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The Weighted Particle Method for
Convection-Diffusion Equations
Part 2: The Anisotropic Case

By P. Degond and S. Mas-Gallic

Abstract. This paper is devoted to the presentation and the analysis of a new particle
method for convection-diffusion equations. The method has been presented in detail in
the first part of this paper for an isotropic diffusion operator. This part is concerned
with the extension of the method to anisotropic diffusion operators. The consistency
and the accuracy of the method require much more complex conditions on the cutoff
functions than in the isotropic case. After detailing these conditions, we give several
examples of cutoff functions which can be used for practical computations. A detailed
error analysis is then performed.

1. Presentation of the Method. The purpose of this paper is to present and
analyze a particle approximation of the following convection-diffusion equation:

(1) % +div(af) + aof = vD(t)f,

which can be considered as a model equation for numerous physical problems, such
as the incompressible Navier-Stokes equation or the Fokker-Planck equation of the
kinetic theory of plasmas. In this equation, z belongs to R™ and ¢ is positive. a(z, )
is a given vector field and ag a given scalar function. D(t)f denotes an anisotropic
diffusion operator, which, in its most general form, can be written as

©) D01 =Y 5 (Lu@0 gL )

with L(z,t) an n X n positive symmetric matrix, with possible degeneracies. v is
the viscosity parameter, which throughout this paper will be considered as being
smaller than 1.

In the first part of this paper [1], we proposed a particle approximation for a
convection-diffusion equation of type (1), when the diffusion matrix L is scalar. Let
us recall that the derivation of this approximation is mainly divided into two steps:
the first step is the definition of an integral operator Q¢(t) of the form

3) @0 1@ = [0 (@u. 006 - 1) d

where 0¢(z,y,t) is intended to provide an approximation of the diffusion operator
D(t) when € goes to 0. In the second step, we introduce the particle approximation
fr(z,t) of the solution f(z,t) according to

(@) fu(@t) = D _wk(t) fi(t)6(z — ze(2)),
k
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where z(t), we(t) and fi(t) are the particle positions, volumes and strengths. The
particle approximation @, () of the diffusion operator D(t) is obtained by numerical
quadrature of the integral operator Q¢(t) using the particles as quadrature points.
This approximation reads as follows:

Qn(®) - fu(t) = D 0% (@k(t), (1), ) (fi(t) = fi())wr(t)-
l

Then the particle approximation of the convection-diffusion equation consists in
letting the positions of the particles evolve according to the convection field a(z,t).
The variation of the volumes is monitored by diva, while the variation of the
strengths accounts for ag and for Qi(t) Namely,

| Dk = alan(0).0),
©) Lok _ giva(en(t).0)- wnlt),
'fif: + (ao + diva)(z(t),t) - fi(t) = Qn(t) - fu(t).

The method is completely specified once the approximation Q¢ (t) of the diffusion
operator D(t) is defined. In Part 1, such an approximation is proposed for an
isotropic diffusion operator (that is for scalar matrices L). For the simplest case of
the Laplacian operator A, we introduce a cutoff function 7 (z), which is defined by

ne(z) = 5 (),

where the function 7(z) has the following moment properties:
2 if the multi-index a = 2e;,
JERCEE .
0 otherwise, for 1 <|a|<r+1

(we denote by e; the ith vector of the canonical basis of R"). Then we define
o¢(z,y) by

(6) of(z,y) = -6-15175(75 - ).

Taylor’s formula shows that Q¢(t) - f is an approximation of Af up to the order r
[1].

The main difficulty in the anisotropic case is the derivation of a suitable integral
operator Q¢(t). A first method was proposed in {2] and will be discussed in Section
3. However, its algorithmic complexity is too large for practical use. Our method
relies on a direct extension of formula (6) to the anisotropic case. We propose the
following choice of o¢(z,y,t):

1 &
(M of(z,y,t) = 22 Z (2,9, t)1l) (y — 2),

where L
z
5(2) = ¥ (g)
is a matrix cutoff function, and M = (M;;(z,y,t)) is a matrix to be determined as
a function of L(z,t).
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In Section 3 we show that (7) actually provides an extension of (6) to the
anisotropic case. The need for a different cutoff function for each component of
the matrix L arises from the need to approximate different second-order crossed
derivatives. That the matrix M may be different from L is an important feature
of this method which will be detailed in Section 3.

The outline of this paper is as follows: we discuss the consistency conditions for
QF° in the next section. Then, practical examples are given in Section 3. The error
estimates are stated and proved in Section 4. Since the proofs are very similar
as in the isotropic case, they will only be outlined. We refer to [1] for a detailed
bibliography on the particle approximation of convection-diffusion equations.

