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The Weighted Particle Method for 
Convection-Diffusion Equations 

Part 1: The Case of an Isotropic Viscosity 

By P. Degond and S. Mas-Gallic 

Abstract. The aim of this paper is to present and study a particle method for convec- 
tion-diffusion equations based on the approximation of diffusion operators by integral 
operators and the use of a particle method to solve integro-differential equations de- 
scribed previously by the second author. The first part of the paper is concerned with 
isotropic diffusion operators, whereas the second part will consider the general case of a 
nonconstant matrix of diffusion. In the former case, the approximation of the diffusion 
operator is much simpler than in the general case. Furthermore, we get two possibilities 
of approximations, depending on whether or not the integral operator is positive. 

1. Introduction. The particle method was first introduced to compute the 
flow of homogeneous incompressible and inviscid fluids (see Leonard [2]). In such 
a method the fluid is represented by pointwise vortices which travel with the fluid 
velocity. In the case of a viscous fluid, the particle method must take into account 
the diffusion effects. If the fluid is only slightly viscous, most of the classical methods 
become unstable and lead to unreliable results; it then seems useful to construct 
particle methods which are capable. to treat diffusion terms. Applications of such 
methods can be found in fluid dynamics (e.g., the incompressible Navier-Stokes 
equation) and in the kinetic theory of plasma physics (e.g., the Fokker-Planck 
equation). 

The random walk method gave a first answer to this problem. This method, 
which has numerous variants, is based on the introduction of a Monte-Carlo tech- 
nique to add a probabilistic part to the motion of the particles. This method, 
introduced by Chorin [3], has been applied in various cases by Roberts [4] and 
Spalart [5] for example (see also the book of Duderstadt and Martin [6] and the 
references therein). The method which was proposed by Cottet, Huberson and 
Mas-Gallic in [7], [8] and [9] is based on a viscous splitting of the equation as 
studied by Beale and Majda in [10] and on the use of the Green kernel to obtain 
an exact treatment of the diffusion equation. This method is valid in the case of 
a small viscosity coefficient and relies on the use of the Gaussian function, which 
may lead to an exaggerated cost; the one proposed here presents several advantages 
with respect to the splitting method. The first advantage is the possibility of using 
other functions than the Gaussian, rational fractions for example; other advantages 
are its conservation property and the possibility of considering nonsmall or non- 
constant viscous coefficients. Furthermore, the proof of convergence of the method 
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is simpler in the present case. An alternate method inspired by the work of Gin- 
gold and Monaghan [11] was studied in [12] and, by the choice of a suitable cutoff 
function (see Section 5), can be viewed as a particular case of the present method. 
In this paper, we give a detailed presentation together with some extensions of a 
method first sketched in [13]. Finally, let us mention that another deterministic 
particle method, which can be viewed as a compromise between the Monte-Carlo 
method and the viscous splitting method, can be found in [21]. 

The basic idea of the present method is very different from the one used in the 
random walk method. In addition to its position and its volume, a third degree 
of freedom, called the strength, is associated with each particle. As usual, the 
time evolution of both the position and the volume of the particle is governed by 
the convective part of the equation, while the time evolution of the strength is 
governed by the diffusion part of the equation. A comparison of this method with 
the random walk method has been made by Choquin and Lucquin-Desreux in [14]. 
The acceleration technique introduced by Beale in [15] is also used. Other numerical 
experiments have been done, see [16], [17] and [18]. 

In Part 1 of this paper we shall restrict ourselves to the case of a scalar diffusion 
operator, whereas in Part 2 the general case of a diffusion matrix will be treated, 
and different kinds of approximations will be studied. We must mention that in 
[19] a first attempt to discretize a matrix of diffusion was studied. Some comments 
on this method are given in Part 2. 

From now on, given a vector field a: (x,t) E R' x R -+ a(x,t) E R', a function 

aO: (x,t) E R' x R -- ao(x,t) E R and a viscosity coefficient b: (x,t) E R' x R -+ 

b(x, t) E R+, we shall focus our attention on the resolution of the following equation 

(1.1) of + div(af) + aof - v div(b gradf) = 0 in R' x (0, T) 

with the initial condition 

f(,O) = fo on R'. 

We assume that a, ao and b are sufficiently smooth. We denote by D the diffusion 
operator 

(1.2) D(t)f = div(b(, t) grad f), 

(1.3) b E L??(QT) 

with QT = Rn x (O, T). 
The method consists in first replacing the diffusion operator by an integral op- 

erator and then solving the integro-differential equation by a now classical particle 
method. Let E > 0 be a real number and or: (x, y, t) E Rn x Rn x [0, T] -) ae(x, y, t) 
be a function depending on the parameter E such that 

or E Lo ((01 T) x R n ; Ll (R n) ) n L?? ((0, T) x RF n; Ll (R n) 

the integral operator is defined for f E LI (Rn) by 

(1.4) QC(t)f(X) = j (or(x, y, t)f(y) - or(y, x, t)f(x)) dy. 
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If a' satisfies some moment conditions, the operator Q-(t) is an approximation of 
D(t), and the solution of 

(1.5) at + div(af) + aof - vQ(t)f = in R x (O,T), 

f(-,O)=fo onRn 

is an approximation to the solution of (1.1). 
Now, Eq. (1.5) is solved by a particle method, which means that the exact 

solution is approximated by a combination of Dirac measures, the particles, the 
positions of which evolve in time. Let a quadrature rule be given by a set of indices 
J C Zn, points xok E Rn and weights wo > 0, for k E Jf. The points xo are the 
locations of the particles and the weights wo are the volumes of the particles. 

From now on we assume that a e (L?(O, T; Lip(Rn)))n. Then, we define trav- 
elling particles which follow the integral curves of the vector field a by setting 
Xk(t) = X(t;x0, 0), which is the solution of 

dX 
(1.6) { ddX~~~~~ (t) = a(X(t) , t),1 

X(O) = x. 

