the number of epsp not exceeding x. Gordon [6] has proved that 

N( ) g xlog log x 
(log x) 

assuming a suitable GRH. This gives a probabilistic primality test using elliptic 
curves, but only conditionally. We will establish unconditionally, 

THEOREM 1. There holds 

N (x) ? x (log log X)7/2 

(log x)3/2 

For our generalization to higher rank (rE > 2), we establish a stronger upper 
bound. 

THEOREM 2. Ifr > 2 then 

Nr(x) < xR(x)-c 

for some c > 0, where 
R(x) = exp( /log-x log log x). 
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This is analogous to the bound established by Erdos [3] for Fermat pseudoprimes 
to the base 2 (see (1.1)), and we expect that it can be strengthened to the bound 
of Pomerance (see (1.3)), though the generalization is not immediate. 

Remark 4.1. The proofs of both theorems are similar in spirit to Erdos [3] and 
Gordon [7], but with additional complications due to the fact that for split primes 
p, JE(F,) I p + 1. The removal of the GRH in Theorem 2 is accomplished via a 
key lemma regarding the order of rp for split primes p which simplifies the harder 
part of the argument. Some difficulty is encountered because of the fact that rp may 
not be cyclic for a given p. However, this difficulty arises in the easier part of the 
analysis. In the rank 1 case this latter difficulty is not encountered. Nevertheless, 
the harder part of the argument is simplified to a narrow range by the use of the 
lemma. 

Higher Rank Case: Preliminary Lemmas. Keeping the notation established so 
far, we will need 

LEMMA 1. The number of primes p for which irp < y is Q(yl+2/r). 

Proof. The result is proved using the canonical height pairing of Neron and 
Tate, and a result counting the number of lattice points contained in a particular 
r-dimensional ellipsoid. (See Gupta and Ram Murty [8] for a proof of this re- 
sult.) ol 

In a similar fashion, Gupta and Ram Murty [8] prove what will be our key tool 
for estimation: 

LEMMA 2. The number of primes p for which Jrp I< y and p splits in K is 
O(yl+l/r). 

As in the Erd6s paper [3], establishing the upper bound for Fermat psp in (1.1), 
we will need the following estimate adapted by Erdos [3] from the work of de Bruijn 
[2] on the number of n < x composed of primes p > y. 

LEMMA 3. Let N(pl, ... ,Pk) denote the number of n < x composed of primes 
from the set {Pl,... ,Pk} of k distinct primes. Put ku = x. Then, for u < 
log x/ log log x, i.e., k > log x, 

N(p1,... *Pk) < Xexp(-culogu) 

for some c > 0. 

Proof. See Erd6s[3] and de Bruijn [2]. E 

LEMMA 4. We may write rp =r x Up with r cyclic, and, if b I jUpj, then 
b I Ir* . 

Proof. The first part is clear since rp is a finite abelian group. Being so, Sq, the 
q-Sylow subgroup of rp, is unique and rp = rHlqIrpI Sq. Writing 

Sq = Cql1 X ... X CqkX nl > ... > nk > O, 

where Cqf, is cyclic of order qni (not necessarily unique), we note that ni > ... > 
nk > 0 are uniquely determined. Moreover, k < 2, as the group of qnl division 
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points of E over Fp is either cyclic or a product of 2 cyclic groups. The lenuna 
follows by setting 

r= rI Cq 1, Up = JJ Cq-2 0 
qllrpl qllrpl 

We shall say that a group is of type (b, b) (or more briefly, a (b, b) group) if it is 
isomorphic to 

Z/bZ x Z/bZ. 

COROLLARY 1. E(Fp) is cyclic if and only if E(Fp) does not contain a (b, b) 
group for every b. 

COROLLARY 2. For x sufficiently large, 

(i) If irpl > R(x) then rPj > R(x). 
(ii) If IrpI > x-6 for some 6 > 0, and JUpl < R(x), then Pr*1 > xl-6 for any 

(5 >6. 

Proof. (i) By Lemma 4, Irpi = IrPIIUpi < Prp 2, from which the result follows. 
(ii)This follows from the fact that R(x) < xe for any e > 0. z 

Lemma 4 suggests the need to develop tools to estimate the number of primes p 
for which E(Fp) contains a (b, b) group, b fixed. 