2. Derivation of the Integral Operator; Consistency Conditions.

2.1. Introduction and Notations. In this section, we will investigate sufficient
conditions on % and M which ensure that D f and Q° f are close up to the order e”.
Let us introduce some notations. If o = (a1, a2,...,0,) and 8 = (b1,02,-..,0n)
are multi-indices in N", we define:

o] = a1 +az+ - + an, a+f=(ar+ B, a2+ P2,...,0n + Br),

ol =ay! - ag!- - agl, ® =z'25% -z
dlalf

9z{10z5? - - Oz’

We denote by (e, ez,...,e,) the canonical basis of R”, and by #,(R) the space

of n x n real symmetric matrices. We will also use the Sobolev spaces W*:>°(R™)

provided with their usual norms:

lgllk,co = sup |glp,co> lglp,o = supess [0%g(z)|.
0<p<k |a|=p, zER"

Qn
n

9°f =

We now introduce the diffusion operator D according to formula (2); in the
remainder of this section, the time will be kept fixed and will be omitted in the
formulae. We suppose that the matrix L belongs to W**°(R"™), with s to be spec-
ified later. We investigate the integral operator Q¢, given by formula (3), where
0¢(z,y,t) is determined by (7). We assume that M(z,y,t) and ¥ (z) are functions
with values in .4, (R), the regularity of which will be specified later, and that they
satisfy the additional hypotheses:

M(z,y,t) = M(y,z,t) Vz,y €R",Vt >0, 1, is even.

With these hypotheses, 0¢(z,y,t) is invariant under the interchange of z and y,
which ensures the conservation property of the operator Q¢:

(8) /Qe(t) -flz)dz = // o (z,9,8)(f(¥) — f(z)) dy dz = 0.

We now introduce the matrix m(z,t) = M(z, z,t), and we note that, owing to
the symmetry of M, we have
9) M5 _1omy
O e y)=(za) 2 Om
Let us finally introduce the moments of the cutoff functions );;: for any 7,j in
[1,n], and for any multi-index o in N, we define

(10) 78 = / iy (2)e® da.

(z) Vi,5,leN, Vz,yeR.
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2.2. Consistency and Accuracy of the Approzimation of D by Q°.
HYPOTHESIS H. We assume that there exists an integer r > 2 such that:
(i) Zg;=0for1 <|a|<r+1and|a|#2

(i) for any integer k,! in [1,n], we have

n
> mij(2) ZF = 2L ().
ij=1
PROPOSITION 1. Let m, M and ¢ be given as in the general hypotheses of
Section 1. In addition, assume that M € WHL°(R" x R*), m € W"*+1.°(R"),
and (1 + |z|"*?)y(z) € L}(R™). If Hypothesis H is 3atzsﬁed there exists a positive
constant C = C(M, ¢) such that

”Dg - Qeguo,oo < Cer”g"r+2,oo'

Remark. The choice of an even 19 makes the order r of the approximation nec-
essarily even (see Hypothesis H(ii)). The choice of 3’s that are not even would
lead to similar results, but would complicate the expression of Q¢ to maintain the
conservation property (8).

Proof. We first apply Taylor’s expansion formula to the difference g(y) — g(z) in
formula (3). This leads to

- r+1 aag(z)

(11) @o= Y T4 [ c@uu-ordu+ st
lal=1 ) "

where the remainder S€g is given by
(12)

€ r+2 € a r+15a
Seqg= Y o¢(z,9)(y — 2)* (1 —w)""19%g(z + u(y — z)) dudy.

a! [O,I]XR" .

|la|=r+2

Then we apply Taylor’s formula again for the computation of the integrals involving
o¢, by expanding M(z, y) in powers of (y — z):

/R of(z,y)(y — )% dy
52 Z / Ml](x y)@%(y—z)(y—z)

1,7=1

(13)

n r+1-— |a|

X X g yMij(z,x)/mwz(y—z)(y—z)“+ﬂdy+:rg,

i,3=1 |B|=0

where the remainder T is given by

Zzi%‘_lﬂ

1,7=1[B|=r+2—|a|
(14) //0 - o) 1 1BB My (2,2 + o(y — )
x n

x 95 (y — z)(y — 2)*+P dvdy.
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Now, by substituting (13) in (11) we get the following decomposition:
r+1