We denote by J(t; (, s) the Jacobian determinant of the change of variable 
X(t; (, s), and we set wk(t) = J(t;x?X,O)w?. Then, using the location and the 
volume of the particles respectively as nodes and weights, we obtain a quadrature 
formula 

f g(x) dx - E Wk(t)g(Xk(t)) 
1R ~~~kE-J 

From the definition of Qc(t) and the above quadrature formula, we derive the 
definition of a discrete version Q" (t) of the operator Q6, 

(1.7) Qh(t)g = E (t)(or (x, xl(t), t)g(xi(t)) - o6(xi(t), x, t)g(x)). 
IEJ` 

This operator maps CO (Rln)nLL? (Rn) into L?? (Rn) and the particle method consists 
in looking for a measure fh of the form 

(1.8) fh(t) = E wk(t)fk(t) 6(X - Xk(t)) 
kEif 

The coefficients fk (t) are solutions of ordinary differential equations obtained thanks 
to an analogue of (1.7). The method consists in solving the following system, which 
gives the positions, the volumes and the strengths of the particles: 

dlXk 
(t) = a(xk (t),t), 

dwt 
dk (t) = div a(xk (t), t)wk (t), 

dft 
(1.9) jf d(t) + (div a(Xk(t), t) + ao(Xk(t), t))fk(t) 

= V 2 Zwl(t) {o O(xk (t), xl (t), t) fl (t)- Or(xl (t), xk (t), t) fk (t) }, 

l6Y 

Xk(O) = X (O) = W fk(O) = fO(XO). 
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The equations satisfied by the positions and the volumes are classical, which is not 
the case for the ordinary differential equation which gives the strengths. 

When computing the flow of a slightly viscous incompressible fluid, a great ad- 
vantage of this method is that it enables computations for high Reynolds numbers. 
On the other hand, in the general case, in order to derive L? estimates which do 
not depend on e, we shall need to impose a lower bound on E which depends on the 
viscosity v. In fact, for any fixed positive number Cs, if the following inequality 
is satisfied by the viscosity v and the scaling parameter E (see the beginning of 
Section 2) 

(1.10) V < C862, 

the integro-differential equation (1.5) is stable in LI with respect to the initial con- 
dition, and so is the numerical scheme. This condition ensures that the numerical 
viscosity 62 is not too small compared to the physical viscosity v. As shown in Part 
2, this method may be generalized to the case of a nonscalar diffusion operator. 

On the other hand, if the viscosity is constant (b = 1), choosing a nonnega- 
tive kernel a assures the stability of the method without assuming that condition 
(1.10) is verified. In that particular case, the integral operator is positive and the 
integro-differential equation, as well as the numerical scheme, possesses a maximum 
principle property. In that case, we obtain LOO estimates which do not depend on 
the norm of the kernel, and thus which do not depend on E. Choosing a positive 
cutoff function may also be interesting in the study of stationary solutions, since 
the solution of Eq. (1.5) and the regularized solution of the scheme have the same 
asymptotic time behavior as the solution of (1.1). 

The paper is organized as follows. In Section 2, by means of Taylor expansions, 
we prove the convergence of the integral operator QC towards the diffusion operator 
D. We study the convergence of the solution of problem (1.5) towards the solution 
of (1.1). For this, we need stability results for both Eqs. (1.1) and (1.5). Section 3 
is devoted to the study of the particle method. We establish the stability and the 
convergence of the method in LI. In Section 4, the case of a constant viscosity 
is emphasized, and we assume that the kernel is nonnegative. First we prove that 
the integral operator is positive and establish a stability property of the integro- 
differential equation; we derive LI estimates and we prove the LI stability of the 
scheme with the same kind of arguments. Finally, in Section 5, some examples of 
kernels are given and some comments are made on the time-discretized algorithm. 

Let us now introduce some notations. By Lip(Rn) we denote the space of Lip- 
schitz continuous functions on Rn and by COO (Rn) the space of compactly supported 
continuous functions. As usual, Wk,oo(Rn) is the classical Sobolev space provided 
with the classical seminorm and norm 

Iglk,oo = sup ess l'ag(x)l, llgllk,oo = sup 191 
jaj=k,xERn O<p<k 

By C, C',... we shall denote positive constants which do not depend on the dis- 
cretization parameters to be introduced. We shall use the following standard 
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notation: for x-(X1,.. . x Xn) e R' and a = (ai, . . ., an) E N', we set 

a 
Xa 1 aX . . aX0n, 

n n n 

xa =fJ xt i, IaI =ZE ai, a! =HnCai!, a+ = (Cei +fhi)l<i<n 
i=l i=l i=l 

The canonical basis of Rn will be denoted by (el, ... ,en) 

Let >J C Zn; the space 1?(>J) is the space of bounded sequences provided with 
its usual norm: for g = (gi)j6- in 1?({J), 

(1.11) 11I1100 = sup IgiI < +oo. 
lEgJ 

By Sn-1 we denote the unit sphere of Rn and by meas Sn-1 the total mass of its 
measure. 

From now on we shall assume that the kernel a is symmetric. This condition 
is not required for the subsequent analysis, at least in Sections 2 and 3, but the 
interest in considering nonsymmetric kernels seems to be rather academic. 

2. Approximation of the Convection-Diffusion Equation by an Integro- 
Differential Equation. If the kernel a" satisfies some moment conditions, we shall 
prove that the integro-differential equation is an approximation of the convection 
diffusion equation. This kind of result is to be compared with the classical plasma 
physics approximation of the Boltzmann equation by the Fokker-Planck equation. 
This approximation is called small angles collision approximation and occurs in the 
case of collisional plasmas in which the collisions are elastic. 

Let us fix a constant C, > '0; we shall assume in the remainder of this section 
that the parameter E satisfies the stability inequality (1.10). Moreover, we assume 
that the kernel ae has the following form: 

1 
(2.1) a (X, y, t) = (X, y, Ow (x y) 

where 

(2.2) { 
, E LO (Rn x Rn x [01,T]), 
P ,(x, y, t) = ,u(y, x, t) for any x, y E Rn, t E (O, T), 

f t7(X) -t7(-) En 6 
(2.3) t E Li(Rn) 

1 t7(-x) = r (x) for any x E Rn. 

The time dependence of the functions will be omitted in the next proposition, 
since t is only a parameter. 