LEMMA 5. E(Fp) contains a (b, b) group, b $ p, if and only if p splits completely 
in Q(E[b]). (Here, E[b] consists of the b-division points of E(Q), and Q(E[b]) is 
the field obtained by adjoining the x and y coordinates of points P E E[b] to Q.) 

Proof. See Ram Murty [11]. 0 
Let K be any number field. The ray class field belonging to an ideal E' is 

an abelian extension L of K such that the set of prime ideals of K which split 
completely in L are precisely those ideals lying in the unit class of the E ideal class 
group (i.e., those prime ideals which are principal and generated by an element 
a =_ 1 (mod q)). 

It is well known for elliptic curves with CM that K(E[b])/K contains Kb, the 
ray class field belonging to bOK, where K = Q(-d) [10]. 

LEMMA 6. Let E be an elliptic curve over Q with CM by an order 0 in K. 
There is an ideal f, depending only on E, such that 

Km C Lm C Kfm, 

where Km, Kfm are the ray class fields belonging to m and fm, respectively, and 
Lm = K(E[m]). 

Proof. See Ram Murty [11]. 01 
Coming back down to Q, we have 

LEMMA 7. K(E[m]) = Q(E[m]) for any m > 2 (K = Q(vU5)). 

Proof. Clearly, it is enough to show that K C Q(E[m]). Let r E Gal (Q/Q) 
fixing Q(E[m]). Suppose that r does not, however, fix K. Then r restricted to K 
is complex conjugation. Let X$i E End(E) be multiplication by A. Then Gal (Q/Q) 
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acts on End(E) as follows: for a E Gal (Q/Q), aq$\ = q5A. Thus, rq5 = 0q. Let 
x E E[m]; then +XA(x) E E[m], since 

m(Ax) = A(mx) = 0, 

and therefore r(q,\(x)) = q0,(x) since r fixes E[m]. On the other hand, 5,\(x) = 

q$(x), hence 

(qx - q$)(x) = +>_>(x) = 0. 

Thus, A-A (mod mOK). Let f denote the conductor of 0; then as every order 
0 of K is of the form Z + fOK, the above congruence holds in particular for 
A = f VI/ , whence 

2fV-7 =0 (mod mO), 

in which case 2f V/7 = mbf Vl/ for some b. We conclude that mb = 2, so m 1 2. 
As long as m > 2, then r acts trivially on K, so Q(E[m]) D K as desired, whence 

Q(E[m]) = K(E[m]). 0 
Finally, by very elementary means, one proves the useful estimate 

LEMMA 8. The number of a E OK, a ? Z, and Na < x, such that a _ 1 
(mod mOK) is 

<< Z~2 + 
-M m m 

(Here Na is the norm of a.) 

Proof. Let 1, w be an integral basis of OK. Then, a = a + bw for some a, b E Z. 
Since a _ 1 (mod mOK), a-1 = mc and b = md for some c, d E Z. As N (a) < x, 
a2 + Db2 < x or (a + b/2)2 + Db2/4 < x, depending on the congruence condition 
satisfied by D (mod 4). We deal with the former case, the latter one being similar. 
Thus, lal < /x. Now, a =_ 1 (mod m) implies that there are 

m 

possibilities for a. The number of possibilities for b is < 2afr/m as b 0 0. Combin- 
ing these estimates gives the final result. 0 

We are now ready to prove Theorem 2. 

5. Proof of Theorem 2. Keeping the notation of the preliminary lemmas, let 
R(x) = exp(A/log xlogogx). Let us write any epsp n < x as n = sL where 

Jp 8 *IrI < R(x), 

p I LX jFrpI > R(x). 

We will split the epsp into four classes: 

(1) L = 1. 
(2) There is an inert prime p I L. 
(3) There is a split prime p I L with IrpI < xl. 
(4) L > 1 and for all p I L, p splits in K and Irp,I x1-. 
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The constant 6 > 0 will be chosen later. 
We should remark that the above list exhausts all the cases, as only finitely many 

primes p ramify in K. Thus, there are only finitely many corresponding rp. For 
large x, therefore, all such rp will have IFp I < R(x), hence L will then contain only 
(possibly) split or inert factors. 

