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The Weighted Particle Method for 
Convection-Diffusion Equations 
Part 2: The Anisotropic Case 

By P. Degond and S. Mas-Gallic 

Abstract. This paper is devoted to the presentation and the analysis of a new particle 
method for convection-diffusion equations. The method has been presented in detail in 
the first paxt of this paper for an isotropic diffusion operator. This part is concerned 
with the extension of the method to anisotropic diffusion operators. The consistency 
and the accuracy of the method require much more complex conditions on the cutoff 
functions than in the isotropic case. After detailing these conditions, we give several 
examples of cutoff functions which can be used for practical computations. A detailed 
error analysis is then performed. 

1. Presentation of the Method. The purpose of this paper is to present and 
analyze a particle approximation of the following convection-diffusion equation: 

(1) af + div(af) + aof = vD(t)f, 

which can be considered as a model equation for numerous physical problems, such 
as the incompressible Navier-Stokes equation or the Fokker-Planck equation of the 
kinetic theory of plasmas. In this equation, x belongs to R' and t is positive. a(x, t) 
is a given vector field and ao a given scalar function. D(t)f denotes an anisotropic 
diffusion operator, which, in its most general form, can be written as 

(2) D(t)f = (Lij(zX t) f) 

with L(x, t) an n x n positive symmetric matrix, with possible degeneracies. v is 
the viscosity parameter, which throughout this paper will be considered as being 
smaller than 1. 

In the first part of this paper [1], we proposed a particle approximation for a 
convection-diffusion equation of type (1), when the diffusion matrix L is scalar. Let 
us recall that the derivation of this approximation is mainly divided into two steps: 
the first step is the definition of an integral operator Q6(t) of the form 

(3) Q'(t) * f(x) = r (x, y, t)(f(y) - f(x)) dy, 

where a-(x, y, t) is intended to provide an approximation of the diffusion operator 
D(t) when E goes to 0. In the second step, we introduce the particle approximation 
fh (x, t) of the solution f (x, t) according to 

(4) fh (x, t) = Wk (t) fk (t) (X - Xk (t)), 
k 
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where xk(t), wk(t) and fk(t) are the particle positions, volumes and strengths. The 
particle approximation Qh (t) of the diffusion operator D(t) is obtained by numerical 
quadrature of the integral operator Q-(t) using the particles as quadrature points. 
This approximation reads as follows: 

Q h (t) fk (t) = Or (Xk (t), xl (t), t) (fl (t) - fk (t))w l(t) 

Then the particle approximation of the convection-diffasion equation consists in 
letting the positions of the particles evolve according to the convection field a(x, t). 
The variation of the volumes is monitored by div a, while the variation of the 
strengths accounts for ao and for Qh (t). Namely, 

dXk = a(Xk(t),t), 

dt 
(5) dt =div a(Xk (t), t) * Wk (t), 

t dk + (ao + diva)(Xk(t),t) * fk(t) = Qh(t) * fk(t). dt 
The method is completely specified once the approximation Qg (t) of the diffusion 

operator D(t) is defined. In Part 1, such an approximation is proposed for an 
isotropic diffusion operator (that is for scalar matrices L). For the simplest case of 
the Laplacian operator A, we introduce a cutoff function r, (x), which is defined by 

?76(x) En n (E 

where the function q(x) has the following moment properties: 

xa(x)dx 
2 if the multi-index a = 2ei, 

J ( ) 1 o0 otherwise, for 1 < I aI < r +1 

(we denote by ei the ith vector of the canonical basis of Rn). Then we define 
a'(x,y) by 

(6) ca,(x,y) = 2qe(x-y) 

Taylor's formula shows that Q-(t) . f is an approximation of Af up to the order r 
[11. 

The main difficulty in the anisotropic case is the derivation of a suitable integral 
operator Q6(t). A first method was proposed in [21 and will be discussed in Section 
3. However, its algorithmic complexity is too large for practical use. Our method 
relies on a direct extension of formula (6) to the anisotropic case. We propose the 
following choice of ae(x, y, t): 

(7) ,(x y, t) = 1 Mijn(Xz8t) j( -Z)) 

where 

ob (x) = -Oij (-) 

is a matrix cutoff function, and M = (Mij(x, y, t)) is a matrix to be determined as 

a function of L(x, t). 
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In Section 3 we show that (7) actually provides an extension of (6) to the 
anisotropic case. The need for a different cutoff function for each component of 
the matrix L arises from the need to approximate different second-order crossed 
derivatives. That the matrix M may be different from L is an important feature 
of this method which will be detailed in Section 3. 