PROPOSITION 1. Assume that the function rq satisfies the moment conditions 

(2.4) f (x)dx 
= 

, Va8 E N ,a $ 2ei,1 < lal r+1, 
( 2f if c! = 2ei, < E +0... , n}, 

(2.5) /ixl Jq (x) Idx < +Xo. 
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Assume also that ,u E LI?(Rn,Wrrl LI(Rn)) and is such that 

(2.6) ,u(x, x) = b(x) 

for any x E Rn. Then there exists a constant C > 0 such that 

(2.7) I|Dg - Qegjjo,I < Cr 1911r+2, 

for any function g e Wr+2,o,(Rn). 

Proof. Using a Taylor expansion of g with integral remainder, and applying it in 

(1.4), we obtain 

r+1 

QCg(x) = {-2 ZiE ; a g(x) (y - x)'r(x, y) dy 

I&I=1n 

(2.8) + (r + 2) a ! |(1 - o)r+1 
cxaJ=r+2 

x j 6g(x + O(y- x)) (y - x)'ae(x, y) dy dO}. n 
Expanding ,u by Taylor's formula and substituting it in (2.8), we can write 

r+1 

(2.9) Q g(x) = E Q g(x) + Reg(x), 
m=1 

where Qm is a differential operator of order m and R" is the remainder. Setting 

Z= j (y -X)a,q(X - y) dy, 
Rn 

we have 

Qmg(x) = -2 EJ -- aag(x) {+ r?-JaJ 1 
JcxJ=m }J/3=1 

and 

r+1 r +2- ai REg(x)=E 2{Er+2,a!K9ag(x) s 1 

J101=r+2-1ja 

x f f (1-)r+1-IcxI7e(- y)a9yp(x, x+ T(y - x))(y - x)&+f dydr o n 

+ (r + 2) , (1j- O)r+laxg(x + O(y x)) 

x rq(x-y)p(x,y)(y-x)a dydO}. 

The moment conditions (2.4) give 

_Va E Nn, a 2e-, 1 < al < r + 1, 
ck1 2e2 if a = 

2ei,i E1l...,n}. 
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As a consequence of the symmetry of ,u and relation (2.6), we have 

y (xIx) = 21a (x). 

Finally, thanks to the conditions (2.4), we find 

0, if m = 0 or 3 < m < r +1, 

(2.10) QMg (x) = (x) z)Ag(x), if m = 2, 

Vg(x) -Vb(x), if m = 1, 

and 

(2.11) IR'g(x)| < CEr|lqjjO,1 1,P11L?o(Rn,Wr+1,oo(Rn)) 11911r+2,oo0 

Combining (2.9), (2.10) and (2.11) leads to the desired result. O 
Remarks. 1. From the definition of R" it is easy to check that arguing as 

previously, the following inequality is true for any function g E Wr+2, p(Rfn): 

||R`gjjo,p 
< 

CEr||qj|0,1 IIPIILo(lRn,Wr+l,oo(lRn)) ||g||r+2,p- 

Then concluding that inequality (2.7) also holds in any LP is straightforward, 

(2.12) liDg - Q?go,p < Cer 119q|r+2,p. 

2. If the function r is not even or the function ,u is not symmetric (one has to 
consider the operator Q" in the form (1.4)), an analogous result can be obtained, 
assuming that ,u E L? (Rn, Wr+2,oo (Rn)) n L?? (Rn, Wr+2,oo (Rn)) and that 

(2.13) ay I X) I x). 

A Taylor expansion of the function ,u up to order r + 2 must be used to derive this 
result. Dl 

The following classical result is mainly based on the maximum principle property 
of parabolic equations. Since we are interested in slightly viscous problems, from 
now on we shall assume that v < 1. 

PROPOSITION 2. Assume that a E (L?? (0O T; W10 ??(Rn)))n b E L?? (QT) and 
ao E LOO(QT). If fo E L??(Rn), problem (1.1) has a unique solution f in L?(QT) 
and 

(2.14) IIf& t)Io0,co < exp(TIl div a + aoI1o,co) IIfoI1o,0. 

If moreover a E (L'(0,T;Wm+l ??(Rn)))n, b, ao E L0?(0,T;Wm'?(Rn)) and 

fo E Wm,'(Rn), the solution belongs to L?'(0, T; Wm,' (Rn)) and there exists a 
constant C = C(T, ao, a, Vb) > 0 such that 

(2.15) lIf(, t)IIm,oo < Cllfollm,oo, 0 < t < T. 

Let us point out that in inequality (2.15) the constant may depend on v if b is 
not constant. Nevertheless, the assumption that v < 1, ensures that the growth of 
the solution remains bounded independently of v. 

We now present a stability result for integro-differential equations which will 
be useful when comparing the solutions of problem (1.1) and (1.5). Although this 
result is classical, we need a precise bound, and so give a proof. 
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Consider the following problem 

(2.16) t -+div(af)+aof- vQ(t)f =0 in R' x (0,T), 

f (, 0) = fo on R', 
where 

(2.17) Q(t)f(x) = f (u(x, y, t)f(y) - o(y, x, t)f(x)) dy. 
,n 

We assume that 

(2.18) f u(x, y, t) dy = f a(y, x, t) dy, 
,n Rn 

which ensures that 1 E Ker Q and 

(2.19) a E L?? (Rn x (0, T); L1 (R)) n nL (R n x (0, T); L1 (R n)). 

We set 

(2.20) K(t)f(x) = f u(x, y, t) f (y) dy 
,n 

and 

(2.21) A(x, t) = a(y, x, t) dy, 
,n 

so that Q(t)f = K(t)f - Af. The operators K and Q map L? into itself and we 
have 

(2.22) IIK(t)flIo,0o < ||K|| lIfIIo,oo, 

where 

(2.23) IIKII = sup f Io(x, y, t)I dy. 
XERn Rn 

tE(O,T) 

The following proposition states a stability result which depends obviously on 
the norm of the kernel. 

PROPOSITION 3. Assume that a E (L?? (0, T; W1'00 (R n)))n and aO E Loo (QT) . 
If fo E L'(Rn), problem (2.16) has a unique solution f in LO?(QT) and 

(2.24) lIf (Q t)IIo,0o < 1Ifollo,oo exp(T{|Iao + diva + vAllo,oo + 2vIIKII}). 

Let m be an integer. Assume now that a = ag is given by (2.1) with ,P and r 
satisfying the hypotheses of Proposition 1, 

r, e Wm(Rn) and pE e L`((0,T);Wm,`(Rn xRn)). 