Q9= Ql'g+Rg,
m=1
where Qg is a differential operator of order m and R¢ is a remainder, obtained as
the sum of the remainders (12) and (14):

r+1
1
(15) Rfg=5%+ ) —0%g(a)T;

la|= 1 &

Moreover, we note that

[ 5= - 0y = iz,

so that the coefficients of QT*g are given by means of an expansion into powers of
€ according to

Qrotz) = Yo T

|a|=m

r+1—-m
X Z eptm— 22 Z <ﬂ'Zg+ﬁ6ﬂM ( ))

w3 |Bl=p

We note that for 3 < m < r+1 the length of the multi-index oo+ 3 which appears
in the moment Zf‘fﬂ is certainly greater than 3, so that, using Hypothesis H(i), we
immediately conclude that

Q=0 for3<m<r+1.

Similarly, the only terms which do not vanish in Q! and Q? are of degree 0 with
respect to €, and they can be written as

n ag n n OM.:-
lg=) = Y Zekte
Qeg ’; axk .jz=l ; ayl (Za 2:) 1) k]

[ =

n

Q3g = z: 1 829 n
2 ex+e

2 M, exter
«f k=1 2 0z 01, ij2=1 1iJ (xa Z)Z,J

Then, using (9), we can write

Qlg = i 199 9 Zm Zek+e,
€ 2 axk 3:1:[ & ’

k,l=1 1,7=1
n
2 __ exte;
Qg9 = E E m‘L] Z
k=1 2 Bxkaz, g1

It is clear that Hypothesis H(ii) leads to

n n
0g 0Ly 2 0%g
= = = = ———— L.
kgl Oz Oz’ Qe k;l dzxdz "
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Thus, Q¢g + Q2g = Dg and Q°g — Dg = Rfg. Now, going back to (15), (14) and
(12), and using the regularity hypotheses on M, ¢, and g, we easily find that

1B%gllo,c0 < Ce"lgllr+2,005

where C actually depends on |M||;+1,00 and ||(1 + |z|"*2)%|jo,1. This completes
the proof. O

3. Examples.

3.1. First Method: v is a Hessian Matriz.

3.1.1. General setting. This method is the direct extension of (1, Section 5.2].
We let ¢ be an even compactly supported (or vanishing at infinity) function from
R"™ into R, such that

0 forl< <r-1,
(16) / z%(z) dz = { or1<lol<r
Rn 1 fora=0,
and we let
(1) Yis(a) = 5o (z) and m(s) = L(z)
G\ = 8xi8xj - -

It follows that Hypothesis H(i) is satisfied and that for |a| = 2 we have

0 ifa#ei+e,
Zi;={ 1 ifi#jand a=e¢; +e¢j,
2 ifi=7 and a = 2e;,

which immediately leads to Hypothesis H(ii).

3.1.2. ¢ is a tensor product of one-dimensional functions. This general setting
includes the case of

(18) ¢(z) =[] 6(z)),
Jj=1

where ¢; is an even compactly supported function from R into R such that

0 forl<ao;<r-1
e (e dr, = =7 = ’
/Rzy G (z5) dz; {1 for aj = 0.

Now, an immediate extension of (18) is obtained by letting

1/%’(55) = 77(93:)77(@),
bij(z) = €(zi, 25)E(T55) i 0 # 7,
with
:i:\i = (zla"'axi—lyxi+l7'“7zn)7

—~ _
T = (zla"'axi—17zi+1)~")zj—lazj+l7"-yzn)
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and with 7,7, £, € satisfying the following moment conditions:

too 0 for0<a<r+1, a#2,
(19) / yn(y)dy = {
SN 2 for a =2,
A 0 for1<|a|<r-1,
(20) / §°1(9) dg = { R
Rn-1 1 for &=0,

0 forl<a;+az<r+l, (a1,09)#(1,1),
21 271252 €(21, 20) dz1 d2g =
@) [ ) dudn={ | s

. 0 for1<|a|<r—1,
(22) / 2"5(2)(12:{ L<lal<
Rn-2 1 for&=0.

The moment conditions (19) to (22) are sufficient for ¥ to satisfy Hypothesis H,
_even if ¢ is not a Hessian matrix. This method may be used when one wishes to
work with a very poorly regular cutoff, which is difficult with formulation (17).
3.1.3. ¢ 13 spherically symmetric. The general setting also applies to ¢(z) = ¢(p),
where p stands for the Euclidean norm of z, and ¢ is a regular cutoff. Then,

_Lld (14 1d¢
(23) ¥ii(z) = 13; P (; E;(P)) +2 (-1;(/’),
d d¢

The moment conditions on ¢ are easily deduced from (16). Formulae (23) and (24)
may be quite complicated for practical use. In the next subsection we investigate
simpler cutoff functions, which are directly inspired by (24).