The outline of this paper is as follows: we discuss the consistency conditions for 
Q e in the next section. Then, practical examples are given in Section 3. The error 
estimates are stated and proved in Section 4. Since the proofs are very similar 
as in the isotropic case, they will only be outlined. We refer to [1] for a detailed 
bibliography on the particle approximation of convection-diffusion equations. 

2. Derivation of the Integral Operator; Consistency Conditions. 
2.1. Introduction and Notations. In this section, we will investigate sufficient 

conditions on , and M which ensure that Df and Q6f are close up to the order Er. 

Let us introduce some notations. If a = (C1, iC2,., cin) and f = (f,1 2,X-2..., f3n) 

are multi-indices in NF, we define: 

ICel = Cel + Ce2 + **+ Ceni C e +01 = (Ce 1 +0|1, XOf2 +012 X * eXOn + 13n) X 

Ce! =acl! (X2 ! (X ! xa = xal lX'2 ..xan 1 &2 n~ 

1 2 n - a12 

We denote by (el, e2,...,en) the canonical basis of Rn, and by S'n(R) the space 
of n x n real symmetric matrices. We will also use the Sobolev spaces Wk,?(Rn) 

provided with their usual norms: 

11911k,oo = SUP 191poo, Ig1Ip, = supess ja9g(x) . 
O<p<k alI=p, xERn 

We now introduce the diffusion operator D according to formula (2); in the 
remainder of this section, the time will be kept fi-xed and will be omitted in the 
formulae. We suppose that the matrix L belongs to W8?'(Rn), with s to be spec- 
ified later. We investigate the integral operator Q", given by formula (3), where 
a6(x, y, t) is determined by (7). We assume that M(x, y, t) and +b(x) are functions 
with values in 9n (R), the regularity of which will be specified later, and that they 
satisfy the additional hypotheses: 

M(x, y, t) = M(y, x, t) Vx, y E R , Vt > 0, Oij is even. 

With these hypotheses, a" (x, y, t) is invariant under the interchange of x and y, 
which ensures the conservation property of the operator Qe: 

(8) fQ(t) - f (x) dx = fJ ' 
(x, y, t)(f (y) - f (x)) dy dx = 0. 

We now introduce the matrix m(x, t) = M(x, x, t), and we note that, owing to 
the symmetry of M, we have 

____j 
1 9m i 

(9) -Ml 2 x :L (x) Vi, j, N E , Vx y E R. 

Let us finally introduce the moments of the cutoff functions i' j: for any i, j in 
[1, n], and for any multi-index a in Nn, we define 

(10) Zi 1 = jb (x) ax dx. 
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2.2. Consistency and Accuracy of the Approximation of D by Q?. 

HYPOTHESIS H. We assume that there exists an integer r > 2 such that: 
(i) Ziaj = 0 for 1 < lal < r + 1 and lal$ 2; 
(ii) for any integer k, 1 in [1, n], we have 

n 

E mij(x)Zrk+ej= 2Lkl(X) 

i,j=l 

PROPOSITION 1. Let m, M and 4 be given as in the general hypotheses of 
Section 1. In addition, assume that M E Wr+x'??(Rn X Rn), m E Wr+l?R(Rn), 
and (1 + lxlr+2)4'(x) E L1 (Rn). If Hypothesis H is satisfied, there exists a positive 
constant C = C(M, 4) such that 

|Dg - QSgjo,oo < Ce rjg||r+2,oo 

Remark. The choice of an even 4 makes the order r of the approximation nec- 
essarily even (see Hypothesis H(ii)). The choice of 4"s that are not even would 
lead to similar results, but would complicate the expression of Q? to maintain the 
conservation property (8). 

Proof. We first apply Taylor's expansion formula to the difference g(y) - g(x) in 
formula (3). This leads to 

(11) = r+1 9~g(x) [ Ue(x,y)(y - x))dy + SEg, 

where the remainder S?g is given by 
(12) 

seg = E r + 2 fj oE(x y)(y - X)(l - u)r+lag(x + U(y - x)) dudy. 

I<a}=r+2 olxr- 

Then we apply Taylor's formula again for the computation of the integrals involving 
aJE by expanding M(x, y) in powers of (y -x): 

for (x, y) (y - x) dy 
Rn 

(13) E2 E 
j Mij(x, Y) ij(y - x)(y - x) dy 

n r+1-IaI 1 
E2 Z >J -3l @Mij (X, X) | ' (y-x) (y-x)a+f dy + T", 

2,j=1 1.81= 

where the remainder T.- is given by 

T?_1 EZ r+2-(c( 1k? 
r 2- a 

i,j=1 13j=r+2-I'aj 

(14) x ff (1- V)r+l-?a' 9Mij(x,x+v(y-x)) 
[0, n y ] y - 

X +? (y- X) (y x) '+, dv dy. 
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Now, by substituting (13) in (11) we get the following decomposition: 

r+1 

Qg= EQg + R9g, 
m=l 

where Qjmg is a differential operator of order m and RE is a remainder, obtained as 
the sum of the remainders (12) and (14): 

r+1 

(15) REg = Seg + E -9g(x)Ta 
1aI=1 

Moreover, we note that 

f 
i{(y - x)(y - x) dy = 5lclzizj, 

so that the coefficients of Qgmg are given by means of an expansion into powers of 
e according to 