Assume that a E L (0, T;Wm+l1`(Rn)), ao E L?(0, T;Wm`?(Rn)). If fo E 
wm '(Rn), the solution f" of problem (1.5) belongs to L??'(0,T;Wm'??'(Rn)) and 
there exists a constant C = C(T, ao, a, ,u, r) > 0 such that 

(2.25) IIf(1 t)IIm,oo < CvE2IIfoIIlm,oo. 

Proof. We derive inequality (2.24) by a fixed point iteration technique. Let us 
first remark that setting 

a = l|ao + diva + vAllo,oo + vilKll, 
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the function g = fe-at is a solution of 

(2.26) + ag Vg + bog- vKg =O, 
at 

where bo = ao + div a + vA + a. We point out that 

bo = ao + diva + vA + |lao + diva + vAllo.o0 + vIlKII > vIlKII > 0. 

Let f e L?'(QT), and let 4 be the mapping defined by g = 4f, where g is the 
solution of 

{- + a Vg + bog = vKf, 

g(-, O) = fo. 

The mapping b is explicitly given by 

(>f)(z, t) = fo(X(0; z, t)) exp (- f bo(X(ir; z, t), r) dr) 
(2.27) IO J t / 

+ w (K f )(XQ(r; x, t), r-) exp (- bo (X (; x, t), a) du) di-, 

where the functions X(Tr; X, t) have been defined by (1.6). 4 maps L' (QT) into 
itself, and 

I(4,f - , g) (X, t) I 

<vllf - ghIo0,0lKKII exp (- bo(X(a; z, t), a) d) dr. 

Since bo > vilKII, we have 

vhlKII exp (- jbo(X(a; xz t), a) da) d < 1, 

which proves that 4 is a contraction. Then, 4 has a unique fixed point g* which is 
the solution of (2.26) in L"'(QT) and the iterative sequence defined by 

(2.28) gk+l = g9k 90 =0, 

converges to g*. We verify easily that for any g e LOO(QT) 

(2.29) 1ll4g1jooo < llfollo,oo + (1 - exp(-vjKj|T))||gjjo,oo. 

Setting I = 1 - exp(-vl/lKIIT) yields 
1 - lk+1 

11gk+ llo ? <11lfollo,oo + 1111gk10o,0 o _ 1-I ol,o 

and finally 

(2.30) 11g* b1ooo < exp(vjjKjjT) hlfo o,oo. 

By construction, the function 

f* = g* exp(t(Ilao + diva + vAllo,oo + vjlKjl)) 

is the solution of problem (2.16), and inequality (2.30) leads to (2.24). Now, let us 
consider the case where the kernel a is defined by (2.1): 

a(x, y, t) = E-2A(x, y, t)(x - y). 
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We have 

(2.31) IIKiI < Ce-2 

where the constant C depends on , and r. Let a E Nn, 1al > 1. Integrating by 
parts, we easily verify that we can write 

aa(Q(t)f) = aa(K(t)f) - aa(Af) = Q(t)(aaf) + Ra(t)f, 

where the operator Rot is a linear integro-differential operator such that 

{IRa>(t)f Ijo,oo < CE-211p||lal,ollqEllo,l llflllal-l_,, 

<C'E-2jjfIjIi1_i.C)o 

where the constant C' depends on , and r. Formally differentiating the equation, 
we get that the function &9cf is the solution of Eq. (2.16) with a right-hand side 
term which contains the derivatives of f of lower order. The proof of the existence 
of a solution in L (0, T; Wm'?(R)) and of the estimate (2.25) then follows by 
induction. 0 

If, moreover, v and E satisfy inequality (1.10), we have 

(2.32) II|f(X t)|Im,oo < CC ||Ifo limr,ooX 

Let f and fl be the respective solutions of (1.1) and (1.5). The following result 
holds. 

THEOREM 1. Assume that a E (L?(0O,T;Wr+3,oo(Rn)))n, and that b, ao E 
L??(O, T; Wr+2 (Rn)). Assume also that a' satisfies the hypotheses of Proposition 
1 with r > 2, and that condition (1.10) is satisfied. Then there exists a constant 
C = C(T, Cs, ao, a, b, r, ,u) > 0 such that for any function fo E Wr+2, ?(Rn) 

(2.33) 11(f - fF)( t)llo,oo < COVE Ifo llr+2,0. 

Proof. Setting g = f - f , we have 

a{ + div(a, g) + aog - vQC(t)g = v(D -Q(t))f, 
(2.34) a 

g(.,O) =0. 

Applying Proposition 3, we get 
pt 

(2.35) jII(., t)IIo,00 < Cv J II (D - Q(T))f Ijo,co dT, 

where, in consequence of (2.32), the constant C depends on C. Then, Proposition 
1 yields 

(2.36) ig(., t)II|o , < CverIIfIIL?(OT;wr+2,o(Rn)) 

where C depends again on T, CS, a, ao, ,u and r, and the theorem follows in view of 
Proposition 2. o 

3. Particle Approximation. Now, we come to the discretization method and 
we fix an initial distribution of particles. We choose a set of indices "J C Zn, a set 
of points x? E Rn and a set of real numbers wiAk > 0, k E >J. As mentioned in the 
introduction, we define the evolution in time of the particles by setting 

(3.1) Xk(t) = X(t; X,0), Wk(t) = w J(t; xA, 0), 

where the functions X are defined by (1.6). 
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In order to avoid technical difficulties, we suppose that the initial distribution of 
particles is uniform and that rj is compactly supported. That is, given a parameter 
h > 0, we have 

(3.2) jq = Zn x? = kh, C = hn. 

While our analysis could be carried through in a more general case, this assumption 
leads to simpler proofs. Furthermore, in the case of the whole space, it has been 
proved (see, for example, P. A. Raviart [20]) that the order of the corresponding 
quadrature rule is only limited by the smoothness of the functions. Now we prove 
the convergence of the discrete operator towards the continuous operator. 

PROPOSITION 4. Let m > n be an integer. Assume that 

a E(L?(O T;Wm+l???(Rn)))n and ao EL?(O,T;Wm '(Rn)). 