3.2. Second Method: ¢i; = z;x;0(z).

3.2.1. General setting. Throughout this subsection, we will analyze cutoff func-
tions of the type '

(25) ij(z) = ziz;0(z),
where 6 is a real even function from R™ to R such that
/z“@(z)d:c:O for 3<|al] <r+3and|of #4.
We define the matrix A = (aki)} ;—; by
akl = /zizf@(z) dz, k,l € [1,n].

LEMMA 1. Given 9 according to formula (25), there exists a matriz m(z) such
that Hypothesis H 1s satisfied if and only if

(i) For any k,l, k # 1, we have ak,; # 0;

(ii) The matriz A s an invertible symmetric matriz.
Then, m(z) is defined by

(26) mi(z) = a Liu(z) for k,l € [1,n], k#1;

(27) > akimii(z) = 2Lk(z) for k € [1,n].

=1
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Proof. 1t is easy to check Hypothesis H(i). The Z coefficients (given by (10)) are
equal to

0 if e; +e; #ex + e,
ary ife;+e; =ex+e,
0 if ¢ # 7,
Ak ifi=j.

ifk#l: Zote = {
ifk=1: z};e* ={

It follows that Hypothesis H(ii) is equivalent to Egs. (26) and (27). This completes
the proof of Lemma 1. DO

3.2.2. 0 1s a tensor product of one-dimensional functions. We apply this general
setting to

f(z) = Hm(xi),

where the 7,’s are even functions from R into R, normalized to 1. The matrix A is
given by

Akl =/x£nk(xk) dzk/ zmi(z) dz;  for k # 1,
R R

Qkk =/$zﬂk($k)d$k.
R

Conditions (i) and (ii) of Lemma 1 are equivalent to

b, 20 Vi=1,...,n, (ﬁci) (iﬁ+l) #0,

=1
where
b; =/ zni(z:) dz, ¢ = T—
R )

The inversion of A is impossible by analytical means in the general case; so we
assume that 6 is a tensor power:

0(z) = H n(z:).

Thus, ax; = « for all k # [, and axx = G for all k. The inversion of A leads to

mp(z) = a 'L (z) for k,l€[l,n], k#1;
2 2a
=——1L - Tr L(z),
me®) = g ) g ey T
where Tr stands for the trace of a matrix.
With this choice of cutoff, the approximation is of order 2 at most, since, for

instance, the following 4th order moment is necessarily nonzero:

3
/ 1212433(z) dz = H / x?nj(:cj)d:cj # 0.
Rn j=1/R

An interesting extension consists of # being invariant under permutations of its
arguments. Indeed, the matrix A and the solvability conditions for m(z) are the
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same as for the tensor power, but the accuracy of the approximation is no longer
limited to the order 2.

3.2.3. 0 is spherically symmetric. We now suppose that 8(z) = 8(|z|), with §
being a function from R* into R. Now the matrix A is written as

oo
ak =a= / Pt (n=1g(p) dp/ 1 wiwldw for k # 1,
0 sn-

o0
akr = 3 =/ Pt (=g (p) dp/s wf dw,
0

n—1

where S™~1 stands for the (n — 1)-dimensional sphere. We denote

o= / wiwldw and B= wi dw.
sn—l sn—l
@ and B are not independent. Indeed, we have
(28) / W? + -+ w2)?dw = meas(S™!) = nf + n(n — 1)a
Sn—1
Moreover, using spherical coordinates, we have
n—2
meas(S™71) =27 H I;
Jj=1
and
~ n—3 /2
B=2r H I; / cos™ 2 ¢sin? ¢ dg,
F=1 —-n/2

where I; stands for

n/2 .
I = / cos? pdo

~-7n/2
and satisfies I;/I;_o = (j — 1)/7. Thus, we have
B — 1 /”/2 4 n—2
meas(S7-1) =I5 s sin” ¢ cos ¢do
R Ty R

In—? In—? B n(n+2)’
and from (28) we deduce

a 1

meas(S™-1) ~ n(n+2)

Thus, introducing
meas(5™~) /°° A
= —— 6(p) dp,
2t Jo P () dp

we have ax; = v if k # [ and axx = 37 for all k. Therefore, m is given by
-1

(29)

mg =~ 'L ifk#l, Mk = 'Lk — 2 Tr(L).

n+2
If 6 is normalized so that v = 1, the solution can be written in a more compact
form as
1
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where Id,, stands for the identity matrix in R”. To obtain an order r = 2q approx-
imation, it is sufficient to require

[
(31) / p2kp2t(=1g(p)dp = 0, 2<k<q.
0
Examples of cutoff functions 6§ satisfying these conditions are

(32) f(p) = e B (a0 +a1p®*+ -+ aq—lpz(q_l))a B >0.