By Lemma 1 any epsp in class 1 will have at most R(x)l+2/r prime divisors. 
Applying Lemma 3 with k = R(x)l+2/r, so that 

r ( log x 1/2 

r+2 loglogx} 

we find that the number of epsp in class 1 is at most 

(5.1) R( )Cl for some cl > 0. 

If n is an epsp with p I n then by Lemma 4, there is an element of rp of order 

1Fr1. Hence, 

(5.2) f[n 0 (mod p), 
1n -1 (mod IF;I). 

Let us note that (5.2) implies that (p, IF I) = 1. So, by the Chinese remainder 
theorem, the number of such n satisfying (5.2) is at most 

(5.3) 1+ a;I' 

However, in class 2, n has an inert prime divisor p which itself satisfies the congru- 
ences in (5.2), because Ip I Ip + 1. We remove the prime from our count as we are 
enumerating composite numbers which pass the pseudoprime test. Therefore, we 
get at most 

x 

PIFIp 
composite solutions, since (p, IpI) = 1. The number of epsp in class 2 therefore 
does not exceed 

x x x 1 

P<X prp << P<X pr < P<Xp 
(5.4) Irpl>R(x) I rI > R-x/ p < 

< x log log x < x 

VR(~ 
R 

(X) 1/4' 

where the first inequality is from Corollary 2(i) to Lemma 4. 
If n is in class 3, let 

(5.5) p I n, p split in K, R(x) < IFpI < xl-6. 

Then using (5.3), the number of epsp in class 3 is at most 

where+ the ) <i the + of smai X 

where the T' indicates the rangye of summation in (5.5). 
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The second sum may be estimated as before in (5.4), using Corollary 2 of Lem- 
ma 4, 

pj1r*j << R(x )1/4 

For the first sum, we use Lemma 2. The number of primes p which split in K 
for which IFpI < x1-6 is ?< X(-6)(1+1/r) Hence 

(5.6) E' 1 << x (1-6)(l+l/r) << xl-3n7/2 

by writing 6 = 1/3 + r, and we will choose r > 0 later. (Since r > 2, any 6 > 1/3 
works.) 

If n is in class 4, then every p dividing n with l'pl > R(x) splits in K and has 

Frpi > xl-6. Using Lemma 4, Corollary 2(i), let us consider two subclasses: 

(a) The largest (b, b) group C r'p (if any) has b < R(x). 
(b) The largest (b, b) group C r'p has b > /(x). 

In (a), JI71 > xl-6 for any 6' > 6 by Corollary 2(ii) of Lemma 4. As in (5.4), 
the number of epsp in this class is at most 

(5-7) _ ,1+ pir )" 1 + prx 

p split <x 

where the double dash indicates the specified condition on Fr and p. 
The second sum is 

(5.8) E pIFI ?RGr)1/4 

as usual. (In fact < xl-6.) 
In the first sum, we may assume that p > xl-, where e > 0 is to be chosen 

later. This is because p < xl-6 implies 

(5.9) E 1 < xl. 
p<xl-6 

But now, for p > xl-, a simple argument shows that the corresponding sum is 
void for large x. Indeed, 

{ p+l -ap _0 (mod 1F1r), 
n + 1 _ O (mod JIp1), 
pIn, n=mp, 

thus 
mp+l _m(ap-1)+l _ 0 (mod JI7*1), 

so m(a - 1) + 1 > r*1 > xl-6, whence m > xl/2-6' as lapl < 2Vp. But then, 

(5.10) n = mp > x/26'x1~ =X 

Recall that we may choose q and 6' > 0 freely so that 6' > 6 = 1/3+rq. Choosing 
e > 0 so that 6' +e < 1/2, we find from (5.10) that n > x, which is a contradiction. 
It follows that for large x, 

(5.11) " 1 = 0. 
p>xl-6 
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Combining (5.8), (5.9), and (5.11), we conclude that the number of epsp in class 
4(a) is < xl-. 

(In the rank 1 case we would be forced to choose 6 > 1/2, say 6 = 1/2 + 77, in 
(5.6). This would make it impossible to choose 6' > 6 and e > 0 so that 6'+e < 1/2, 
as was required in (5.10).) 