If r E Wm,l(Rn) and if , E L? ((O, T); Wm,' (Rn x Rn)), there exists a constant 
C = C(T,a,ao,ao,r7) > 0 such that for any function g E Wm' ?(Rn) and for any 
t E [0, T] 

(3.3) 1IQC(t)g - Qh(t)910,00 < Cm+i igllm,o 

Proof. We have 

(QE (t) g - 
Qh (t) g) (x) 

?- { , | x t(-y) (Xx, y, t) (g(y) - g(x)) dy 
^tn 

- Wkj(t)7,7(X - Xk(t))A(X, Xk(t), t)(g(Xk(t)) )- X)) 
kE.J 

and we recall the following result of [19]: for any function 'p E Wm1 (Rn), we have 

(3.4) j 'p(x) dx - S Ak(t)'p(Xk(t)) < Chmijjpjim,i, 

where the constant C depends on T and a. Applying this inequality to the function 

y - (x, y, t) = ?e(x - y) A (x, y, t) (g(y) - g(x), 

we get 

(3.5) i(QE(t)g _ Q, (t)g)(x)| < Ce?2 hmII (x, , t)IIm,l 
Let us compute the derivatives of ' with respect to y: with a E Nn, we have 

4x, +) a!/!-! (a - -)! (-1) 1'3k(x - y)dY (X, y, t)a, g (y) 

+ E (-1)II39f7ie(X - y>9>(x, y, t)(q(y)-g(z 

where the sums are respectively over the set of /3, -y E Nn such that 3i + -yi < ai for 
any i, 1 < i < n, and over the set of /3, -y such that A3 +-Y = ai, for any 1 < i < n. 
We note that 

ja13'% E(x - y)6oj,ts(x, y, t)(g(y) - g(x))I dy 
^tn 
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Using the change of variable y = Ez + x, we verify that 

f IY- xi &lqrk(x - y)I dy = E111 f lzi 1&9r,(z)l dz < CE1 III 1,. 
In Rn 

We obtain 

s-i 

Ik(x, *,t)1 18,? C S EPrj'P,1 11(x, ,t)lq,ooIqIs-p-q,oo 

p+q=O 

+C E -elP IIl,ooI/(X, , t)Iq,ooI7)Ip,1. 
p+q=s 

Finally, 

10(XI 10)lssl < CE1 .l9ll,0 

and 

IIV)(X, ,t)IIm,J < cEl|MIIqIm,co, 

where the constants C depend on T, ,u and r. Combining this inequality with 
inequality (3.5) leads to the desired result. 0 

Remark. If r E Wm l(R n) and 

p E L??((O, T) x Rn; Wmrno(R n)) n L??((O, T) x Rn; W 'o (Rn)) 

but 'either r is not even, or ,u is not symmetric, we have 

(3.6) IIQF(t)9 - Q(t)9110,oo < C m+2 IIgim,oo. 

The proof of this result is straightforward. 0 

We approximate the solution of (1.5) by the measure fh, 

fh(t) = 5 Wk(t)fk(t)6(X - Xk(t)), 

kEY 

where the coefficients fk are solutions of the ordinary differential equation 

(.) -(t) + (div a(xk (t), t) + ao (xk (t), t))fk (t) 

VE 2 5 I (t)7g (Xk (t) - XI (t))u(XI (t), Xk (t), t) (fl (t) - fk (t))- 

We have the following bound for the local error. 

PROPOSITION 5. Let m > n be an integer. Assume that a, ao, ,u and r satisfy 
the hypotheses of Proposition 4. There exists a constant C = C(T, a, ao, ,u, rj) > 0, 
such that for any function fo E Wmm'? (Rn) and any t E [0, T] 

(3.8) Sup I.fF(xk(t),t)-fk(t)l < CEm+l IlfolIm,Ioo 
kEY 

Proof. We set 

(3-9) e(t) = (ek(t))kE-, ek(t) = f((xk(t), t) - fk(t), 
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and we have 

(3.10) dek (t) + jfkl(t)eI(t) = V'Vkk(t), 
leY 

(3.11) ek(0) = 0, 

where 

V)k (t) = ((QE (t) - Q (t))f ') (Xk(t), t), 

3kl (t) = - E e2w1 (t)rE(xk(t)-XI(t))U(Xk(t),Xl(t),t) for I # k, 

3kk (t) = div a(xk (t), t) + ao (xk (t), t) 

+ JE 2E WI (t) 17 (X k (t)- XI (t) / (X k (t), Xi (t), t) 

1$k 

There exist two constants C > 0 and C' > 0, independent of h, such that for any 
t E [0, T] and any k, I (see for example [18]), 

(3.12) ~~C lhn < Wk(t) < Ch, 

(3.13) C'h < IXk (t) - xi(t)I < C"h. 

Then, for k : 1, 

1f3k1(t)l < VE-2W (t)k,7e(Xk(t) - Xl(t))L(Xk(t), Xl(t), t)I 

< CCh n.-nI 

which proves that the coefficients 3kl are bounded for h and E fixed. Let us now 
bound the diagonal coefficients. Since the support of v7 is bounded, the number 
of particles to take into account in the sum appearing in 3kk (t) is bounded by the 
number of particles in a ball of radius Ce. Thanks to (3.13), this number is bounded 
by C(E/h)n, and we get 

1f3kk (t) I < || div all0,,0 + |lao Ilo,00 + vE-2 W ol(t) 14E (Xk (t) - XL (t))P(Xk (t), Xz (t), t) I 
1$k 

11 div 
allo,00 

+ llao 
llo,00 

+ CVE-2hn7 (nh) E 0(1 + Cn) 

Then, setting 4(t) = (Ok(t))keJ, there exists a constant C > 0, depending on C, 
but neither on h, nor on v or e, such that 

dt jI(t)IIoo < C||e(t) + w11'(t) IIoo. 

Applying Gronwall's lemma, we obtain 
t 

(3.14) jJ-(t) 1 < ] eC(tr) II(T) K dr. 

The proof is now complete, since jj4'(t)IK. is estimated by means of Propositions 4 
and 3. O 

Remark. Since inequality (1.10) is satisfied, it is sufficient to require that h < coe 
for the local error to be bounded by 

1JE(t)JI00 < CC,,CnE. 