QE 9( ) E ag(x) 
Ial=m 

[r+l-.mS 
X t E p+m-2 EzE (zt+,3;4,3 z,)) 

We note that for 3 < m < r + 1 the length of the multi-index a +,B which appears 
in the moment Z+3 is certainly greater than 3, so that, using Hypothesis H(i), we 
immediately conclude that 

Q M=O for3<m<r+1. 

Similarly, the only terms which do not vanish in Ql and Q2 are of degree 0 with 
respect to E, and they can be written as 

a 9g [ Mi.(X)Z~k+e1l 
Q,g E aXk tE E l (XIz ] 

[2,31 =1J 
k ,1= l t i j= 

Then, using (9), we can write 

1 1 19g 1I =l E 1 '2g F) E M(X)Zek+e,l 
g 2 (9XkaXI Z'3 J 

k,I [=,1=1 

It is clear that Hypothesis H(ii) leads to 

g = g aLk 9 E aLk 

Q =k,1=1 kk3x 
1= 

kxLkl 
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Thus, Q'g + Q2g = Dg and Qeg - Dg = Reg. Now, going back to (15), (14) and 
(12), and using the regularity hypotheses on M, 4, and g, we easily find that 

jjR`g||o,oo < CEr ||9||r+2,oo X 

where C actually depends on IIMIIr+,oo and 11(1 + IxIr+2),bIIol,. This completes 
the proof. O 

3. Examples. 

3.1. First Method: O is a Hessian Matrix. 

3.1.1. General setting. This method is the direct extension of [1, Section 5.2]. 
We let ' be an even compactly supported (or vanishing at infinity) function from 
Rn into R, such that 

[r\ { 0 for 1 <Ic1I<r-1, 
(16) / af(x) dx = 

fo a 

(JR 1 for a = , 

and we let 

(17) ij(z)= (z) and m(z) = L(z). 

It-follows that Hypothesis H(i) is satisfied and that for lal = 2 we have 

0 if a :A ei + ej, 
Zij=4 1 ifi$jando!=ej+ej, 

2 ifi= j and a = 2e2, 

which immediately leads to Hypothesis H(ii). 

3.1.2. ' is a tensor product of one-dimensional functions. This general setting 
includes the case of 

n 

(18) '(x) = 7I J j(xj), 
j=1 

where f is an even compactly supported function from R into R such that 

f 
&(x~j {x 0 f6r1?caj?r-1, 

IR ij i) J - 1 for aj = 0. 

Now, an immediate extension of (18) is obtained by letting 

oii(x) = /(xi)M(X), 

Oij (x) = ((xi, xj ) ((x-j) if i :# j, 

with 

Xi = (Xl, I Xi-l, xi+11 * I Xn)I 

xij = (xil, .. ., xi_1, xi+1i ... ., xi-i, xj+li * ,Xn) 
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and with il, , (, ( satisfying the following moment conditions: 

[+& d { 0 for0<a <r+1, a#2, 
(19) J Yo1(Y)dY = 2 for = 2, 

(20) f &)d" = 10 fr?IIr1 
(20)In-1 ( ) {1 for a-0, 

(21) 
I za ( 0 for 1 < Ci +C2 < r+1, (Ci1,.Ci2)#(1, 1) 

221) z2(ZlZ2) dzz2= i 1 for (, a2) = (1, 1), 

(22) | Z((^)d^ 
0 for 1 < lal < r-l, 

Je-2 1 for a = 0. 

The moment conditions (19) to (22) are sufficient for b to satisfy Hypothesis H, 
even if b is not a Hessian matrix. This method may be used when one wishes to 
work with a very poorly regular cutoff, which is difficult with formulation (17). 

3.1.3. ' is spherically symmetric. The general setting also applies to '(x) = (p), 
where p stands for the Euclidean norm of x, and f is a regular cutoff. Then, 

(23) 2~~~~~~1 d /1 d \ 1 d- (23) ' ii (X) = i2- - d-( -S( p)) + 1 d (Ap 

(24) Oij(x) = Xilxip d ( dp(p) if i : j 

The moment conditions on f are easily deduced from (16). Formulae (23) and (24) 
may be quite complicated for practical use. In the next subsection we investigate 
simpler cutoff functions, which are directly inspired by (24). 