Finally, suppose that n is in class 4(b). Then any prime divisor p with Irp > 
R(x) splits in K and has jrpj > x'-6. Moreover, rp contains a (b,b) group with 
b > VR(x). By Lemma 5, p splits completely in Q(E[b]). By Lemma 7, p splits 
completely in K(E[b]). By Lemma 6, K(E[b]) D Kb. Hence, if p splits completely 
in K(E[b]), it splits completely in Kb. That is, 

p=ir , rp =_ 1 (mod bOK). 

By Lemma 8, the number of a V Z, a E OK for which a _ 1 (mod b) is 
< x/b2 + Ji/b. 

Therefore, the number of epsp in 4(b) is at most 

L + xrl <<E + E' Ir# <KE l + xt,, 

as usual, where ' indicates that the range of summation is 

p < x, p split, IrI > x1-6, and rp, D (b, b) group, b > V 

But the first sum is 

E b2 b)X 
v'<YbC2x 

by the remarks above. This is easily estimated to be 

(5.12) < 
x 

+ x/ log x. 
VR (x) 

Putting all the estimates (5.1), (5.4), (5.6), (5.9), (5.11) and (5.12) together, 
we find that the number of epsp < x is at most xR(x)-c for some c > 0 as 
desired. 0 

6. Rank 1 Case. During the proof of Theorem 2 we remarked that Lemma 
2 cannot be applied to as large a range for Irp. Indeed, we were able to estimate 
the number of elliptic pseudoprimes with a split prime factor p such that R(x) < 

lrpl < x'-6, provided 6 > 1/3. The same argument carries over to the rank 1 case 
if 6 < 1/2. The analysis used in (5.10) however, does not carry over and a more 
delicate analysis is needed. 

We will need the following estimate: 

LEMMA 9. There holds 

1 (log log X)3/2 

y<<z V 

where we assume that any pI6 satisfying p > log2 x splits in K, and y = x1/2 log-A X 

and z = X1/2 logA x for some fixed A > 0. 
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Proof. Since K = Q(-v/), the density of primes which split in K is 1/2. There- 
fore, by standard analytic number theory, we have that as v -- oo, 

q<v 
q vo 

q inert in K 

where CK is a constant depending only on K. Using Brun's sieve [9], we estimate 
the number C(x; w) of 6 < x, all of whose prime factors > w split in K. Then, 
C(x; w) is bounded by 

w<q<x 
q is inert in K 

(See Erdos [4] or Halberstam and Richert[9].) 
By partial summation, 

1 C(z;w) JZ C(t;w) 

y<b<z 
6 

where the summation over 6 is as stated in the lemma. With w = log2 x, and by 
our choices of y and z, the sum is easily seen to be 

(log log X)3/2 0 

Proof of Theorem 1. To simplify the notation, let ep denote the order of P 

(mod p). 
Write as before any pseudoprime n < x as n = sL, where 

JPl s xe,, < R(x), 

p L ?>ep > R(x). 

Split the pseudoprimes into five classes: 

(1) L = 1. 
(2) There is an inert prime p I L. 
(3) There is a split prime p I L with ep < V/Xlog-A x. 

(4) There is a split prime p I L with ep > V/ilogA x. 
(5) L > 1 and all p I L are split and <log A X<ep < F logA x. 

Class (1) is identical to the higher-rank situation. 
Lemuna 1 provides at most R(x)3 prime divisors for n in this class, and Lemma 

3 implies at most 

(6.0) X: 
R(x)cl 

such n, for some cl > 0. 
Class (2) is as before: 
If n is a pseudoprime and p I n, then 

n0 (mod p), 

(6.1) n + 1 0 (mode.), 

I(p,ep)= 1, 
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and the number of solutions to (6.1) is at most 

(6.2) x +1. 
pep 

But when n is in class (2), there is a p inert dividing n which is, itself, a solution of 
(6.1). Hence the number of composite solutions to (6.1) is at most x/pep. Therefore 
the number of pseudoprimes in this class does not exceed 

(6.3) E p < xR(x)-a/2 
p< pep 

ep>R(x) 

These two classes are therefore treated as in Gordon [6]. 
For class (3), we estimate 

E (1+-) <<E 1 +E - 

where >' means the range of summation 

p < x, p split in K, and R(x) < ep < V/Xlog-A x. 