This proves the convergence of the local error with only one particle per cell of 
width e, for example. O 
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In order to obtain an approximation of the exact solution f in the sense of 
functions, we define a regularized version of fh. Let ' be such that 

j (x) dx = 1. 

For any real number e > 0, we set %(x) = E-nf(E-1x). We define 

(3.15) f,h(X, t) = E Wk(t)fk(t)(X -Xk(t)). 
kEOJ 

Let us now assume that the function ' satisfies the moment conditions 

(3.16) j xa (x) dx = 0, a E Nn, 1 < la < r'-1, 

(3.17) j Xlr' 1(x)Idx < +x 

for an integer r' > 2. We assume also that ' is compactly supported. We then have 

THEOREM 2. Let m > n, m' > n, r > 2 and r' > 0 be integers, and 
s = max(r', r + 2, m, m'). Assume that a E (L? (0, T; W8+lXo? (Rn)))n and aO E 
L?(0,T;W' ?(Rn)). A ssume that condition (1.10) is satisfied. If E Wm,l(Rn) 
and satisfies the moment conditions (2.4) and (2.5), if 

p E L? ((O T); Wm' (Rn x Rn)) n L?? ((O, T) x Rn; wr+ ?? (R n)) 

and if ' E Wm' l(Rn) and verifies conditions (3.16)-(3.17), there exists a constant 
C = C(T, a, ao, p, r,u C9) > 0 such that for any function fo E Ws'??(Rn) and any 
t E [0, T] 

(3.18) lI(f-fh)( ,t)Io, 0 <? C Er+ + + ) rfols,o 

Proof. We write 

(f - fh0)(., t) = (f -f f)(., t) + (f - 7rh(t)f )(., t) + (7rh(t)fe - fh)(. t) 

7rh(t)f (X, t) = Z Wk(t)f (Xk(t), t) E(X - Xk(t)). 

kEEJ 

We apply successively Theorem 3 of [19], Proposition 3, Theorem 1 and Proposition 
2 to obtain bounds on the first two terms; it thus remains to bound (7ir(t)fe - 

fh) (h,t). Setting again ek(t) = fe(Xk (t), t) - fk(t), we have 

(3.19) (7rT (t) f - fh) (x, t) = wk (t) ek (t)( X - Xk (t)) 

kEOJ 

Since the support of ' is bounded, arguing as in the proof of the previous proposi- 
tion, we get 

(3.20) II(h (t)f fh )(*,t)Ilo,o ? C||(t) lo 

Finally, Proposition 5 provides a bound on IIE(t) Ioo, and combining this with the 
bounds obtained for the previous terms yields the announced result. 0 
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Remarks. 1. The assumption that the supports of the functions ' and rq are 
bounded is not necessary but leads to simpler proofs. In fact, it would be sufficient 
to assume that both functions are rapidly decreasing at infinity. 

2. If fo E L1 (Rn), any solution of (1.1) satisfies the L1 conservation relation 

(3.21) d f f(x, t) dx + f ao(x, t)f(x, t) dx = O. dt n n 

It is easy to check that any solution of (1.5) satisfies the same relation. Exchanging 
the roles of k and 1, for any sequence p = ('Ok)kEJz in l??(Y), we have 

EI k EWk(t)tWI( t)7(Xk (t) - Xi(t))A(Xk(t),Xi(t), t) (01 - P) = 0; 
k,1EJ 

thus, any solution of the ordinary differential equation (3.7) satisfies the following 
discrete analogue of (3.21) 

(3.22) d ( wk (t) fk (t) + E wk (t)ao (Xk (t), t) fk (t) =0, 
kE-," kEJ" 

and the scheme is conservative. 
3. In the case of a nonsymmetric kernel, Eq. (3.7) becomes 

dfk 
(t) + (div a(Xk (t), t) + ao (Xk (t), t) )fk (t) 

(3.23) = IE E WI(t){7/nE(Xk (t) - XI(t))P(Xk(t), XI(t), t)fi(t) 
1eOJ 

-N7i (Xi (t) - Xk (t) )A(XI (t), Xk (t), t) fk (t) } 

The converge-nce of fh, towards f' can still be proved, and we get 

II(f - fAD)('t)II0oo, < C 
r 

+ m + v (Er + Em+2)) IfoI18,0.o 

4. Particular Case of a Positive Kernel: Uniformly Stable Approxi- 
mation. In this section we restrict ourselves to the case of the Laplace operator 
and consider the previous integral operator in the case of a nonnegative kernel a. 
We shall prove that a maximum principle property is true for both the integro- 
differential equation and the particle method. Thus, without assuming that in- 
equality (1.10) is satisfied, we shall obtain L?? estimates. This approximation is 
called uniformly stable precisely because the stability of the method is proved with- 
out any assumption on the discretization parameter. In fact, we need not assume in 
this section that the viscosity is small, although the particle method is well known 
to be better suited to slightly viscous media. The results, and sometimes the proofs, 
are very simllar to those of the previous sections; thus, some proofs will only be 
sketched. 

We assume that the viscosity coefficient b is constant, equal to 1, and that the 
function a" is given by 

(4.1) a (x,y,t) = 1F (x- ) 
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where the function q, satisfies the assumptions (2.3). Thus, 

a- e Lo ((O, T) x Rn; L (FRsn)) nLL??((O, T) x Rtn; L1 (Rn) 

is symmetric and 

QC(t)f(x) = e-2 j i(x - y)(f(y) - f(x)) dy. 
Rn 

We first prove the analogue of Proposition 3 in the case of a nonnegative kernel. 

PROPOSITION 6. Assume that ri is nonnegative. Assume also that a E 
(LOO(O,T;W1'??(Rn)))n and ao e LOO(QT). If fo e LOO(Rn), the unique solution f 
of problem (2.16) in LI (QT) is bounded as follows: 

(4.2) Il f ( , t) 11o,oo < exp(cet) Il fo 11o,oo, 

where 

(4.3) a = -inf{(ao + diva)(x, t), (x, t) e QT}. 