3.2. Second Method: /ij = xixjO(x). 
3.2.1. General setting. Throughout this subsection, we will analyze cutoff func- 

tions of the type 

(25) )ij(z) = xixjo(x), 

where 0 is a real even function from Rn to R such that 

zaO(x) dx =0 for3< lal < r+3 and lal: 4. 

We define the matrix A = (akl)k1= by 

akl = fxx (x) dx, k, I E [1, n]. 

LEMMA 1. Given E according to formula (25), there exists a matrix m(x) such 
that Hypothesis H is satisfied if and only if 

(i) For any k, 1, k :# 1, we have aki :# 0; 
(ii) The matrix A is an invertible symmetric matrix. 

Then, m(x) is defined by 

(26) mkl(X) = ak'Lkl(z) for k,l E [1,n], k #A 1; 
n 

(27) Eakimii(X) = 2Lkk(Z) for k E [1,n]. 
i=l1 
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Proof. It is easy to check Hypothesis H(i). The Z coefficients (given by (10)) are 
equal to 

if k 1: zek+eL = If ei + e + ek + el, j akl if ei + e =ek + el, 

if k 1: Z~ek 0 if i$:j, 
if aik if i =j. 

It follows that Hypothesis H(ii) is equivalent to Eqs. (26) and (27). This completes 
the proof of Lemma 1. 0 

3.2.2. 0 is a tensor product of one-dimensional functions. We apply this general 
setting to 

n 

0(X) = frni(xi), 
i=l1 

where the rhi's are even functions from R into R, normalized to 1. The matrix A is 
given by 

aki = f Xk2lk(Xk) dxk fxl r(xl) dxl for k :# 1, 

akk = f Xk4k (Xk) dXkv 

Conditions (i) and (ii) of Lemma 1 are equivalent to 

bi 7AO Vi = 1,...n, EL)( Ci + 1) :AO? 

where 

bi= jxrin(xi)dxi, Ci = a - 

The inversion of A is impossible by analytical means in the general case; so we 
assume that 0 is a tensor power: 

n 

0(x) = f r(xi)- 
i=l 

Thus, akl-= a for all k : 1, and akk-= for all k. The inversion of A leads to 

mkl(X) = a-'Lkl(X) for k,I E [1,nI, k $A1; 
2 2ar 

mkk (X) = p Lkk(x) - (- )(+ ( 1)I) rL(x), 

where Tr stands for the trace of a matrix. 
With this choice of cutoff, the approximation is of order 2 at most, since, for 

instance, the following 4th order moment is necessarily nonzero: 
3 

f XlX233(x) dx = J f xjj(x3) dxj 0. 

An interesting extension consists of 0 being invariant under permutations of its 
arguments. Indeed, the matrix A and the solvability conditions for m(x) are the 
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same as for the tensor power, but the accuracy of the approximation is no longer 
limited to the order 2. 

3.2.3. 0 is spherically symmetric. We now suppose that 0(x) = O(Ixl), with 0 
being a function from R+ into R. Now the matrix A is written as 

aki = a = p4+(n- 1) 6(p) dpf w2Uw dw for k $ 1, 
0 S ~~~~n-1 

akk = = f p4+(n-l) #(p) dpf w4 du, 
O S~~~~~n-I 

where Sn-l stands for the (n - 1)-dimensional sphere. We denote 

=f| w S2w2dw and f=f 4dw. 
Sn-I Sn-I 

a and f are not independent. Indeed, we have 

(28) (w + +wn)2 dw = meas(Sn) =nf3+n(n-1)a. 

Moreover, using spherical coordinates, we have 
n-2 

meas(Sn-1) = 27r fl I, 

j=l 

and 
n3 7r/2 

,3 27r 11 I, Cos n2q5 sin4q5dqo, 
1 (I=I)J r,2 

where Ij stands for 
7 ir/2 

Ij= ~Cos-' 0dO 
-7r/2 

and satisfies Ij/Ijp2 = (j - 1)/j. Thus, we have 

_______ 1 '2sin 4 0 CoSnl2q5 do 
meas(sn-) - In-2 7 -ir/2 

=1 2- 
In In+2 3 

1n-2 In-2 =n(n+2)' 