Conditions (29) and (31) lead to an invertible linear system for the coefficients a;.

From a practical point of view, we believe that the present example provides the
most economical method. Indeed, thanks to (30), the matrix m is directly given
in terms of L, with minor computations. Besides, it is fairly easy to design highly
accurate cutoffs §. Moreover, since 6 is a one-dimensional function of the radius
r, it can be easily stored in the memory of the computer, rather than recomputed
each time. Finally, super-Gaussians like (32) can be replaced by rational functions
or B-splines.

3.3. Connections with Previous Work. We first show how the present approx-
imation is connected with the first part of this paper [1]. We investigate scalar
matrices. Thus, we let L(z) = A(z)Id, and M(z,y) = p(z,y)Id,. Then, formula
(7) for o¢ leads to

1 n
0%(z,y) = Zu(@y) Y_ vy - o).
=1

Thus the cutoff 7, used in Part 1, is related to 1 by
n
n@) =3 ila).
i=1

Since the matrix m is diagonal, the off-diagonal elements of the matrix ¢ need not
be defined. Now, Hypothesis H(ii) immediately leads to

/xkxm(a:) dz = 26 for any k,l in [1,n], p(z,z) = A(z),

which are exactly the consistency conditions found in Part 1.
We now mention the method developed in [2] for the anisotropic case. In this
method, the function o€ is not given by the general formula (7) but by

n
(33) i)=Y [Lu)gEe-5E @) da
i,j=1 i s

where the cutoff ¢¢ satisfies the moment conditions (16). In [2], it is proved that
a particle method based on the approximation (33) is L2-stable, consistent, and
convergent. However, it leads to a double integral operator Q¢, which is algorith-
mically more costly than the simple integral operators obtained by formula (7).
This is the reason why we have rejected this method and preferred to investigate
the o’s given by (7). However, the analysis below (Section 5) would apply to (33)
with very minor changes.

3.4. Miscellaneous Remarks. The matrix M(z,y) can easily be defined from the
knowledge of the matrix m(z). Indeed, any type of equiweighted mean value of
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m(z) and m(y) is convenient. We suggest the use of

M) =m (Z3Y) o Mla) = 3lmla) + mo)).

None of the examples presented above guarantee the positivity of the cross sec-
tion o¢. More precisely, for ¥ given by (25), with a spherically symmetric 8, we
obtain

o*(a) = sl (252 3 Mis(e,9)y —2)ily - 2).
7,7=1
Thus, o¢ is positive if and only if 8 is positive and M is a positive symmetric matrix.
The former condition implies that the approximation is limited to the order 2, as in
the isotropic case (see Part 1, Section 4). The latter condition is satisfied if m(z)
is a positive matrix for all z. If we denote by A\; < Ay < --- < A, the ordered set
of eigenvalues of L, this condition leads to (see formula (30)):

1 n
AL > 3
1= n+2§/\’

This means that the eigenvalues of L have to be close enough. Clearly, this is
not a natural condition for the continuous problem. Furthermore, other choices
would lead to different conditions. Thus, we will not make any assumption on the
positivity of o€.

The uniform ellipticity of L is never required for the error estimate, since we do
not need the regularizing properties of the diffusion operator (see Section 4). Thus,
the method also applies to degenerate operators, or can be used to numerically
investigate the singular limit v — 0. A particularly interesting case is that of
a completely degenerate diffusion operator in one particular direction. This case
arises, for instance, in the Fokker-Planck equation of the kinetic theory of plasmas
[3]. Let us suppose that R™ is split into R? x R(®~P)  and that L is block decomposed

according to this splitting:
_(Id, 0
L _( d O).

Then with (30), m is found to be

m=((l—"+2)1dp 0 )

0 —7i5Idn—p

Thus, negative values of o should be expected when y — z belongs to the degenerate
direction; this can be interpreted as a sort of antidiffusion. It has to be numerically
determined if this feature introduces some numerical instabilities.