Let m be an integer; if a e L (O, T; Wm+l,oo (Rn)), ao e L (O, T; Wm,oo (Rn)) and 

n e Wm,1(Rn), then for any initial condition fo e Wm oo(Rn) the solution belongs 
to L? (O, T; Wm, ?(Rn)), and there exists a constant C = C(T, ao, a) > 0 such that 

(4.4) llf(, 0)lm,00 < C11fOllm,00- 

Proof. Proposition 3 assures the existence and the uniqueness of the solution in 

LOO(QT); it suffices, then, to establish the estimate. Let us first assume that fo is 
nonnegative and let us return to the fixed point method defined by (2.28). Since a 

is > 0, by (2.27) we have that f > 0 implies 4?f > 0. This proves that all terms gk 

of the sequence are > 0 and then that the limit (the existence of which is proved 
by Proposition 3) is also nonnegative. This limit is the solution of (2.16). Thus, if 
the initial function is > 0, the solution remains > 0 for any time. In the general 
case of an initial function which does not have a constant sign, we set 

g* (. t) = f* (. t) + llfo 11o,oo exp(at), 

where a is defined by (4.3). Then a + ao + div a > 0, and g* is the solution of 

{ ( + div(ag*) + aog* - vQg* = (a + ao + div a) IIfoIbo,oo exp(at) > 0, 
at 

9*(. o) = fo + lifo 0o,oo > 0. 

The function g* is then nonnegative and 

(4.5) f*( X t) > -IV0o ll,OO exp(aet). 

Now, consider the function 

h* (,t) = -f * (.It) + Ilfo 11o,oo exp(at). 

h* is the solution of the same equation with nonnegative data; h* is then > 0 and 

(4.6) f* ( t) < llfollo,oo exp(at). 

Combining (4.5) and (4.6) leads to (4.2). The estimate (4.4) is obtained by formally 
differentiating the equation. 0 
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Again, we denote by f and f' the soluti6ns of (1.1) and (1.5), respectively. The 
following result is the analogue of Theorem 1, and its proof, which is very similar 
to that of Theorem 1, will only be sketched. 

THEOREM 3. Assume that 

a E (L??(O,T;W5,oo(Rn)))n and a0 EL?(O,T;W4 ??(n)). 

Assume that r1 is > 0 and satisfies the hypotheses of Proposition 1. There exists a 
constant C = C(T, t7, ao, a) > 0 such that for any function fo E W4'oo (Rn) 

(4.7) lI(f - f6)( ,.t)0,00 ? Cve2llf0ll4,oo. 

Proof. We set g = f - f", and we obtain 

g{ + div(ag) + aog - vQ(t)g = v(/ -Q'(t))f, 
-(4.8) t- 

g( ,0) = 0. 

Applying Proposition 3, we find 

rt 
9( Xt)ll,o <_ C0IJ I (A .-Q (r)) )f IIo,oo dT, 

where the constant C depends on T, a and ao, and the theorem follows from 
Propositions 1 and 2. 0 

Before stating the convergence of the method, let us first recall a stability result 
proved in [12]. 

LEMMA. Assume that we are given continuous functions of t, (bk,l(t))k,lEzn, 
which satisfy for some constant C > 0 and for any k E 7Ln 

(i) bk,I(t) < 0 for any 1 E Zn, 1 k, 

(ii) b I ,(t) >! O, 
(4.9) IeZn 

(iii) E gbk,I(t) I < C. 
IEZn 

Given continuous functions of t, g*(t) = (gk(t))kEzn and v0* = (Vk)kEzn such 
that for some constant M > 0 and some continuous function G > 0, 

{ 0 < v? < M, 
(4.10) 'i0 < gk(t) G0(t) 

for any k E Zn and all t E [O, T], there exists a unique solution v*(t) = (Vk(t))kEZn 

of the following differential system 

{dv (t) + E bk,I(t)vI(t) = gk(t), 
(4.11) dt EZn 

Vk(O) = Vk 

Moreover, v* satisfies the inequality 

(4.12) 0 < Vk(t) < M + G(s) ds. 
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We now prove 

PROPOSITION 7. Let m > n be an integer. Assume that a, ao and rq satisfy the 

hypotheses of Proposition 4. There exists a constant C = C(T, a, ao0, 7) > 0 such 

that for any function fo e Wm',"(Rn) and any t E [0, T] 

(4.13) sup Ife(Xk(t), t) - fk(t)I < Cv m+1 IIfoIm,oo 
kE.Y 

Proof. Again, we set 

(4.14) e(t) = (ek(t))kEJ,, ek(t) = fe(Xk(t), t) - fk(t), 

and we have 

(4.15) ~ dek 
e()=0 (4.15) -t (t) + E akl(t)el(t) = VIk(t), ek(O) = 0, 

where 

bk (t) = ((Q (t) -Q (t))fS) (xk(t), t), 

akl(t) = -VC?2Wl(t)re(Xk(t) - Xl(t)) for 1 :A k, 

akk (t) = div a(xk (t), t) + ao (xk (t), t) + eJ2 E Wl (t)17e (Xk (t) -xi (t)). 
I$k 

The boundedness of the norm of e will follow from an application of the previ- 

ous lemma. Actually, the lemma cannot be applied directly, because the sign of 

the diagonal coefficients akk (t) is not known. On the other hand, these diago- 

nal coefficients are easily changed by multiplying the function by some appropriate 

exponential of t. Precisely, setting a = div a+ao Io,c, we verify that the functions 

t _ 
Ck(t) = ek(t)e-'t + vj 1I,(,r)1ooe-a(t-T) dr 

0 

are solution of a system which differs from the previous one only by the diagonal 

coefficients. In fact, we have 

dk (t) + E 3kl(t)jl(t) = V(VPk(t)e at + jj17(t)jjo), ek(0) = 0 

where 

Okk(t) = akk(t) + a for any k E J, 

Akl(t) = akL(t) for any k, 1 E Y, k : 1. 