and from (28) we deduce 

~~~~~1 
meas(Sn-1) n(n + 2) 

Thus, introducing 

(29) 
? 

meas(Sn') f p4+(n'- l) 8(p) dp, 

we have aki = - if k $ 1 and akk = 3-f for all k. Therefore, m is given by 
- 1 

mkl = jffLke if k $ 1, mkk = 1 Lkk- 2 Tr(L). 

If 0 is normalized so that a = 1, the solution can be written in a more compact 

form as 

(30) m = L- +2Tr(L)Idn, 
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where Idn stands for the identity matrix in Rn. To obtain an order r = 2q approx- 
imation, it is sufficient to require 

(31) f p2kP2+(n-1)#(p) dp = 0, 2 < k < q. 

Examples of cutoff functions 0 satisfying these conditions are 

(32) #(p) = e_OP2 (ao + a, p2 + .. . + aqIp2(q-1)), 3 > o. 

Conditions (29) and (31) lead to an invertible linear system for the coefficients ai. 
From a practical point of view, we believe that the present example provides the 

most economical method. Indeed, thanks to (30), the matrix m is directly given 
in terms of L, with minor computations. Besides, it is fairly easy to design highly 
accurate cutoffs 0. Moreover, since 0 is a one-dimensional function of the radius 
r, it can be easily stored in the memory of the computer, rather than recomputed 
each time. Finally, super-Gaussians like (32) can be replaced by rational functions 
or B-splines. 

3.3. Connections with Previous Work. We first show how the present approx- 
imation is connected with the first part of this paper [1]. We investigate scalar 
matrices. Thus, we let L(x) = A (x)Idn and M(x, y) = ,u(x, y)Idn. Then, formula 
(7) for a' leads to 

- 
ol,~~~X (X, y) P 6,(X, y) V42.(Y -x). * t=1~~~~~~~ 

Thus the cutoff ,q, used in Part 1, is related to '/ by 
n 

(X)= Z ii(x) 
i=l 

Since the matrix m is diagonal, the off-diagonal elements of the matrix 't need not 
be defined. Now, Hypothesis H(ii) immediately leads to 

IXkXlr(x) dx = 26kl for any k,l in [1,n], ,(x,x) = A(x), 

which are exactly the consistency conditions found in Part 1. 
We now mention the method developed in [2] for the anisotropic case. In this 

method, the function o6 is not given by the general formula (7) but by 

(33) a, (X, y) = E E Lij (z) 3Zi (x- z) 5-- (z -y) dz, 

where the cutoff 6 satisfies the moment conditions (16). In [2], it is proved that 
a particle method based on the approximation (33) is L2-stable, consistent, and 
convergent. However, it leads to a double integral operator Q6, which is algorith- 
mically more costly than the simple integral operators obtained by formula (7). 
This is the reason why we have rejected this method and preferred to investigate 
the a's given by (7). However, the analysis below (Section 5) would apply to (33) 
with very minor changes. 

3.4. Miscellaneous Remarks. The matrix M(x, y) can easily be defined from the 
knowledge of the matrix m(x). Indeed, any type of equiweighted mean value of 
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m(x) and m(y) is convenient. We suggest the use of 

M(xz y) = m ( 
+ I or M(x, y) = (m(x) + m(y)) 2 ~~~~~~2 

None of the examples presented above guarantee the positivity of the cross sec- 
tion o6. More precisely, for ?b given by (25), with a spherically symmetric 0, we 
obtain 

o (X, y) = 
i(En+4 ( x) M XE )( (y-X)i(y-x)3. 

Thus, a' is positive if and only if 0 is positive and M is a positive symmetric matrix. 
The former condition implies that the approximation is limited to the order 2, as in 
the isotropic case (see Part 1, Section 4). The latter condition is satisfied if m(x) 
is a positive matrix for all x. If we denote by A1 < A2 < ' ' < An the ordered set 

of eigenvalues of L, this condition leads to (see formula (30)): 

A1 > n+2 ZAi. 

This means that the eigenvalues of L have to be close enough. Clearly, this is 

not a natural condition for the continuous problem. Furthermore, other choices 

would lead to different conditions. Thus, we will not make any assumption on the 

positivity of 0,6. 

The uniform ellipticity of L is never required for the error estimate, since we do 

not need the regularizing properties of the diffusion operator (see Section 4). Thus, 

the method also applies to degenerate operators, or can be used to numerically 

investigate the singular limit v -+ 0. A particularly interesting case is that of 

a completely degenerate diffusion operator in one particular direction. This case 

arises, for instance, in the Fokker-Planck equation of the kinetic theory of plasmas 

[3]. Let us suppose that Rn is split into RP x R(n-P) X and that L is block decomposed 