The second sum is 

<R(X)1/2 X 

as in (6.3), and the first sum is estimated using Lemma 2, so that 

E 1< X 
Z..d ?log2A X' 

Therefore, the number of pseudoprimes in this class is at most 

(6.4) ~~~~~~log 2AX W + 
(X) 1/2A 

For class (4), rp = (P) is cyclic, and so we can proceed as in class 4(a) in the 
proof of the higher-rank case. The number of pseudoprimes in this class is at most 

E' (+ x) ?>1:1 + EI x ?>:1 + 

pep ~~~pep Rx12 

as in (6.3), where now >' indicates a range of summation 

p < x, p split in K, and ep > alogA x. 

We may assume that p > 3x/ logA x, since 

(6.5) S 1 << A 
p<xlg log AX' 

But now for p > 3x/ logA x we find that j = 0, since (6.1) implies that n =sp 
and 

s(a-1) + 1 > ep > \/xlogA x, 

so that s > 1logA Ax using japl < 2a. Therefore n = sp > 3x/2, which is a 
contradiction. 

Thus the number of pseudoprimes in class (4) is at most 

(6.6) ~~~~~~logA x R(x)1/2' 
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For n in class (5) we change our strategy a little bit. 
Let n be a pseudoprime in this class, with p I L. Again, we may assume that 

p>xlog-A x.Let 

S = {p < x: +/ilogA x < ep < ilog Ax}; 

then p E S and is split in K. As ep I n + 1, we may write n + 1 as a product of 
factors uv, each approximately V/E i.e., up to powers of log. We note that for p 
split, 

ep I p+ 1 -ap = (xp - 1)(tp -1) 

for some factorization of p in OK. Therefore, if q is inert and q I ep, then q I rp- 1 
(and rp - 1). But then, by Lemma 8, the number of primes p = ad such that a 1 
(mod q) is 

< a 1 + a 
q q 

If q > log2 x, then we obtain an estimate of 

lo x 
/ o 

?lTo-g2 X V~og 

such primes p. 
Accordingly, we consider two subclasses: 

(a) There exists an inert q > log2 X dividing ep, or 
(b) If q > log2 x, and divides ep, then q splits in K. 

In (a), the above remarks show that the number of elliptic pseudoprimes in this 
case is 

(6.7) l2 + Vilog X. 
log 2x 

In (b), let 

Np(x) = #{n: n is an epsp and p I n}, 

d (n; x) = # {6 : 6 I n, vFxlog- Ax < 6 < /ix-log Ax, 

and if p 1 6, and p > log2 x, then p splits in K}. 

Note that if n is in class (b), d'(n + 1; x) > 1 because ep is a divisor of n + 1 
satisfying (b). Therefore, the number of pseudoprimes in this class is at most 

(6.8) 'jNp(x) = Ej E 1 < Et d'(sp 1; x), 
p p nl=P p>x log-Ax 

epIn+1 s?1ogA A 

by the definitions above, where >j indicates the range of summation 

p splits, and VFXlog-A x < ep < x/ logA x, and the hypothesis (b). 

Interchanging the order of summation, we get 

(6.9) <E 1 Z E 1, 
P'S 6Isp+1 6 s<logA x sp=-1 (mod 6) 
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where in the sum, 6 satisfies 

/ logA x < 6 < aflogAx 

and all prime factors of 6 greater than log2 x are split in K. If 0 denotes the Euler 
function, the innermost sum is, by the Brun-Titchmarsh theorem [9], 

'k(6) log (x/s6) <sq(6) log x' 
applied to 

#p < x, sp+1=6t<x, sop<x/s. 

Thus, the number of elliptic pseudoprimes is 

(6.10) ?< E' 
x < ~ x log log x 

(0 s<1ogA sX5(6) log xz E 0(6) logX 

Since k(6) > 6/log log6, we obtain that this is 

<< El x(log log x)2 

6 6 log x 

But then, applying Lemma 9 to the above sum, and noting that V/Ilog-A x < 

6 < +/ logA x, we find that the number of pseudoprimes in this class is 

X (log log X) 7/2 
(6.11) x(log 3/2x 

Finally choosing A > 2, we see that our estimates, all together, give 

X (log log X) 7/2 

log3/2x 

as desired. O 

A slightly more careful analysis might eliminate a part of the loglog factor in 
the numerator. 
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