Arguing as in the proof of Proposition 5, we check that the coefficients /3k1 (t) satisfy 

the following inequalities, for any k, I E JY and t E [0, T]: 

- (i) f3kl (t) < O for I : k, 

(ii) Al p(t) > O, 
(4.16) Ieg 

1(iii (t) I < C7(1 + VE- 2). 
IE,7 
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Since, moreover, Pk(t)e-t + I I V(t)I I > 0 for any k E J, we can apply the lemma, 
which establishes that ek(t) > 0 for any k. Thus, it follows that for any k E 3Y 

rt 

ek(t) > -VJ ll(7-) 1oo e"' d7- 

Considering then 

ek(t)e-t - I Jo , 1+(T) l)ooe-(tdT) 

leads to 

ek(t) < IV ||(T)| Iea dT, 

for any k E J. Combining these two results yields 

rt. 
(4.17) IIe(t)01k0 < jI Il (7)lloo exp(7|| diva + aoIIo, o) dr, 

and the result follows from an application of Propositions 4 and 6. 0 
Let ' be a cutoff function with integral 1. We define the regularized version of 

fh by 
fh (x, t) = E Wk(t) fk (t) (X - Xk (t)) 

kEJ 

We assume that q and ' have compact supports, that ' E Wm'," (Rn) nC C8(Rn) 
for some integer m' and verifies the moment conditions (3.16) and (3.17) for some 
integer r' > 0. 

THEOREM 4. Let m > n be an integer and s = max(r',4,m,m'). Assume 
that a E (L??(O, T; W8?l,1o(Rn)))n and ao E L??(0, T; W8,'(Rn)). Assume that 
27 satisfies the hypotheses of Theorem 3 and Proposition 7. Then there exists a 
constant C = C(T, a, ao, t, 7) > 0 such that for any function fo E W' o(Rn) and 
any t E [O, T] 

(4.18) 1I(f - fh0)(v t)IIo0,0 < C (E + + V (E + IlfoIs,0.oo 

The proof is very similar to that of Theorem 2 and follows from an application 
of the previously established results. 0 

5. Further Remarks. 
5.1. Stability of the Time Discretization. We present a stability analysis of 

the ordinary differential equation (3.7) which gives the strength of the particles. 
For simplicity we assume that there is no convection (a = 0) and no deformation 

(ao = 0), that the viscosity b is equal to 1 and that the space dimension is one. 
The positions of the particles are given by Xk = kh, the volumes by wk = h, and 
the equation is 

dfk h 
-d t-2. (Xk - XI)(fl(t) - fk(t)) = 0- 

We choose a time step At > 0 and we denote by fkn the approximation of fk(nAt). 

Using Euler's scheme, we write 

fkn+1 Eaklfi , 
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where 

vAt ik -l\ 
akl= 3 hr Kh) for k 1, 

akk = 1- VAhE (k-lh) 
15$k 

The scheme is A-stable if 

sup laklI <1. 
k 

Since 

Z laklI = 1- A3thZ h (klh) + A3- h E |(-lh) > 1, 
I lo~~~1k 1#lk 

the stability conditions are 

(5.1) 1 ul h, (kh) < 1. 

Since the function 77 is even and compactly supported, say in [-d, d], we have 

r7 (h) = 2 E 7 (- < 2d h11,q 11o,oo, 

and the scheme is stable if q7 > 0 and 

(5.2) 2vAtdI7jIoj,oo < E. 

If the function 7 is not compactly supported, it is sufficient to bound the sum as 
follows, for example: we consider the case of the Gaussian function and write 

+0 {khA 1 +00 k 2h 20 [+00 z20 
E 71 - E exp - ~~ < exp - ' 

dx=~~ 
,, 6 _ A;Ex -4E2 ) v- < 

- 
h J 4 ) 2h' k=1 2h 

The stability condition is then 

(5.3) vAt < 62 

We point out that the parameter h does not appear either in inequality (5.2) or 
in (5.3). The constraint imposed to At is not too strong since it relates the time 
step to the cell width and becomes less demanding when v diminishes. The same 
analysis can be done in higher dimension and in the case where the velocity a is 
different from 0, provided that div a = 0 and ao = 0. 

5.2. Examples of Functions 7/. Numerous examples of kernels will be studied in 
Part 2 of the paper; here we mention some possibilities. 

A. A first example of a spherically symmetric function. Consider a function 
: R+ -F R and set 

(5.4) (x) = -21xV-1(Ix), 
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where Ixi = (X2 + X+2)1/2. If for an integer r the function f satisfies the following 
moment conditions, 

{+0 
(5.5) f0 tn- '(t)dt = (measS n-1 ) 

(5.6) j t2p+n- '(t) dt = 0, 1 < p < k = r 

(5.7) J tr+n+l 1(t)I dt < +oo 

for an even integer r, then the function j satisfies conditions (2.4) and (2.5) for the 
integer r. This result is easily proved by means of spherical coordinates. 

We can also rewrite r7 as 

(5.8) 1(x) = -2Ixl-2V(x) x, 

where ~(x) = ?(Ixl) for any x E Rn and where the function ' satisfies the moment 
conditions classically imposed on cutoff functions. Let us note that in [12] the case 
of functions q constructed by (5.8) with nonnegative functions ' was considered. 
In that case, r = 2, and condition (5.6) disappears. 

B. Second derivative of a cutoff function. Consider again a function S: Rn --I R 
which is at least twice continuously differentiable and which satisfies the moment 
conditions (3.16) and (3.17) for some integer r > 2, and set 

(5.9) q(x) = Af() 

Then the function 7 satisfies the conditions (2.4) and (2.5) for r, and the integral 
of r1 is equal to 0. Furthermore, in the case of a constant function b, say b = 1, the 
natural choice of ,u is i = 1, and the operator QE is reduced to 

(5.10) QEf = E-2* f. 

When constructing the particle method, one has to pay attention to the conserva- 
tion property of the scheme, and the resulting approximate operator is 

(5.11) Q, (t)g = E-2 WI (t) (X - Xl(t)) (g(x(t)) - g(X)) 
lEJ 

instead of 

Q, (t)g = ? 2 E WI (t)qp(x - xI(t))g(xI(t)). 
IEJ" 

Let us also mention that the integer r is even because of the symmetry of the 
function and that there is no hope to obtain a nonnegative function qj. 

C. Another example of radially nonsymmetric functions. Another obvious choice 
is to take the function q in the form of a tensor product of one-dimensional func- 
tions, 

(5.12) (x)= JJ (xi), 
1<i<n 
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where each function ?i satisfies the conditions 

?fi(t)dt = 1, 

J t2?i (t) dt = 2, 

ftP?i(t) dt = 0, p = 1 or 3 < p < r +1, 

trt+2 I?i(t) I dt < +oo. 

Let us notice that in that case the integer r is obviously equal to 2, because 

X? X?X (x) dx =4. 1o 
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