according to this splitting: 

Then with (30), m is found to be 

M n((- +2p)Id? 

V - 
P 

Idn-PJ 

Thus, negative values of ar should be expected when y - x belongs to the degenerate 

direction; this can be interpreted as a sort of antidiffusion. It has to be numerically 

determined if this feature introduces some numerical instabilities. 

4. The Error Estimate. 

4.1. Introduction. We recall that our purpose is the numerical solution, by means 

of particle methods, of the convection-diffusion equation (1), with a prescribed 
initial data fo(x). For that purpose, an initial distribution of particles is defined, 

by specifying the initial positions xk , the initial volumes wk and the initial strengths 

fk2, with k in Zn. The initial discretization is performed on a regular grid, of mesh 
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size h = (h, ,h,), so that we let 
n 

X = kihiei, wo = hi. hn , fk=fo(Xk), h = (h2+h2+ + h)2 
i=l 

Now the whole set of positions, volumes and strengths is evolved according to 
the system (5). The aim of this section is to prove that the particle solution 
defined by (4) is an approximation in the sense of measures of the solution f(x, t). 
Moreover, from a practical point of view, it is useful to define a smoothed particle 
approximation. This is done by introducing a cutoff 6 satisfying the moment 
conditions (16) (possibly to another order r'), and by letting 

(34) fA(X, t) = S Wk(t)fk(t) (X - Xk(t)). 

k 

In this section, we will prove that fh is an approximation of f in the space L?. 
The proof is very similar to that of Part 1 [1]. We begin by investigating the 

approximation of the solution of the convection-diffusion equation (1) by the solu- 
tion of the integro-differential equation obtained by replacing D with Q6, subject 
to the same initial condition fo. Then, we study the discrete system (5) and prove 
that fk(t) is an approximation of fe(xk(t), t). Finally, the L' estimate between f 
and fh is proved. 

4.2. Properties of the Integro-Differential Equation. The aim of this subsection 
is to study the approximation of the solution of the convection-diffusion equation 
(1) by the solution of the integro-differential equation 

(35) 
a 

+ div(af') + aof = vQ'(t) 
. 
fE at 

with the same initial condition fo. First, a stability estimate will be proved which 
consists of a uniform WmIo, bound on the solution fC with respect to the parameter 
(V/E2). Then the error estimate of f - f" will be shown. 

PROPOSITION 2. Assume that there exists an integer m > 1 such that 

a E Loo([O, T], Wm+1,oxo(Rn)), ao E L??([O,T], Wmr00 (Rn)), 

M E Loo,Q01T]Wm,Wn(?Rn x Rn)), 15 E L'(R ). 

Then, for any constant Cstab and any pair (v, E) such that 

(36) 1/ < Cstab, 

and for any initial data fo in the space Wmoo(Rn), there exists a constant C = 

C(T,ao,a, M,k,Cstab) such that the solution fC of Eq. (35), with initial data fo, 
satisfies fC E Loo([O,T],Wm,'o (Rn)) with 

ttf6(t)ttm,oo < C||f0m,oo Vt E [O,T]. 

Proof. The use of Proposition 3 of Part 1 [1, Section 2] leads to 

lltf(t) llm.oo < DI(V/E2)ttf0ttm,oo, 

where the function 4 blows up as (vl/E2) goes to infinity. So, as long as the pa- 
rameter (VI/E2) remains bounded by some constant Cstab, the stability estimate 
holds. Dl 
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Remark. In Part 1 [1], for the case of the Laplace operator, we have found 
additional assumptions on the cutoff t7 which make the cross section o6 positive. 
Under these assumptions, it is possible to remove the constraint (v/E2) < Cstab. As 
we explained in Section 3, we have not found similar assumptions in the anisotropic 
case, for general, x-dependent matrices L. However, it seems that such a constraint 
should naturally appear in any method of this type and is not restrictive when 
applied to problems with a small diffusion. The constraint (36) implies that f6 
is not an approximation of f in the usual sense, since E cannot tend to zero if v 
remains fixed. But rather, the solution f, of the convection-diffusion equation (1) 
parametrized by v, and the solution f, of the integro-differential equation (35) (with 
E being any function of v satisfying the constraint (36)), are asymptotically close as 
v goes to zero. Thus, the approximation will improve as v goes to zero. This is the 
converse of classical methods, such as finite element methods, which lead to a better 
approximation when the diffusion coefficient is sufficiently large. Such a behavior 