4. The Error Estimate.

4.1. Introduction. We recall that our purpose is the numerical solution, by means
of particle methods, of the convection-diffusion equation (1), with a prescribed
initial data fo(z). For that purpose, an initial distribution of particles is defined,
by specifying the initial positions 3, the initial volumes w? and the initial strengths
f9, with k in Z™. The initial discretization is performed on a regular grid, of mesh
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size h = (hy,..., hy), so that we let

n
=) kihies, wQ=hi - hn, fR=fo(aR), h=(h}+h]+ - +h3)2
1=1
Now the whole set of positions, volumes and strengths is evolved according to
the system (5). The aim of this section is to prove that the particle solution
defined by (4) is an approximation in the sense of measures of the solution f(z,t).
Moreover, from a practical point of view, it is useful to define a smoothed particle
approximation. This is done by introducing a cutoff ¢¢ satisfying the moment
conditions (16) (possibly to another order '), and by letting

(34) fi(@t) = D wi(t) fi(t)s (z — zk(t)).
k

In this section, we will prove that f; is an approximation of f in the space L.

The proof is very similar to that of Part 1 [1]. We begin by investigating the
approximation of the solution of the convection-diffusion equation (1) by the solu-
tion of the integro-differential equation obtained by replacing D with ¢, subject
to the same initial condition fo. Then, we study the discrete system (5) and prove
that fi(t) is an approximation of f€(z«(t),t). Finally, the L*° estimate between f
and fy is proved.

4.2. Properties of the Integro-Differential Equation. The aim of this subsection
is to study the approximation of the solution of the convection-diffusion equation
(1) by the solution of the integro-differential equation
6f ¢ H € & €
T, +div(af®) + aof = vQ°(t) - f
with the same initial condition fo. First, a stability estimate will be proved which
consists of a uniform W™ > bound on the solution f¢ with respect to the parameter
(v/€?). Then the error estimate of f — f€ will be shown.

(35)

PROPOSITION 2. Assume that there exists an integer m > 1 such that
a € L*([0,T]),w™*tL.2(R")), ap € L*([0,T), W™>(R™)),
M € L=([0,T], W™ (R" xR")), ¢ € L'(R™).
Then, for any constant Cgiap, and any pair (v,€) such that
(36) = < Cotav,

and for any initial data fo in the space W™ °(R"), there erists a constant C =
C(T,ap,a,M, 9, Cstap) Such that the solution f€ of Eq. (35), with initial data fo,
satisfies f€ € L*((0,T),W™>°(R"™)) with
17€)llm.00 < Clifollm,co YVt €[0,T).
Proof. The use of Proposition 3 of Part 1 (1, Section 2] leads to

175 llm,c0 < @(v/*)l| follm oo,

where the function ® blows up as (v/€?) goes to infinity. So, as long as the pa-
rameter (v/e?) remains bounded by some constant Cstap, the stability estimate
holds. O
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Remark. In Part 1 [1], for the case of the Laplace operator, we have found
additional assumptions on the cutoff » which make the cross section o° positive.
Under these assumptions, it is possible to remove the constraint (v/£2?) < Cspap. As
we explained in Section 3, we have not found similar assumptions in the anisotropic
case, for general, z-dependent matrices L. However, it seems that such a constraint
should naturally appear in any method of this type and is not restrictive when
applied to problems with a small diffusion. The constraint (36) implies that f€
is not an approximation of f in the usual sense, since £ cannot tend to zero if v
remains fixed. But rather, the solution f,, of the convection-diffusion equation (1)
parametrized by v, and the solution £, of the integro-differential equation (35) (with
€ being any function of v satisfying the constraint (36)), are asymptotically close as
v goes to zero. Thus, the approximation will improve as v goes to zero. This is the
converse of classical methods, such as finite element methods, which lead to a better

-approximation when the diffusion coefficient is sufficiently large. Such a behavior
is consistent, since particle methods are intended to provide accurate methods for
convection dominated problems. Moreover, v going to zero and € remaining fixed
is compatible with the constraint (36). So, this method allows the study of the
singular limit » — 0, without any stability problem. This is not the case for
most methods. Besides, as pointed out in Part 1 [1], the time discretization of the
differential system (5), by an explicit first-order Euler scheme, introduces another
stability constraint, which is written (vAt/e?) < C. Thus, in any case, a bound
on (v/e?) is required to guarantee the stability of the time discretization. For all
these reasons, we believe that, though limited by the stability condition (36), the
present method should be useful in many cases of practical interest.