is consistent, since particle methods are intended to provide accurate methods for 
convection dominated problems. Moreover, v going to zero and E remaining fixed 
is compatible with the constraint (36). So, this method allows the study of the 
singular limit v -O 0, without any stability problem. This is not the case for 
most methods. Besides, as pointed out in Part 1 [1], the time discretization of the 
differential system (5), by an explicit first-order Euler scheme, introduces another 
stability constraint, which is written (vAt/E2) < C. Thus, in any case, a bound 
on (V/62) is required to guarantee the stability of the time discretization. For all 
these reasons, we believe that, though limited by the stability condition (36), the 
present method should be useful in many cases of practical interest. 

PROPOSITION 3. Assume that there exists an integer r > 2 such that 

a E L??([O,T],Wr+3,, (Rn)), ao E L??([O,T],Wr+2,oo(RnI 
L E Lo?([O, T], Wr+2,, (Rn)), M E L?([O T] Wr+2,oo (Rn x Rn)) 

and (1 + lxlr+2)V)(x) E L1(Rn). Assume that Hypothesis H is satisfied. Then, for 
any positive constant Cstab, and for any pair (v, e) satisfying the stability constraint 
(36), there exists a positive constant C = C(T, ao, a, M, 't, L, Cstab) such that f 
and f, respectively solutions of Eqs. (35) and (1) with the same initial data fo in 
Wr+2,oo(Rn), satisfy 

11(f - f6)(t)tt0,o < CErvIlfo llr+2,oo Vt E [O, T]. 

Proof. We let g6 = f-f6. We have 

at + div(age) + aoge - vQe(t) 9 = v(D(t)f - Q(t)f) 

By virtue of Proposition 2 and condition (36), there exists C such that 

Ig6g(t)IIt,oo < CTv Max It(Df - Q6f)(t)Ito,oo. tE [0,TJ 

Then, Proposition 1 gives 

tt(Df - Q6f)(t)Ilo,oo < CCr |I f (t)llr+2,oo. 
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Finally, classical estimates on diffusion equations (see appendix) give 

||f(t)IIr+2,oo < IIfOIIr+2,oo0 

This proves the result. 5 

4.3. Properties of the Discrete System (5). We now turn to the estimate of 

fk (t) - f (Xk (t), t). For that purpose we introduce the space 1? (Zn ), which consists 
of all sequences g = (Yk)kez' such that 

11t1100 = Sup tgkt < X. 
kEZn 

We also introduce the particle approximation of the integral operator Q" (t) acting 
on continuous functions g: 

Qh (t)g(x) = , w (t)o (x, xi (t), t) (g(x (t)) - g(x)). 
IEZTL 

We also define the analogue of this operator acting on a sequence 9: 

(Qh(t)g) k= >j l w(t)06 (Xk(t), Xl(t), t)(gL - gk) 
IEZn 

It is then clear that if g and g are related by gi = g(xl (t)), we immediately get 

(Qh (t) g) k = (Qh (t) g) (Xk (t)) 

The discrete counterpart of the conservation property follows from the symmetry 
of o,". It is written as 

>j (Qh9)kwJk(t) = Z k W k(t)JI(t)a6(Xk(t),Xl(t),t)(9L - gk) = 0. 
kEZn keZn lEZn 

We first prove that Q" (t)g is an approximation of Q6 (t)g for any sufficiently 

regular function g. Then the estimate on fk(t) - f(xk(t), t) is given. 

PROPOSITION 4. Assume that there exists an integer m > n such that the 

hypotheses of Proposition 2 are satisfied. Moreover, assume that t E Wm+l (Rn) 

and is compactly supported. Then, there exists a constant C = C(a, T, M, 't) such 

that for any function g in Wm', (Rn), and for any t in [0, T], we have 

-Q6Q(t)g-Qh(t)gIIooo ? Chm+i lgiIlm,oc 

Proof. We can write 

(Q(t)- 
Qh6(t))9(x) 

= 2 (I F(x, y, t) dy - wi (t)F(x, xi (t), t)) 
lEZn 

where F is defined by 

n 
F(x, y, t) = , Mi2(x, y, t)Wi/{(y - x)(g(y) - g(x)). 

i,j=l 

Thanks to a classical quadrature estimate [1, Proposition 4], we easily get 

(37) 1 (QE (t)-Q Q(t))g(x)I < 2ChmttF(x, )ttm,i, 
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where C = C(a, T). Now, it is an easy matter to see that for tat1 m - 1 we have 

(38) Jjo9'Fjjo,j < ii(lMl|m_l,oo||+||lm_1X1||g|lim1,0o 

In the case of an mth derivative, we can spare a power of E by expanding the 
difference g(y) - g(x) to the first order in y - x. This technical point is carried out 
in detail in [1, Proposition 4] and we do not develop it here. For tat = m, this leads 
to 

(39) 11(9yFllo,l < m)|Mi,oiimolfl, 

Then, (39) and (38) together with (37) establish the result. 5 

PROPOSITION 5. Assume that there exists an integer m > n such that the 
hypotheses of Proposition 4 are satisfied. The initial condition fo is supposed to 
be in Wm'?(Rn). Then, for any constant Cstab and for any pair (v, e) satisfying 
the constraint (36), there exists a positive constant C = C(a, ao, T, L, M, /, Cstab) 

such that the solution f of Eq. (35), and the solution f of the scheme (5), satisfy 

Max Ifk(t) -f (Xk(t), t)t < Cv tm t1fotlim,oo 

Proof. We define ek(t) = f6(xk(t), t) - fk(t). It satisfies the following system of 

differential equations: 

dek + E Oklel(t) = bk(t) 
lEZnL 

with 

f3kk (t) = (div a + ao) (Xk (t), t) 
n 

+ 2 E E wi(t)A'h3(x, (t), xi (t), t) i4(xl (t) -Xk (t)), 
lk i,j=l 

n 

A3kl (t) = - -2 E J1(t)Mij(Xk(t),XI(t),t)?I4(xl(t)-Xk(t)) if k $1, 
i,j=1 

Ik(t) = v((QE (t) - Qh(t)) * fE)(Xk(t) t). 

Then, by the same arguments as those developed in [1, Proposition 5], there exists 

a constant C = C(T, ao, a) such that wj (t) < Chn and that the number of particles 

in a ball of radius E is bounded by C(E/h)n as long as t is in [0, T]. It follows that 

I/JklI < C? IIMIIo,IIikIIo,0 if k $ 1. 

Thus, 

S fl/cd < C(ao, a,T) ? ||M||o,|l04lo,o < C(ao, a, T, M, i, Cstab)i 

and similarly 

1/3kk l < C(ao, a, T, M,i , Cstab)- 

Therefore, since ek(O) = 0, Gronwall's lemma gives 

T 

(40) ll00t)llJo ? eC ) (T) 11/)l dd < C Max 11i(t) |loo 10 ~~~~~~~tEjO,T] 
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We apply Propositions 2 and 4 and get 

1?/k(t)l < CV EM+l em+(l)||m < CM h lfoll 

which, with (40), implies the stated estimate. Ol 
4.4. The Error Estimate for the Smoothed Particle Approximation. We now state 

the final theorem concerning the approximation of the solution f by the smoothed 
particle approximation fh, defined by (34). The proof simply consists in collecting 
the conclusions of the preceding propositions, and is left to the reader. 

THEOREM. Let m, m' > n r > 2 r' > 0 be four integers, and define s = 

Max(r + 2, m, r', m'). Assume that 

a E L([O, T], W9+ ?(Rn)) ao E L??([O1 T) Ws (n))j 
L E L?? [0 I T] IW9, ?? (Rn)) M E L? ([O,I T],I W'9 ?? (Rn x Rn)). 

Assume that /.(x) E Wm'l(Rn), that g(x) E Wm'1(Rn) and that i and f have 
compact supports. Assume further that M and 1k satisfy Hypothesis H, and that 
' satisfies the moment condition (16) up to the order r'. Then, for any positive 
constant Cstab, and for any pair (v, t) such that 

M 

?2 ? Cstab, 

there exists a constant C C(ao, a, T, L, M, X1, , Cstab) such that for any t in [0, T], 
the solution f of the convection-diffusion equation (1) and the function fh6 given by 
(34) satisfy 

|If(t) - fK(t)IIox ? C [V (?r + + (r + 

5. Conclusion. This paper was devoted to a new particle approximation of 

convection-diffusion equations, when the diffusion coefficient is small. In Part 1 

[1], we developed this method in the case of an isotropic diffusion operator. The 

present part was concerned with its extension to anisotropic operators. We have 

seen that this extension requires that particular attention be given to maintaining 

the consistency of the method, particularly in the choice of the cutoff functions. We 

investigated practical examples of cutoff functions which fulfill the requirements of 

consistency and accuracy, and proposed one of them for practical use. The con- 

vergence of the method is proved. Its stability is subject to the requirement that 

the diffusion coefficient be not too large compared to the square of the smoothing 

length. Therefore, this method improves as the diffusion goes to zero and conse- 

quently should only be used for diffusive perturbations of convective problems. The 

numerical validation of the method will be the next step in the present study. 

Appendix. Wm'"O Estimates for the Convection-Diffusion Equation. 

PROPOSITION. Assume that L is a positive symmetric matrix, and that v < 1. 
Assume further that there is an integer m > 1 such that 

a E LOO([01 T], Wm+loo(Rn)) ao E L??([O, T] Wm (R 

L E L?? ([0 T], Wm""' (Rn)), fo E Wm, (Rn) 
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Then for any positive T, there exists a constant C = C(T, a, ao, L) such that for 
any t in [0, T] and any v in [0, 1], the solution of the convection-diffusion equation 
(1), with initial data fo, satisfies 

11lf (t) llm,oo < C(T, a, ao, L) 10 fo llm,oo 

Proof (B. Perthame, private communication). We introduce the perturbed equa- 
tion 

(41) iv(af) + aof = vDe(t) f, 

where 

DE(t) = D(t) + EA=E< t61, 

Le = L + EIdn 

The matrix LI is positive definite. Thus, the classical strong maximum principle 
holds for Eq. (41). Since the estimate is independent of e, the same estimate is true 
in the limit E = 0. Similar arguments are valid for the derivatives. O 
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