PROPOSITION 3. Assume that there exists an integer r > 2 such that
a e L>([0,T],W+3°(R"™)), ap € L*([0,T], W+2°(R")),
L € L*([0,T), W"t2°(R")), M € L*([0, T], W™ t2°(R™ x R")),

and (1 + |z|"*2)y(z) € L*(R™). Assume that Hypothesis H is satisfied. Then, for
any positive constant Csap, and for any pair (v, €) satisfying the stability constraint
(36), there ezists a positive constant C = C(T,ag,a, M, 9,L, Cstap) such that f€
and f, respectively solutions of Egs. (35) and (1) with the same initial data fo in
WT+2:%(R"), satisfy

I(F = F)llo,c0 < Ce™V| follr+2,00 VEE[0,T].
Proof. We let g* = f — f¢. We have

%i: + div(ag®) + aog® — vQ*(t) - ¢° = v(D(t) f — Q°(¢) f).

By virtue of Proposition 2 and condition (36), there exists C such that
€ <CTv M Df-Q°f)(t .
llg*®)llo.c0 < CTv Max (DS = Qf)(#)llo,00

Then, Proposition 1 gives

I(Df = Q°F)(B)lo,co < CEIS(E)llr+2,00-
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Finally, classical estimates on diffusion equations (see appendix) give

@) llr+2,00 < Il follr+2,00-

This proves the result. O

4.3. Properties of the Discrete System (5). We now turn to the estimate of
fx(t) = f€(zk(t), t). For that purpose we introduce the space /°°(Z™), which consists
of all sequences § = (gk)kez» such that

gllo = Sup |gk| < oo.
kezn

We also introduce the particle approximation of the integral operator Q5 (t) acting
on continuous functions g:

Qi (1)9(2) = Y wi(t)o (z,21(t), 8) (9(=i (1)) — 9(=)-
lezn
We also define the analogue of this operator acting on a sequence g:
@Ok = Y wit)o (zx(t), 2i(t), 8) (9t — gx)-
lezn

It is then clear that if g and § are related by g; = g(z;(t)), we immediately get
(@r()9)k = (Q(1)9) (zx(t))-

The discrete counterpart of the conservation property follows from the symmetry
of o€. It is written as

3 @hokwr(t) = D D wk(t)wi(t)o® (zk(t), zi(2), ) (91 — gk) = 0.
kezn kezr lezn
We first prove that Q%(t)g is an approximation of Q¢(t)g for any sufficiently
regular function g. Then the estimate on fi(t) — f(zk(t),t) is given.

PROPOSITION 4. Assume that there exists an integer m > n such that the
hypotheses of Proposition 2 are satisfied. Moreover, assume that v € W™+1(R™)
and is compactly supported. Then, there exists a constant C = C(a,T,M, ) such
that for any function g in W™ (R"™), and for any t in [0,T], we have

m

h
”Qe(t)g - Qi(t)guo,oo < CET_T_‘I‘"g”m,oo-
Proof. We can write

(@) - G 0)e@) = ( JRCINLEDS wt(t)F(z,zz(t),t)) ,

lezn
where F is defined by

F(z,y,t) = Y My(z,y, )95y — 2)(9(y) — 9(2))-

5,J=1

Thanks to a classical quadrature estimate [1, Proposition 4], we easily get

37) I(Q°(t) - @& (1)g(2)| < ghmllF(z, WMm,15



PARTICLE METHOD FOR CONVECTION-DIFFUSION EQUATIONS. PART 2 523

where C = C(a,T). Now, it is an easy matter to see that for |a| < m — 1 we have
Cle)

“glal

(38) 165 Fllo,s £ =57 IMllm—1,00 % llm—1,1/lgllm—1,00-

In the case of an mth derivative, we can spare a power of € by expanding the
difference g(y) — g(z) to the first order in y — z. This technical point is carried out
in detail in 1, Proposition 4] and we do not develop it here. For |a| = m, this leads

to
Cla
(39) < 2 Mol 1

Then, (39) and (38) together with (37) establish the result. O
PROPOSITION 5. Assume that there exists an integer m > n such that the

hypotheses of Proposition 4 are satisfied. The initial condition fo is supposed to
be in W™ (R™). Then, for any constant Csap and for any pair (v,€) satisfying
the constraint (36), there exists a positive constant C = C(a,aq,T,L,M, 1, Cstap)
such that the solution f¢ of Eq. (35), and the solution f of the scheme (5), satisfy

m

Max |fi(t) = f*(2k(t), )| < Cv [ follm,oo-

Proof. We define ex(t) = f(zk(t),t) — fk(t). It satisfies the following system of
differential equations:

= > Buel(t) = vi(t)

lezn
with

Bri(t) = (diva + ao)(a:k(t) t)
2 > Z wi () M 2k (2), 20 (2), )05 (20 (8) — 2k (2)),

l#k i,7=1

Br(t) = — Ei Y wilt)Mis(ax(t),2i(t), )95 (u(t) — 2k(t)) ik #L

1,7=1
Yi(t) = v((Q°(t) — QR (2)) - f)(zk(8), 1)
Then, by the same arguments as those developed in [1, Proposition 5], there exists

a constant C = C(T, ag, a) such that w;(t) < Ch™ and that the number of particles
in a ball of radius € is bounded by C(¢/h)™ as long as t is in [0, T]. It follows that

vh™ .
1Bit] < C 5 IMllo,coll¥llo,co i K # L.

Thus,

Z I/Bkll < C(GOaa T) 2 ”MIIO oolll/)“o (o) S C(aOaaaT M 'ﬁ, stab)
l#k
and similarly
I/Bkkl S C(aOa a, Ta Ma ¢, Cstab)-

Therefore, since e,(0) = 0, Gronwall’s lemma gives

T
5 C(t—7)1.7, 7
(10) o0l < [ eCBO)edr < © Max 160) e
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We apply Propositions 2 and 4 and get

h™ h™
vk (t)] < Cv 175 ®)lim,00 < Cv—Zzz [l follm,oo,

€m+1
which, with (40), implies the stated estimate. O
4.4. The Error Estimate for the Smoothed Particle Approrimation. We now state
the final theorem concerning the approximation of the solution f by the smoothed
particle approximation ff defined by (34). The proof simply consists in collecting
the conclusions of the preceding propositions, and is left to the reader.

THEOREM. Let m,m' > n, r > 2, ' > 0 be four integers, and define s =
Max(r + 2,m,r',m'). Assume that ’

ae Lo([0,T|, WS (R™),  ao € L™([0,T], W*>(R")),
Le L®(0,T,W*®[R"), M e L®([0,T),W*>>R" x R")).

Assume that 1(z) € W™1(R"), that ¢(x) € W™ 1(R") and that 1 and ¢ have
compact supports. Assume further that M and ¢ satisfy Hypothesis H, and that
¢ satisfies the moment condition (16) up to the order r'. Then, for any positive
constant Cstap, and for any pair (v,€) such that

14
6_2 < Cstaba

there ezists a constant C = C(ag,a,T,L,M, 9, ¢, Cstap) such that for anyt in [0, T],
the solution f of the convection-diffusion equation (1) and the function ff given by
(34) satisfy

150 = FOlloee <© [ (e + o7) + (e" - Z%)] -

5. Conclusion. This paper was devoted to a new particle approximation of
convection-diffusion equations, when the diffusion coefficient is small. In Part 1
[1], we developed this method in the case of an isotropic diffusion operator. The
present part was concerned with its extension to anisotropic operators. We have
seen that this extension requires that particular attention be given to maintaining
the consistency of the method, particularly in the choice of the cutoff functions. We
investigated practical examples of cutoff functions which fulfill the requirements of
consistency and accuracy, and proposed one of them for practical use. The con-
vergence of the method is proved. Its stability is subject to the requirement that
the diffusion coefficient be not too large compared to the square of the smoothing
length. Therefore, this method improves as the diffusion goes to zero and conse-
quently should only be used for diffusive perturbations of convective problems. The
numerical validation of the method will be the next step in the present study.

Appendix. W™ Estimates for the Convection-Diffusion Equation.

PROPOSITION. Assume that L is a positive symmetric matriz, and that v < 1.
Assume further that there is an integer m > 1 such that

a e L®([0,T], W™ 1 ®R™), g € L®([0, T], W™ (R™)),
L e L®([0,T], W™®R"),  fo € W™®(R").
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Then for any positive T, there exists a constant C = C(T,a,aq,L) such that for
any t in [0,T] and any v in [0, 1], the solution of the convection-diffusion equation
(1), with initial data fo, satisfies

I/ ®)lm.00 < C(T,a, a0, L)l follm,co-

Proof (B. Perthame, private communication). We introduce the perturbed equa-
tion

(41) %‘:— +div(af) + aof = vDé(t) - f,

where

0 0
13 _ —_ e
DE(t) = D(t) +eA = Ei j: P (L,] sz> ,
Lf =L +¢Id,.

The matrix L* is positive definite. Thus, the classical strong maximum principle
holds for Eq. (41). Since the estimate is independent of €, the same estimate is true
in the limit € = 0. Similar arguments are valid for the derivatives. 0O
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